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Abstract. The aim of this paper is studying the remotely almost periodic mo-
tions of dynamical systems and solutions of differential equations. We establish some
properties of remotely almost periodic motions. The notion of remote comparability
(comparability at the infinity) by the character of recurrence for remotely almost pe-
riodic motions is introduced. This notion plays a very important role in the study of
the remotely almost periodic motions.
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1 Introduction

The aim of this paper is studying the remotely almost periodic motions of dy-
namical systems. This study continues the author’s series of works devoted to the
study of asymptotically almost periodic motions of dynamical systems [2].

The notion of remotely almost periodicity (on the real axis R := (−∞,+∞)) for
scalar function was introduced and studied by Donald Sarason [9]. Remotely almost
periodic functions on the semi-axis R+ := [0,+∞) with values in the Banach space
were introduced by Ruess W. M. and Summers W. H. [8] (see also Baskakov A.
G. [1]). Remotely almost periodic motions for dynamical systems were introduced
by Ruess W. M. and Summers W. H. [8].

In this paper we study systematically the remotely almost periodic motions on
the semi-axis (both positive semi-axis R+ and negative semi-axis R−) and on the
real axis R. We introduce and study the important notion of the comparability by
the character of recurrence at the infinity for the remotely almost periodic motions.

The paper is organized as follows. In the second Section, we collect some known
notions and facts that we use in this paper.

In the third Section we study the remotely stationary (respectively, remotely
τ -periodic and remotely stationary) motions and the relation between them.

The fourth Section is dedicated to the important notion of the remote compa-
rability (comparability at the infinity) by the character of recurrence for remotely
almost periodic motions. We show that if the given motion π(t, x) is remotely com-
parable by the character of recurrence with the remotely stationary (respectively,
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remotely τ -periodic or remotely almost periodic) motion σ(t, y), then the motion
π(t, x) is also remotely stationary (respectively, remotely τ -periodic or remotely al-
most periodic).

In the fifth Section we introduce and study the notion of equi-almost periodicity
for the compact invariant sets of given dynamical system. We establish the relation
between the equi-almost periodicity of compact invariant set and almost periodicity
of some abstract function associated with given compact invariant set.

The sixth Section is dedicated to the study of the relation between two-sided
remotely almost periodic motions and one-sided remotely almost periodic motions.
We show that the given motion of the two-sided dynamical system is remotely almost
periodic on the real axis R (it is two-sided remotely almost periodic) if and only if
it is one-sided remotely almost periodic on the positive semi-axis R+ and on the
negative semi-axis R−.

In the next publications we plane to study:

1. different classes of remotely almost periodic functions and their relations with
the shift dynamical systems and the remotely almost periodic motions on them;

2. remotely almost periodic solutions of different classes of differential equations.

2 Preliminary

Let X and Y be two complete metric spaces, let R := (−∞,+∞), Z :=
{0,±1,±2, . . . }, S = R or Z, S+ = {t ∈ S| t ≥ 0} and S− = {t ∈ S| t ≤ 0}.
Let T = S or S+, (X,S+, π) (respectively, (Y,S, σ)) be an autonomous one-sided
(respectively, two-sided) dynamical system on X (respectively, on Y ).

Let (X,T, π) be a dynamical system and π(t, x) = πtx = xt.

Definition 1. A point x ∈ X (respectively, a motion π(t, x)) is said to be:

– stationary if π(t, x) = x for any t ∈ T;

– τ -periodic (τ > 0 and τ ∈ T) if π(τ, x) = x;

– asymptotically stationary (respectively, asymptotically τ -periodic) if there ex-
ists a stationary (respectively, τ -periodic) point p ∈ X such that

lim
t→∞

ρ(π(t, x), π(t, p)) = 0. (1)

Remark 1. Note that the almost periodic point p in the relation (1) is defined
uniquely (see, for example, [4, Ch.I]).

Theorem 1. [2, Ch.I] A point x ∈ X is asymptotically τ -periodic if and only if the
sequence {π(kτ, x)}∞k=0 converges.

Definition 2. A point x̃ ∈ X is said to be ω-limit for x ∈ X if there exists a
sequence {tk} ⊂ S+ such that tk → +∞ and π(tk, x) → x̃ as k → ∞.
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Denote by ωx the set of all ω-limit points of x ∈ X.

Definition 3. We will call a point x ∈ X (respectively, a motion π(t, x)) remotely
τ -periodic (τ ∈ T and τ > 0̃) if

lim
t→+∞

ρ(π(t+ τ, x), π(t, x)) = 0. (2)

Lemma 1. Let x ∈ X be a remotely τ -periodic point then for any τ
′ ∈ {kτ | k ∈

Z}
⋂

T we have
lim

t→+∞
ρ(π(t+ τ ′, x), π(t, x)) = 0. (3)

Proof. Assume that this statement is not true, then there exist ε0 > 0, τ ′0 = k0τ ∈ T
and tn → +∞ (tn ∈ T) as n→ ∞ such that

ρ(π(tn + k0τ, x), π(tn, x)) ≥ ε0

for any n ∈ N.
On the other hand we have

ε0 ≤ ρ(π(tn + k0τ, x), π(tn, x)) ≤ (4)∑k0
m=1 ρ(π(tn +mτ, x), π(tn + (m− 1)τ, x)) =

∑k0
m=1 ρ(π(t

m
n + τ, x), π(tmn , x)),

where tmn := tn + (m − 1)τ for any n ∈ N and m = 1, . . . , k0. Note that tmn → +∞
as n → ∞ (m = 1, . . . , k0). Passing to the limit in (4) as n → ∞ and taking into
account (3) we obtain ε0 ≤ 0. The last relation contradicts the choice of ε0. The
obtained contradiction proves our statement. Lemma is proved.

Remark 2. If the point x ∈ X is remotely τ -periodic, then it is remotely τ ′-periodic
for any τ ′ ∈ {τk| k ∈ Z}

⋂
T.

Remark 3. The motions of dynamical systems possessing the property (2) were
studied in the works of K. Cryszka [5] and A. Pelczar [7].

Definition 4. A point x is called positively Lagrange stable if the semi-trajectory
Σ+
x := {π(t, x)| t ∈ S+} is a precompact subset of X.

Theorem 2. [4, Ch.I] Let x ∈ X be positively Lagrange stable and τ ∈ T (τ > 0).
Then the following statements are equivalent:

a. the motion π(t, x) is remotely τ -periodic;

b. any point p ∈ ωx is τ -periodic.

Definition 5. A point x (respectively, a motion π(t, x)) is said to be remotely
stationary if it is remotely τ -periodic for any τ ∈ T.

Corollary 1. Let x ∈ X be positively Lagrange stable. Then the following statements
are equivalent:
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a. the motion π(t, x) is remotely stationary;

b. any point p ∈ ωx is stationary.

Proof. This statement follows directly from the corresponding definition and Theo-
rem 2.

Corollary 2. Every asymptotically τ -periodic (respectively, asymptotically station-
ary) point x ∈ X is remotely τ -periodic (respectively, remotely stationary).

Proof. Assume that the point x ∈ X is asymptotically τ -periodic (respectively,
asymptotically stationary) then there exist a (unique) τ -periodic (respectively, sta-
tionary) point p ∈ X such that (1) holds and, consequently, the point x is positively
Lagrange stable and ωx = ωp. The last equality means that the set ωx is minimal
and consists of τ -periodic (respectively, stationary) points. By Corollary 1 the point
x is remotely τ -periodic (respectively, remotely stationary).

Definition 6. A subset A ⊆ T is said to be relatively dense in T if there exists a
positive number l ∈ T such that [a, a+ l]

⋂
A ̸= ∅ for any a ∈ T, where [a, a+ l] :=

{x ∈ T| a ≤ x ≤ a+ l}.

Lemma 2. Assume that a subset P± ⊆ S± is relatively dense in S±. Then the set
P := P−⋃

P+ ⊆ S is relatively dense in S.

Proof. Since the set P± ⊆ S± is relatively dense in S± then there is a positive
number ℓ± such that in any segment [a′, b′] ⊆ S± of length ℓ± at least one point
from S± is contained. Denote by ℓ := ℓ− + ℓ+ and we will show that any segment
[a, b] ⊂ S of length ℓ contains at least one point from S. Let c ∈ S be number such
that a < c < b, [a, b] = [a, c]

⋃
[c, b] and the segment [a, c] (respectively, [c, b]) has

the length ℓ− (respectively, ℓ+).
If a ≥ 0 (respectively, b ≤ 0), then the segment [a, b] contains at least one point

from S+ (respectively, S−) and, consequently, [a, b]
⋂
S ̸= ∅.

If a < 0 < b, then logically the following two cases are possible:
1. c ≥ 0. In this case we have the segment [c, b] ⊂ S+ of the length ℓ+ which

contains at least one point from P+ and, consequently, P
⋂
[a, b] ̸= ∅.

2. c < 0. In this case the segment [a, c] ⊂ S− of the length ℓ− contains at least
one point from P− and, consequently, P

⋂
[a, b] ̸= ∅.

Thus for the set P there exists a positive number ℓ (= ℓ− + ℓ+) such that every
segment [a, b] (from S) of the length ℓ is such that [a, b]

⋂
P ≠ ∅. This means that

the set P ⊂ S is relatively dense in S. Lemma is proved.

Definition 7. A point x ∈ X of the dynamical system (X,T, π) is said to be:

1. almost periodic if for any ε > 0 the set

P(ε, p) := {τ ∈ T| ρ(π(t+ τ, p), π(t, p)) < ε for any t ∈ T}

is relatively dense in T;
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2. positively Poisson stable if x ∈ ωx;

3. asymptotically stationary (respectively, asymptotically τ -periodic, asymptoti-
cally almost periodic or positively asymptotically Poisson stable) if there exists
a stationary (respectively, τ -periodic, almost periodic or positively Poisson sta-
ble) point p ∈ X such that

lim
t→∞

ρ(π(t, x), π(t, p)) = 0. (5)

Definition 8. A subset M ⊆ X is said to be positively invariant (respectively,
negatively invariant or invariant) if π(t,M) ⊆ M (respectively, M ⊆ π(t,M) or
π(t,M) =M) for any t ∈ T.

Theorem 3. [4,11] Assume that the point x ∈ X is positively Lagrange stable, then
the following statement hold:

1. ωx ̸= ∅;

2. ωx is a compact subset of X;

3. the set ωx is invariant, that is, π(t, ωx) = ωx for any t ∈ S+.

3 Remotely Almost Periodic Motions of Dynamical Systems on the
Semi-Axis

Remark 4. For any τ > 0 (τ ∈ T) the set A := {kτ | k ∈ Z}
⋂
T is relatively dense

in T.

Definition 9. A point x ∈ X (respectively, a motion π(t, x)) is said to be remotely
almost periodic [8] if for an arbitrary positive number ε there exists a relatively dense
subset P(ε, x) ⊆ T such that for any τ ∈ P(ε, x) there exists a number L(ε, x, τ) > 0
for which we have

ρ(π(t+ τ, x), π(t, x)) < ε

for any t ≥ L(ε, x, τ).

Remark 5. Every almost periodic point x ∈ X is remotely almost periodic.

Lemma 3. Every remotely τ -periodic (respectively, remotely stationary) point x of
the dynamical system (X,T, π) is remotely almost periodic.

Proof. Let ε be an arbitrary positive number. Denote by P(ε) := {kτ | k ∈ Z}
⋂
T.

If τ ′ ∈ P(ε), then there exists k0 ∈ Z such that τ ′ = k0τ ∈ T. By Lemma 1 for given
ε and τ ′ = k0τ there exists a positive number L(ε, τ) such that

ρ(π(t+ τ ′, x), π(t, x)) < ε

for any t ≥ L(ε, τ ′).
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Lemma 4. A point x is remotely τ -periodic (respectively, remotely stationary) if
and only if for any ε > 0 there exists a relatively dense in T subset P(x, ε) such that

1. for any τ ∈ P(x, ε) there exists a number L(x, ε, τ) > 0 for which we have

ρ(π(t+ τ, x), π(t, x)) < ε

for any t ≥ L(x, ε, τ) and

2. {τZ} ⊂ P(x, ε) (respectively, T ⊆ P(x, ε)).

Proof. This statement follows directly from the corresponding definitions.

Lemma 5. If the point x ∈ X is asymptotically almost periodic, then it is remotely
almost periodic.

Proof. Assume that the point x ∈ X is asymptotically almost periodic, then there
exists a unique almost periodic point px ∈ X such that

lim
t→+∞

ρ(π(t, x), π(t, px)) = 0. (6)

Let ε be an arbitrary positive number, then from (6) there exists a positive number
L(ε, x) such that

ρ(π(t, x), π(t, px)) < ε

for any t ≥ L(ε, x). On the other hand by almost periodicity of px ∈ X for given
ε > 0 the set

P(ε, px) := {τ ∈ T| ρ(π(t+ τ, px), π(t, px)) < ε for any t ∈ T}

is relatively dense in T. Denote by P(ε, x) := P(ε/3, px). Let τ ∈ P(ε, x) and
L(ε, x, τ) := L(ε/3, x) + |τ |. Note that if t ≥ L(ε, x, τ), then t+ τ ≥ L(ε/3, x) and

ρ(π(t+ τ, x), π(t, x)) ≤ ρ(π(t+ τ, x), π(t+ τ, x)) + ρ(π(t+ τ, px), π(t, px))+

ρ(π(t, px), π(t, x)) < ε/3 + ε/3 + ε/3 = ε,

i.e., the point x is remotely almost periodic. Lemma is proved.

Lemma 6. Let (X,T, π) and (Y,T, σ) be two dynamical systems and x ∈ X (re-
spectively, y ∈ Y ). Assume that the following conditions hold:

1. the point y ∈ Y is remotely almost periodic (respectively, remotely τ -periodic,
remotely stationary);

2. there exists a uniformly continuous mapping h : Σy → Σx satisfying the con-
ditions

h(σ(t, y)) = π(t, x)

for any t ∈ T.
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Then the point x ∈ X is also remotely almost periodic (respectively, remotely
τ -periodic, remotely stationary).

Proof. Let ε be an arbitrary positive number and δ = δ(ε) > 0 be the positive
number from the uniform continuity of the map h, i.e.,

ρ(σ(t1, y), σ(t2, y)) < δ implies ρ(π(t1, x), π(t2, x)) < ε (t1, t2 ∈ T).

Since the point y is remotely almost periodic then for the number δ > 0 there exists
a relatively dense in T subset P(y, δ) such that for any τ ∈ P(y, δ) there exists a
number L(y, δ, τ) > 0 for which we have

ρ(σ(t+ τ, y), σ(t, y)) < δ

and, consequently,
ρ(π(t+ τ, x), π(t, x)) < ε (7)

for any t ≥ L(y, δ, τ). Denote by P(x, ε) := P(y, δ(ε)) and for τ ∈ P(x, ε) we
put L(x, ε, τ) := L(y, δ(ε), τ), then (7) means that the point x is remotely almost
periodic.

Let now the point y ∈ Y be remotely τ -periodic, ε be an arbitrary positive
number and δ = δ(ε) > 0 as above. We have

lim
t→∞

ρ(σ(t+ τ, y), σ(t, y)) = 0

and, consequently, there exists a positive number L(y, δ) such that

ρ(σ(t+ τ, y), σ(t, y)) < δ

for any t ≥ L(y, δ) and, consequently,

ρ(π(t+ τ, x), π(t, x)) < ε (8)

for any t ≥ L(x, ε) := L(y, δ(ε)). On the other hand by Lemma 4 we have

{τZ} ⊂ P(y, δ(ε)) = P(x, ε). (9)

The relations (8)-(9) (see Lemma 4) mean that the point x is remotely τ -periodic.
Let now the point y ∈ Y be remotely stationary, then it is remotely τ -periodic

for every τ ∈ T. Now we prove that under the conditions of Lemma 6 the point x is
remotely stationary. Applying Lemma 4 (item (ii)) we conclude that the point x is
remotely stationary.

Lemma 7. Let M (respectively, N) be a positively invariant subset of (X,T, π)
(respectively, (Y,T, σ). Assume that the following conditions hold:

1. there exists a uniformly continuous mapping h : N →M ;

2. h(σ(t, q)) = π(t, h(p)) for any (t, q) ∈ T×N .
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Then the mapping h admits a unique continuous extension h : N →M with the
property

h(σ(t, q)) = π(t, h(p))

for any (t, q) ∈ T×N .

Proof. Let q ∈ N be an arbitrary point then there exists a sequence {qn} ⊂ M
such that qn → q as n → ∞. Denote by pn := h(qn) and note that by uniform
continuity of the map h the sequence {pn} is fundamental. Since the metric space
X is complete then the sequence {pn} converges. Denote by p its limit and we put

h(q) := lim
n→∞

h(qn). (10)

It is known (see, for example, Theorem 26 [6, Ch.VI, p.195]) that the mapping
h : N →M defined above is uniquely defined and continuous.

To finish the proof of lemma we note that by (10) we have

h(σ(t, q)) = h(σ(t, lim
n→∞

qn)) = lim
n→∞

h(σ(t, qn)) =

lim
n→∞

π(t, h(qn)) = π(t, lim
n→∞

h(qn)) = π(t, h(q))

for any (t, q) ∈ T×N . Lemma is completely proved.

Corollary 3. Assume that the following conditions hold:

1. the point y ∈ Y is Lagrange stable and remotely almost periodic (respectively,
remotely τ -periodic, remotely stationary);

2. there exists a continuous mapping h : H(y) → H(x) satisfying the conditions

h(y) = x and h(σ(t, q)) = π(t, h(q)) (11)

for any (t, q) ∈ T×H(y).

Then the point x ∈ X is also remotely almost periodic (respectively, remotely
τ -periodic, remotely stationary).

Proof. Since the set H(y) is compact then the mapping h : H(y) → H(x) is uni-
formly continuous and by (11) we have h(σ(t, y)) = π(t, x) for any t ∈ T. Now to
finish the proof of Lemma it suffices to apply Lemmas 4 and 7.

Lemma 8. Assume that the following conditions hold:

1. the point y ∈ Y is asymptotically stationary (respectively, asymptotically τ -
periodic, asymptotically almost periodic);

2. there exists a continuous mapping h : H(y) → H(x) satisfying the conditions

h(y) = x and h(σ(t, q)) = π(t, h(q)) (12)

for any (t, q) ∈ T×H(y).
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Then the point x ∈ X is also asymptotically stationary (respectively, asymptoti-
cally τ -periodic, asymptotically almost periodic).

Proof. By condition (i) of lemma there exists a stationary (respectively, τ -periodic,
almost periodic) q ∈ Y such that

lim
t→+∞

ρ(σ(t, y), σ(t, q)) = 0 (13)

and, consequently, q ∈ ωq ⊆ H+(y). By (13) the set H+(y) is compact and, hence,
the mapping h : H+(y) → H+(x) is uniformly continuous. According to (12) the
point p := h(q) is stationary (respectively, τ -periodic, almost periodic). Since the
mapping h : H+(y) → H+(x) is uniformly continuous then from (13) we obtain

lim
t→+∞

ρ(π(t, x), π(t, p)) = 0.

Lemma is proved.

Lemma 9. Let (X, ρ) (respectively, (Y, d)) be a metric space and (X,T, π) (respec-
tively, (Y,T, σ)) be a dynamical system on X (respectively, on Y ). Assume that the
following conditions are fulfilled:

1. there exist a homomorphism h from (Y,T, σ) into (X,T, π);

2. the mapping h : Y → X is uniformly continuous.

Then the following statements hold:

1. if the point y is asymptotically stationary (respectively, asymptotically τ -
periodic or asymptotically almost periodic), then the point x := h(y) is so;

2. if the point y is remotely stationary (respectively, remotely τ -periodic or re-
motely almost periodic), then the point x = h(y) is so;

3. if the point y ∈ Y is stationary (respectively, τ -periodic or almost periodic),
then the point x = h(y) is so.

Proof. The first (respectively, the second) statement directly follows from Lemma 8
(respectively, from Lemma 6).

Let now the point y ∈ Y be almost periodic (respectively, τ -periodic or station-
ary) and ε be an arbitrary positive number. Denote by δ = δ(ε) > 0 a positive
number from the uniform continuity of the map h. Since the point y is almost peri-
odic (respectively, τ -periodic or stationary) then there exist a relatively dense in T
subset P(y, δ) (respectively, relatively dense subset P(y, δ) with {τZ}

⋂
T ⊆ P(y, δ)

or P(y, δ) with {τZ}
⋂
T ⊆ P(y, δ) for any τ ∈ T). Denote by P(x, ε) := P(y, δ(ε))

then we have

ρ(π(t+ τ, x), π(t, x)) = ρ(h(σ(t+ τ, y)), h(σ(t, y)) < ε (14)

for any (t, τ) ∈ T×P(x, ε) and {τZ}
⋂
T ⊆ P(y, δ) and {τZ}

⋂
T ⊆ P(y, δ) (respec-

tively, {τZ}
⋂
T ⊆ P(y, δ) for any τ ∈ T). Lemma is proved.
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Corollary 4. Let (X, ρ) (respectively, (Y, d)) be a metric space and (X,T, π) (re-
spectively, (Y,T, σ)) be a dynamical system on X (respectively, on Y ). Assume that
the following conditions are fulfilled:

1. there exists a homeomorphism h from (Y,T, σ) onto (X,T, π);

2. the mappings h : Y → X and h−1 : X → Y are uniformly continuous.

Then the following statements hold:

1. the point y is asymptotically stationary (respectively, asymptotically τ -periodic
or asymptotically almost periodic) if and only if the point x := h(y) is so;

2. the point y is remotely stationary (respectively, remotely τ -periodic or remotely
almost periodic) if and only the point x = h(y) is so;

3. the point y ∈ Y is stationary (respectively, τ -periodic or almost periodic) if
and only the point x = h(y) is so.

Definition 10. A subset M is said to be equi-almost periodic if for any ε > 0 there
exists a relatively dense subset P(ε,M) such that

ρ(π(t+ τ, p), π(t, p)) < ε (15)

for any t ∈ T, τ ∈ P(ε,M) and p ∈M .

Lemma 10. LetM be a compact invariant minimal set consisting of almost periodic
motions. Then the set M is equi-almost periodic.

Proof. Let ε be an arbitrary positive number. We fixe a point p0 ∈ M . By almost
periodicity of p0 the set

P(ε, p0) := {τ ∈ T | ρ(π(t+ τ, p0), π(t, p0)) < ε for any t ∈ T}

is relatively dense in T. Denote by P(ε,M) := P(ε/2, p0). Let p ∈ M be an
arbitrary point, then by the minimality of M there exists a sequence {tn} ⊂ T such
that π(tn, p0) → p as n→ ∞. From above and (15) we obtain

ρ(π(τ, π(tn, p0)), π(tn, p0)) = ρ(π(tn + τ, p0), π(tn, p0)) < ε/2 (16)

for any τ ∈ P(ε,M) and n ∈ N . Passing to the limit in (16) as n→ ∞ we obtain

ρ(π(τ, p), p) ≤ ε/2 < ε (17)

for any p ∈ M and τ ∈ P(ε,M). Since the set M is invariant, then π(t, p) ∈ M for
any t ∈M and, consequently, from (17) we obtain

ρ(π(t+ τ, p), π(t, p)) < ε

for any (t, p) ∈ T×M . Lemma is proved.
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Lemma 11. Let x ∈ X be a positively Lagrange stable point of the dynamical system
(X,T, π).

Then the following statements are equivalent:

1. motion π(t, x) is remotely almost periodic;

2. the ω-limit set ωx of the motion π(t, x) is equi-almost periodic.

Proof. Let π(t, x) be a remotely almost motion, then for an arbitrary positive num-
ber ε there exists a relatively dense in T subset P(ε, x) with the property that for
any τ ∈ P(ε/2, x) there exists a positive number L(ε, x, τ) such that

ρ(π(t+ τ, x), π(t, x)) < ε/2 (18)

for any t ≥ L. Denote by P(ε, ωx) := P(ε/2, x) and we will show that

ρ(π(t+ τ, p), π(t, p)) < ε (19)

for any t ∈ T, τ ∈ P(ε, ωx) and p ∈ ωx. Note that under the conditions of Lemma
11 the set ωx is invariant (see Theorem 3) and, consequently, to show (19) it suffices
to prove that

ρ(π(τ, p), p) < ε

for any τ ∈ P(ε, ωx) and p ∈ ωx.
Let now p be an arbitrary element from ωx, then there exists a sequence tn → +∞

as n→ ∞ such that
p = lim

n→∞
π(tn, x). (20)

Denote by n0 := n(ε, x, τ) a number from N such that tn ≥ L(ε, x, τ) for any n ≥ n0,
then from (18) we obtain

ρ(π(tn + τ, x), π(tn, x)) < ε/2 (21)

for any n ≥ n0. Passing to the limit in (21) and taking into account (20) we obtain

ρ(π(τ, p), p) ≤ ε/2 < ε

for any τ ∈ P(ε, ωx) and p ∈ ωx.
Now we will prove the converse statement. Assume that ωx is equi-a.p. For

ε > 0, choose a relatively dense in T subset P(s/2, ωx) of ε/2-almost periods for ωx.
Let P(ε, x) := P(ε/2, ωx) and τ ∈ P(ε, x). We will show that there exists a positive
number L(ε, x, τ) such that

ρ(π(t+ τ, x), π(t, x)) < ε (22)

for any t ≥ L. If we suppose that (22) is not true, then there exist a positive number
ε0 > 0, τ0 ∈ P(ε0, x) = P(ε0/2, ωx) and a sequence {tn} such that tn → +∞ as
n→ ∞ and

ρ(π(tn + τ0, x), π(tn, x)) ≥ ε0 (23)
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for any n ∈ N. Since the point x is Lagrange stable then without loss of generality
we can suppose that the sequence {π(tn, x)} is convergent and denote its limit by

p̄ := lim
n→∞

π(tn, x). (24)

Note that p̄ ∈ ωx. Passing to the limit in (23) and taking into account (24) we
obtain

ρ(π(p̄, τ0), p̄) ≥ ε0. (25)

On the other hand since τ0 ∈ P(ε0/2, ωx) then we have

ρ(π(p, τ), p) < ε0/2 (26)

for any p ∈ ωx. The relation (25) contradicts to (26). The obtained contradiction
proves our statement. Lemma is completely proved.

Theorem 4. Assume that the following conditions are fulfilled:

1. the point x is remotely stationary (respectively, remotely τ -periodic or remotely
almost periodic);

2. x ∈ X is positively asymptotically Poisson stable.

Then the point x is asymptotically stationary (respectively, asymptotically τ -
periodic or asymptotically almost periodic).

Proof. Since the point x is positively asymptotically Poisson stable, then there exists
a positively Poisson stable point p such that (5) holds. From (5) we obtain ωx = ωp.
On the other hand p ∈ ωp because the point p is positively Poisson stable. Thus we
have p ∈ ωp = ωx. By Corollary 1 (respectively, by Theorem 2 or by Lemma 11) the
point p ∈ ωx is stationary (respectively, τ -periodic or almost periodic) and taking
into account (5) we conclude that the point x is asymptotically stationary (respec-
tively, asymptotically τ -periodic or asymptotically almost periodic). Theorem is
proved.

4 Comparability of remotely almost periodic motions by their char-
acter of recurrence at the infinity

Denote by

– L+∞
x := {{tn} ⊂ T| {π(tn, x)} converges and tn → +∞ as n→ ∞ };

– L+∞
x,p := {{tn} ∈ L+∞

x | such that π(tn, x) → p as n→ ∞}.

Definition 11. Let (X,T, π) and (Y,T, σ) be two dynamical systems. A point
x ∈ X is said to be (positively) remotely comparable by the character of recurrence
with the point y ∈ Y if L+∞

y ⊆ L+∞
x .
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Let Ti (i = 1, 2) be a subsemigroup of the group S, S+ ⊆ T1 ⊆ T2 and (X,T1, π)
and (Y,T2, σ) be two dynamical systems.

Lemma 12. Let x ∈ X (respectively, y ∈ Y ) be the point of the dynamical system
(X,T1, π) (respectively, (Y T2, σ)). Assume that the following conditions are fulfilled:

1. L+∞
y ⊆ L+∞

x ;

2. L+∞
y,q

⋂
L+∞
x,p ̸= ∅ (q ∈ ωy and p ∈ ωx).

Then

L+∞
y,q ⊆ L+∞

x,p . (27)

Proof. If we suppose that the relation (27) is false, then there exists a sequence

{τn} ∈ L+∞
y,q \ L+∞

x,p ̸= ∅.

Under the conditions of lemma we have σ(τn, y) → q, π(τn, x) → p′ as n → ∞ and
p′ ̸= p.

Note that L+∞
y,q

⋂
L+∞
x,p ̸= ∅ and, consequently, there exists a sequence {sn} ∈

L+∞
y,q

⋂
L+∞
x,p . This means that σ(sn, y) → q and π(sn, x) → p as n → ∞. Let

tn = τk if n = 2k − 1 and tn = sk if n = 2k for any k ∈ N. It is clear that
{tn} ∈ L+∞

y,q ⊆ L+∞
y ⊆ L+∞

x and, consequently, there exists a point p′′ ∈ ωx such
that π(tn, x) → p′′ as n→ ∞.

On the other hand we have

p′′ = lim
k→∞

π(sk, x) = p

and

p′′ = lim
k→∞

π(τk, x) = p′

and, consequently, p = p′. The last relation contradicts the choice of the point p′.
The obtained contradiction prove our statement. Lemma is proved.

Lemma 13. Assume that L+∞
y ⊆ L+∞

x and L+∞
y,q ⊆ L+∞

x,p (q ∈ ωy and p ∈ ωx).

Then for any t ∈ T1 we have

L+∞
y,σ(t,q) ⊆ L+∞

x,π(t,p). (28)

Proof. Let t ∈ T1 and {tn} ∈ L+∞
y,q ⊆ L+∞

x,p , then σ(tn+t, y) = σ(t, σ(tn, y)) → σ(t, q)
(respectively, π(tn + t, x) = π(t, π(tn, x)) → π(t, p)) as n→ ∞ and consequently,

{tn + t} ∈ L+∞
y,σ(t,q)

⋂
L+∞
x,π(t,p) ̸= ∅.

By Lemma 12 we have the relation (28). Lemma is proved.
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Theorem 5. [2, Ch.II,p.31] Let y ∈ Y be an asymptotically stationary (respectively,
asymptotically τ -periodic, asymptotically almost periodic) point. If the point x ∈ X
is remotely comparable by the character of recurrence with the point y ∈ Y , then
the point x is also asymptotically stationary (respectively, asymptotically τ -periodic,
asymptotically almost periodic).

Theorem 6. Let y ∈ Y be a Lagrange stable point of (Y,T2, σ). If a point x
is remotely comparable with the point y by the character of recurrence, then there
exists a continuous mapping h : ωy → ωx satisfying the condition

h(σ(t, q)) = π(t, h(q))

for any t ∈ T1 and q ∈ ωy.

Proof. Since the point y ∈ Y is Lagrange stable then ωy is a nonempty, compact
and invariant subset of (Y,T2, σ). Let q ∈ ωy be an arbitrary point, then there
exists a sequence tn → +∞ such that σ(tn, y) → q as n → ∞. It is clear that
{tn} ∈ L+∞

y,q ⊆ L+∞
y ⊆ L+∞

x . This means that there exists a point p ∈ ωx such
that {tn} ∈ L+∞

x,p and, consequently, L+∞
y,q

⋂
L+∞
x,p ̸= ∅. By Lemma 12 we have

L+∞
y,q ⊆ L+∞

x,p . It is easy to see that the point p is defined uniquely. If we assume that
it is not true, then there are the points p1, p2 ∈ ωx (p1 ̸= p2) such that L+∞

y,q ⊆ L+∞
x,pi

(i = 1, 2) and, consequently.

L+∞
y,q ⊆ L+∞

x,p1

⋂
L+∞
x,p2 ̸= ∅. (29)

On the other hand since p1 ̸= p2 then it is easy to check that

L+∞
x,p1

⋂
L+∞
x,p2 = ∅. (30)

The relation (30) contradicts (29). The obtained contradiction proves our statement.
Taking into account the facts established above we can define the mapping h :

ωy → ωx as follows:

h(q) = p if and only if L+∞
y,q ⊆ L+∞

x,p . (31)

It is clear that by (31) a mapping h : ωy → ωx is well defined and by Lemma 13
we have h(σ(t, q)) = π(t, h(q)) for any t ∈ T2 and q ∈ ωx.

To finish the proof of Theorem it suffices to show that the mapping h : ωy → ωx

is continuous. Let {qk} → q (qk, q ∈ ωy). Show that {pk} = {h(qk)} converges to

p = h(q). For every k ∈ N we choose {t(k)n } ∈ L+∞
y,qk

, then pk = h(qk) = lim
n→+∞

xt
(k)
n .

Let εk ↓ 0. For every k ∈ N we will choose nk ∈ N such that the following inequalities
would be fulfilled simultaneously

t(k)nk
≥ k, ρ(xt(k)nk

, pk) < εk and d(yt(k)nk
, qk) < εk

(it is clear that such nk exists). Assume t′k := t
(k)
nk and let us show that the sequence

{t′k} belongs to L+∞
y,q . For this aim we will note that

d(yt′k, q) ≤ d(yt′k, qk) + d(qk, q) < εk + d(qk, q). (32)
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Passing to the limit in (32) as k → +∞ we will obtain {t′k} ∈ L+∞
y,q . Since L+∞

y,q ⊆
L+∞
x,p , then {t′k} ∈ L+∞

x,p . As

ρ(pk, p) ≤ ρ(pk, xt
′
k) + ρ(xt′k, p) < εk + ρ(xt′k, p), (33)

then passing to the limit in (33) and taking into account that {t′k} ∈ L+∞
x,p we will

obtain pk → p. Theorem is completely proved.

Remark 6. Under the conditions of Theorem 6 we have h(ωy) ⊆ ωx.

Theorem 7. Assume that the point y ∈ Y is positively Lagrange stable. If a point
x is remotely comparable with y by the character of recurrence, then the following
statements hold:

1. the point x is positively Lagrange stable;

2. there exists a continuous mapping h : ωy → ωx satisfying the condition

h(σ(t, q)) = π(t, h(q))

for any t ∈ T and q ∈ ωy;

3. h(ωy) = ωx.

Proof. Let {tn} ⊂ S+ be an arbitrary sequence. If the sequence {tn} is bounded, then
the sequence {π(tn, x)} is evidently precompact. If the sequence {tn} is unbounded,
then we can extract from {tn} a subsequence {tnk

} which converges to +∞ as k →
∞. Since the point y is positively Lagrange stable, then without loss of generality we
can assume that the sequence {σ(tnk

, y)} converges. Thus we have {tnk
} ∈ L+∞

y ⊆
L+∞
x , i.e., the sequence {π(tnk

, x)} is convergent. This means that x is positively
Lagrange stable.

The seconde statement follows directly from Theorem 6.
Let now p be an arbitrary point from ωx, then there exists a sequence {tn} ∈ L+∞

x

such that π(tn, x) → p as n → ∞. Since the point y is positively Lagrange stable
we can assume that the sequence {σ(tn, y)} converges. Denote its limit by q then
h(q) = p (see the proof of Theorem 6), i.e., h(ωy) = ωx. Theorem is completely
proved.

Theorem 8. [4, Ch.I] Let y ∈ Y be asymptotically stationary (respectively, asymp-
totically τ -periodic or asymptotically almost periodic) point. If the point x ∈ X
is remotely comparable by the character of recurrence with the point y, then the
point x is also asymptotically stationary (respectively, asymptotically τ -periodic or
asymptotically almost periodic).

Theorem 9. Let y ∈ Y be Lagrange stable and remotely stationary (respectively,
remotely τ -periodic or remotely almost periodic) point. If the point x ∈ X is remotely
comparable by the character of recurrence with the point y, then the point x is also
remotely stationary (respectively, remotely τ -periodic or remotely almost periodic).
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Proof. Let y ∈ Y be a Lagrange stable and remotely stationary (respectively, re-
motely τ -periodic or remotely almost periodic) point. Since the point y is positively
Lagrange stable, then by Theorem 7 the point x ∈ X is positively Lagrange stable
and there exists a continuous map h : ωy → ωx satisfying the following conditions:

1.

h(ωy) = ωx; (34)

2.

h(σ(t, q)) = π(t, h(q)) (35)

for any t ∈ T and q ∈ ωy.

By Lemma 11 and Theorem 2 the set ωy consists of stationary points (respectively,
τ -periodic points or the set ωy is equi-almost periodic). From the equalities (34)
and (35) we obtain that the set ωx also consists of stationary points (respectively,
τ -periodic motions).

If the point y is remotely stationary (respectively, remotely τ -periodic), then by
Corollary 1 (respectively, by Theorem 2) the point x is remotely stationary (respec-
tively, remotely τ -periodic).

Let now the point y be remotely almost periodic. We will show that since the set
ωy is equi-almost periodic (see Lemma 11) then ωx is also equi-almost periodic. Let
ε be an arbitrary positive number then by compactness of ωy there exists a positive
number δ = δ(ε) such that

ρ(y1, y2) < δ

implies

ρ(h(y1), h(y2)) < ε.

Since the set ωy is equi-almost periodic, then for δ(ε) > 0 there exists a relatively
dense subset P(δ(ε), ωy) = P(ε, ωy) such that

ρ(σ(t+ τ, q̃), σ(t, q̃)) < δ(ε) (36)

for any t ∈ T, τ ∈ P(ωy, ε) and q̃ ∈ ωy. For arbitrary p ∈ ωx there exists a point
q ∈ ωy (see Theorem 7, item (iii)) such that h(q) = p and by (36) we obtain

ρ(π(t+ τ, p), π(t, p)) = ρ(π(t+ τ, h(q)), π(t, h(q)) = ρ(h(σ(t+ τ, q)), h(σ(t, q)) < ε

for any (t, τ, p) ∈ T×P(ε, ωy)×ωx. This means that the set ωx is equi-almost peri-
odic. By Lemma 11 the point x is remotely almost periodic. Theorem is completely
proved.

Consider a dynamical system (X,S−, π). Denote by (X,S+, π̂) the dynamical
system, where π̂ is the mapping from S+×X intoX defined by the equality π̂(t, x) :=
π(−t, x) for any (t, x) ∈ S+ ×X.
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Remark 7. Taking into account the construction above we can define the notion of
remote almost periodicity in the negative direction and to establish the analogues
of all results of Sections 2-4 for negatively remotely almost periodic motions.

Lemma 14. Assume thatM is a nonempty compact positively invariant equi-almost
periodic subset of (X,S+, π). Then the relation π(t0, x1) = π(t0, x2) (t0 ∈ S+, t0 > 0
and x1, x2 ∈M) implies x1 = x2.

Proof. If we suppose that this statement is not true, then there are x01, x
0
2 ∈ M

(x01 ̸= x02) and t0 > 0 such that

π(t0, x
0
1) = π(t0, x

0
2).

Denote by d := ρ(x01, x
0
2) > 0. Let ε ∈ (0, d) be an arbitrary number. Since the

set M is equi-almost periodic then for given ε there exists a relatively dense subset
P(ε,M) ⊂ S+ such that

ρ(π(τ, x0i ), x
0
i ) < ε/3

for any τ ∈ P(ε/3,M) and i = 1, 2. Let τ ∈ P(ε/3,M) and τ > t0 then

π(τ, x01) = π(τ, x02)

and, consequently,

d = ρ(x01, x
0
2) ≤ ρ(x01, π(τ, x

0
1)) + ρ(π(τ, x01), π(τ, x

0
2))+

ρ(π(τ, x02), x
0
2) < ε/3 + 0 + ε/3 < ε.

The last inequality contradicts the choice of the number ε. The obtained contradic-
tion proves our statement. Lemma is proved.

Definition 12. A continuous mapping γ : S → X is said to be an entire (full)
trajectory of (X,S+, π) if π(t, γ(s)) = γ(t+ s) for any t ∈ S+ and s ∈ S.

Denote by Fx the family of all full trajectories of (X,S+, π) passing through the
point x at the initial moment t = 0, i.e., γ(0) = x.

Theorem 10. [3, Ch.I] LetM be a nonempty, compact invariant subset of (X,T, π).
Then for any x ∈ M the set Fx ̸= ∅, i.e., there exists at least one full trajectory γ
of (X,T, π) passing through the point x at the initial moment t = 0.

Corollary 5. Assume that M is a nonempty compact invariant equi-almost periodic
subset of (X,S+, π). Then for any x ∈M there exists a unique full trajectory γx of
(X,S+, π) such that γx(0) = x and γx(s) ∈M for any s ∈ S.

Proof. Since the set M is invariant then by Theorem 10 for any x ∈ M the set Fx ̸
consists of a single full trajectory of (X,T, π). If we assume that this statement is
not true, then there are a point x0 ∈ M and full trajectories γ1x0

and γ2x0
such that

γix0
(s) ∈M (i = 1, 2) for any s ∈ S and γ1x0

(s0) ̸= γ2x0
(s0) for certain s0 < 0 (s0 ∈ S).

On the other hand since π(−s0, γix0
(s0)) = x0 (i = 1, 2) then by Lemma 14 we have

γ1x0
(s0) = γ2x0

(s0). The obtained contradiction completes the proof.
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Definition 13. An entire trajectory γ ∈ Fx is called almost periodic if the function
γ : S → X is almost periodic, i.e., for every ε > 0 there exists a relatively dense in
S subset P(ε, γ) ⊂ S such that ρ(γ(t+ τ), γ(t)) < ε for any t ∈ S and τ ∈ P(ε, γ).

Theorem 11. [4, Ch.I] Let (X,S+, π) be a semigroup dynamical system and suppose
that the point x ∈ X is almost periodic. Then the motion π(t, x) admits a unique
almost periodic extension, i.e., there exists a unique almost periodic entire trajectory
γ ∈ Fx such that γx(s) ∈M := H(x) for any s ∈ S and γ(t) = π(t, x) for any t ∈ S+.

Corollary 6. Assume that M is a nonempty compact invariant equi-almost periodic
subset of (X,S+, π). Then for any x ∈M there exists a unique full trajectory γx of
(X,S+, π) such that γx(0) = x, γx(s) ∈M for any s ∈ S and γx is almost periodic.

Proof. This statement follows from Theorem 11 and Corollary 5.

5 Equi-Almost Periodicity

Let M be a nonempty compact invariant and equi-almost periodic subset of the
semi-group dynamical system (X,S+, π). Denote by π̂ the mapping from S×M into
M defined by equality

π̂(t, x) := γx(t) (γx ∈ Fx) (37)

for any x ∈ M and t ∈ S, where γx ∈ Fx is a unique full trajectory of (X,S+, π)
such that γx(s) ∈M for any s ∈ S and γ(0) = x (see Corollary 6).

Lemma 15. The mapping π̂ defined by equality (37) possesses the following prop-
erties:

1. π̂(0, x) = x for any x ∈M ;

2.
π̂(t1 + t2, x) = π̂(t2, π̂(t1, x)) (38)

for any x1, x2 ∈M and t ∈ S;

3. the mapping π̂ is continuous;

4. π̂(t, x) = π(t, x) for any (t, x) ∈ S+ ×M .

Proof. The first and fourth statements are evident. Let t1, t2 ∈ S be two arbitrary
numbers. Note that

π̂(t1 + t2, x) = γx(t1 + t2) and π̂(t2, π̂(t1, x)) = π̂(t2, γx(t1)) = γγx(t1)(t2) (39)

Without loss of generality we can suppose that t1 ≤ t2. Consider the following
three logically possible cases:

(a) t1 ≤ t2 ≤ 0;

(b) t1 ≤ 0 ≤ t2;
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(c) 0 ≤ t1 ≤ t3.

(a) If t1 ≤ t2 ≤ 0, then

π(−t1 − t2, γx(t1 + t2)) = x and π(−t1 − t2, γγx(t1)(t2)) = π(−t1, γx(t1)) = x.

According to Lemma 14 γx(t1 + t2) = γγx(t1)(t2) and by (39) we obtain (38).
(b) If t1 ≤ 0 ≤ t2, then γx(t1 + t2) = π(t2, γx(t1)) and γγx(t1)(t2) = π(t2, γx(t1))

and, consequently, γx(t1 + t2) = γγx(t1)(t2) and by (39) we obtain (38).
(c) If 0 ≤ t1 ≤ t2, then π̂(t1 + t2, x) = π(t1 + t2, x) = π(t2, π(t1, x)) =

π̂(t2, π̂(t1, x)). Thus the second statement is proved.
To finish the proof of lemma it suffices to show that the mapping π̂ : S×M →M

is continuous. Let x ∈ M, t ∈ S−, xn → x and tn → t, then there is a number
l0 > 0 such that tn ∈ [−l0, l0] and, consequently,

ρ(π̃(tn, xn), π̃(t, x)) = ρ(πtn+l0γxn(−l0), πt+l0γx(−l0)) ≤

ρ(πtn+l0γxn(−l0), πtn+l0γx(−l0)) + ρ(πtn+l0γx(−l0), πt+l0γx(−l0)).
We will establish that the sequence {γxn} is relatively compact in C(S,M) and
that every limiting point γ of this sequence belongs to Fx. Indeed, to prove that
the sequence {γxn} is precompact in C(S,M) it is sufficient to show that for any
l > 0 the sequence {γxn} is equi-continuous on [−l.l], because γxn(s) ∈ M for any
(n, s) ∈ N×S andM is a compact subset ofX. Let l be an arbitrary positive number.
We will prove that the sequence {γxn} is equi-continuous on segment [−l, l] ⊂ T. If
we suppose that it is not true, then there exist ε0, l0 > 0, tin ∈ [−l0, l0] (i = 1, 2)
and δn → 0 (δn > 0) such that

|t1n − t2n| ≤ δn and ρ(γxn(t
1
n), γxn(t

2
n)) ≥ ε0. (40)

We may suppose that tin → t0 (i = 1, 2). From (40) we obtain

ε0 ≤ ρ(γn(t
1
n), γn(t

2
n)) =

ρ(π(t1n + l0, γxn(−l0), π(t2n + l0, γxn(−l0))) (41)

for any n ∈ N. Since γxn(s) ∈ M for any s ∈ S and M is a compact subset of
X, then the sequence {γxn(−l0)} is precompact. Without loss of generality we can
suppose that {γxn(−l0)} converges and denote by x̄ its limit. Passing to the limit
in (41) as n→ ∞ and taking into account above we obtain

ε0 ≤ ρ(π(t0 + l0, x̄), π(t0 + l0, x̄)) = 0.

The last relation contradicts to the choice of ε0. The obtained contradiction proves
our statement. Let γ be a limiting point of the sequence {γn}, then there exists a sub-
sequence {γkn} such that γ(t) = lim

n→∞
γkn(t) uniformly on every segment [−l, l] ⊂ T.

In particular γ ∈ C(S, X) and γ(s) ∈M for any s ∈ S because γ(s) = lim
n→∞

γxkn
(s).

We note that

πtγ(s) = lim
n→∞

πtγkn(s) = lim
n→∞

γkn(s+ t) = γ(s+ t)



90 DAVID CHEBAN

for any t ∈ T and s ∈ S. Finally, we see that γ(0) = lim
n→∞

γkn(0) = lim
n→∞

γxkn
(0) =

lim
n→∞

xkn = x, i.e., γ is an entire trajectory of (X,T, π) passing through the point x.

Lemma is completely proved.

Definition 14. A dynamical system (X,T, π) is said to be distal on the positively
invariant subset M ⊆ X if

inf
t∈T

(π(t, p), π(t, q)) > 0

for any p, q ∈M (p ̸= q).

Lemma 16. Let M ⊆ X be a nonempty, compact and positively invariant equi-
almost periodic subset, then the following statements hold:

1. the set M is uniformly Lyapunov stable, i.e., for any ε > 0 there ex-
ists a positive number δ = δ(ε) such that ρ(p, q) < δ (p, q ∈ M) implies
ρ(π(t, p), π(t, q)) < ε for any t ≥ 0;

2. the dynamical system (M,T, π) is distal.

Proof. Let us prove the first statement of Lemma. Let ε > 0, then by equi-almost
periodicity of M there exists a relatively dense in T subset P(ε,M) such that

ρ(π(t+ τ, p), π(t, p)) < ε

for any (t, τ, p) ∈ T × P(ε,M) ×M . By relative density of P (ε,M) there exists a
positive number l = l(ε,M) > 0 such that

P(ε,M)
⋂

[a, a+ l] ̸= ∅

for any a ∈ T, where [a, a+ l] := {t ∈ T| a ≤ t ≤ a+ l}.
Since the set M is compact, then on M the integral continuity is uniform. This

means that for ε/3 and l(ε/3) there exists δ = δ(ε) > 0 such that

ρ(pt, qt) <
ε

3
(42)

for any t ∈ [0, l] as soon as ρ(p, q) < δ (p, q ∈ M). Let now q ∈ M and ρ(p, q) < δ.
Then on the segment [t− l, t] ⊂ T there is a number τ such that

ρ(r(t+ τ), rt) < ε/3. (43)

Present the number t as s+ τ , where s ∈ [0, l]. Then for t = s+ τ we have

ρ(pt, qt) = ρ(p(s+ τ), q(s+ τ))

≤ ρ(p(s+ τ), ps) + ρ(ps, qs) + ρ(qs, q(s+ τ)).

From the last inequality and the inequalities (42) and (43) it follows that

ρ(pt, qt) < ε (44)
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for any t ≥ l. From (42) and (44) we obtain the first statement of lemma.
Assume that the second statement of lemma does not take place. Then there

exist p, q ∈M (p ̸= q) and tn ∈ T such that

ρ(ptn, qtn) → 0 (45)

as n → +∞. According to the first statement of Lemma the set M is positively
uniformly stable and, consequently, for the number 0 < ε < ρ(p, q) there is δ =
δ(ε/3) such that

ρ(pt, qt) <
ε

3

for any t ∈ T as soon as ρ(p, q) < δ (p, q ∈M). From (45) it follows that for n large
enough ρ(ptn, qtn) < δ and, consequently,

ρ(p(tn + t), q(tn + t)) < ε/3 (46)

for any t ∈ T. By the numbers ε/3 and tn ∈ T we chose τ ≥ tn such that

ρ(rτ, r) < ε/3 (47)

for any r ∈M (according to the equi-almost periodicity of M such τ exists). Then

ρ(p, q) ≤ ρ(pτ, p) + ρ(pτ, qτ) + ρ(qτ, q)

and according to (46) and (47) ρ(p, q) < ε. This fact contradicts the choice of ε.
Lemma is proved.

Let V : X × X 7→ R+ be a continuous and positive definite function, i.e.,
V (x1, x2) = 0 if and only if x1 = x2.

Definition 15. A dynamical system (X,T, π) is said to be V -monotone on the
positively invariant subset M ⊆ X if V (π(t, x1), π(t, x2)) ≤ V (x1, x2) for any
(x1, x2) ∈M ×M and t ≥ 0.

Lemma 17. Let M be a nonempty, compact and positively invariant equi-almost
periodic subset of X, then the following statements hold:

1. there exists a sequence {tn} ⊆ T such that tn → +∞ and π(tn, p) → p as
n→ ∞ uniformly with respect to p ∈M ;

2. the set M is invariant, i.e., π(t,M) =M for any t ∈ T;

3. there exists a group dynamical system (M,S, π̃) such that π̃(t, p) = π(t, p) for
any t ∈ T and p ∈ M , i.e., the semigroup dynamical system (M,T, π) admits
a group extension on M ;

4. the dynamical system (M,T, π) is V -monotone, where

V (p, q) := sup{ρ(π(t, p), π(t, q)) : t ∈ T}; (48)
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5. the group dynamical system (M,S, π̃) is bilaterally Lyapunov stable, i.e., for
any ε > 0 there exists a δ = δ(ε) > 0 such that ρ(p, q) < δ (p, q ∈ M) implies
ρ(π̃(t, p), π̃(t, q)) < ε for any t ∈ S;

6. the point x ∈ M is almost periodic with respect to group dynamical system
(M, S, π̃).

Proof. By equi-almost periodicity of M for εn := 1/n there exists a number tn ≥ n
(tn ∈ T) such that ρ(π(tn, p), p)) < 1/n (∀ p ∈ M) and, consequently, π(tn, p) → p
as n→ +∞ uniformly with respect to p ∈M .

To prove the second statement it suffices to show that M ⊆ π(t,M) for any
t ∈ T. Let p ∈M , t ∈ T and tn → +∞ such that π(tn, p) → p as n→ ∞ uniformly
with respect to p ∈ M (see the first statement). Note that for sufficiently large n
we have tn ≥ t and

π(tn, p) = π(tn − t+ t, p) = π(t, π(tn − t, p)). (49)

Since π(tn− t, p) ∈M for sufficiently large n and the setM is compact then without
loss of generality we can suppose that the sequence {π(tn− t, p)} converges. Denote
its limit by pt, then pt ∈ ωp ⊆M . Passing to the limit in (49) as n→ ∞ we obtain
p = π(t, pt), i.e., p ∈ π(t,M).

The third statement follows from Lemma 15.
Denote by V : M ×M 7→ R+ the mapping defined by the equality (48). It is

easy to check that V is a new metric on M topologically equivalent to ρ. Note that

|V (u, v)− V (p, q)| ≤ V (u, p) + V (v, y) (50)

for any u, v, p, q ∈M . Since the dynamical system (M,T, π) is uniformly Lyapunov
stable, then V (u, p)+V (v, y) → 0 as u→ p and v → y, hence from (50) the continuity
of V follows. Finally, notice that by definition of V we have V (π(t, p), π(t, q)) ≤
V (p, q) for any t ∈ T and p, q ∈M . Thus the fourth statement is proved.

Let p, q ∈ M , consider the function ψ(t) := V (π̃(t, p), π̃(t, p)) (for any t ∈ S).
Note that ψ : S 7→ R+ is a continuous mapping and

ψ(t2) = V (π̃(t2, p), π̃(t2, p)) = V (π̃(t2 − t1, π̃(t1, p)), π̃(t2 − t1,

π̃(t1, p))) ≤ V (π̃(t1, p), π̃(t1, p)) = ψ(t1)

for any t1 ≤ t2 (t1, t2 ∈ S). Thus ψ is a monotone decreasing function and, con-
sequently, there exists the limit limt→+∞ ψ(t) = C, where C is a nonnegative con-
stant. By the first statement of Lemma there exists a sequence tn → +∞ such that
π(tn, p) → p and π(tn, q) → q as n → ∞. Since the function V : M ×M 7→ R+ is
continuous, we have

V (π̃(s, p), π̃(s, q)) = lim
n→∞

ψ(s+ tn) = C (51)

for any s ∈ S. Using the identity (51) it is not difficult to finish the proof of fourth
statement. Indeed, if we suppose that it is not true, then there are positive number
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ε0 > 0, sequences {sn} ⊆ S, {δn} and {pn}, {qn} ⊆ M such that δn > 0, δn → 0 as
n→ ∞,

ρ(pn, qn) < δn and ρ(π̃(sn, pn), π̃(sn, qn)) ≥ ε0. (52)

Under the conditions of Lemma without loss of generality we may suppose that
sn → −∞. Since M is compact then we may suppose that the sequence {π̃(sn, pn)}
(respectively, {π̃(sn, qn)}) is convergent. Denote by p̄ (respectively, q̄) its limit. Note
that

V (π̃(sn, , pn), π̃(sn, qn)) = V (π̃(−sn + sn, pn), π̃(−sn + sn, qn)) =

V (π̃(−sn, π̃(sn, pn)), π̃(−sn, π̃(sn, qn)) = V (pn, qn) → 0

as n → ∞ and, consequently, p̄ = q̄. On the other hand passing to the limit in
(52) as n → ∞ we obtain ρ(p̄, q̄) ≥ ε0. The obtained contradiction proves the fifth
statement of Lemma.

The sixth statement follows from Theorem 11.

Theorem 12. Let M be a nonempty, compact and positively invariant equi-almost
periodic subset of X, then the following statements hold:

1. the set M is invariant;

2. the semigroup dynamical system (M,T, π) admits a group extension on M ,
i.e., on the set M a group dynamical system (M,S, π̃) such that π = π̃

∣∣
S+×M

is defined;

3. the point x ∈ X is almost periodic with respect to group dynamical system
(M, S, π̃);

4. the dynamical system (M,S, π̃) is equi-almost periodic, i.e., for any ε > 0 the
set

P(ε) := {τ ∈ S| ρ(π̃(t+ τ, p), π̃(t, p)) < ε for any (t, p) ∈ S×M}

is relatively dense in S.

Proof. The first three statements of theorem directly follows from Lemma 17 (see
items (ii), (iii) and (vi) respectively). To finish the proof of theorem it suffices to
establish the fourth statement. Since the dynamical system (M,S+, π) is equi-almost
periodic then for arbitrary positive number ε the set

A+(ε) := {τ ∈ S+| ρ(π(t+ τ, p), π(t, p)) < ε for any (t, p) ∈ S+ ×M}

is relatively dense in S+. Denote by

P̃+(ε) := {τ ∈ S+| ρ(π̃(t+ τ, p), π̃(t, p)) < ε for any (t, p) ∈ S×M}

and note that A+(ε) ⊆ P̃+(ε). Indeed. Consider the group dynamical system
(M, S, π̃). Let p ∈ M be an arbitrary point then by the fifth statement of theorem
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this point is almost periodic and in particular we have p ∈ α̃p = ω̃p, where α̃p

(respectively, ω̃p) is the alpha (respectively, omega) limit set of the point p in the
dynamical system (M,S, π̃). Let t ∈ S−, τ ∈ A+(ε) and p ∈M then

ρ(π̃(t+ τ, p), π̃(t, p)) = ρ(π(τ, pt), pt) < ε

because pt := π̃(t, p) ∈ M for any t ∈ S. Taking into account that the set A+(ε) is
relatively dense in S+ we conclude that the set P̃+(ε) is also relatively dense in S+.
Denote by P̃−(ε) := −P̃+(ε). I is clear that the set P̃−(ε) is relatively dense in S−
and by Lemma 2 the set P̃(ε) := P̃−(ε)

⋃
P̃+(ε) is relatively dense in S. This means

that the dynamical system (M, S, π̃) is equi-almost periodic. Theorem is completely
proved.

Theorem 13. Let x ∈ X be a Lagrange stable and remotely almost periodic point
of semigroup dynamical system (X,S+, π). Then the following statements hold:

1. ωx is a nonempty, compact and invariant set;

2. the semigroup dynamical system (ωx,S+, π) admits a group extension (ωx, S, π̃)
on ωx;

3. every point p ∈ ωx is almost periodic with respect to group dynamical system
(ωx, S, π̃);

4. the dynamical system (ωx, S, π̃) is equi-almost periodic;

5. for arbitrary ε > 0 there exists a relatively dense in S subset P(ε, x) with the
property that for any τ ∈ P(ε, x) there exists a positive number L(ε, x, τ) such
that

ρ(π(t+ τ, x), π(t, x)) < ε (53)

for any t ≥ L(ε, x, τ) and t+ τ ≥ L(ε, x, τ).

Proof. Let x ∈ X be Lagrange stable and remotely almost periodic. Then by Lemma
11 omega limit set ωx of the point x is a compact, invariant and equi-almost periodic
set of (X,T, π). The first four statements of Theorem follows directly from Theorem
12. Thus to finish the proof it suffices to prove the fifth statement. Let ε > 0 be
an arbitrary positive number. Since the set ωx is equi-almost periodic with respect
to the group dynamical system (ωx,S, π̃) then there exists a relatively dense in S
subset P̃(ε, ωx) such that

ρ(π̃(t+ τ, p), π̃(t, p)) < ε

for any t ∈ S and τ ∈ P̃(ε, ωx). Denote by P(ε, x) := P̃(ε/2, ωx) the relatively dense
in S subset of S and let τ be and arbitrary number from P(ε, x). We will show that
there exists a positive number L(ε, x, τ) with the property that (53) holds. If we
assume that it is not true, then there are ε0 > 0, τ0 ∈ P(ε0, x) and tn → +∞ as
n→ ∞ such that

ρ(π(tn + τ0, x), π(tn, x)) ≥ ε0 (54)
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for any n ∈ N. Since the point x is Lagrange stable then we can assume that the
sequence {π(tn, x)} converges. Denote by

p̃ := lim
n→∞

π(tn, x). (55)

Passing to the limit in (54) and taking into account (55) we obtain

ρ(π̃(τ0, p̃), p̃) ≥ ε0. (56)

On the other hand τ0 ∈ P̃(ε0/2, ωx) = P(ε0, x) and, consequently, we have

ρ(π̃(τ0, p), p) < ε0/2 < ε0 (57)

for any p ∈ ωx. Note that (56) contradicts to (57). This contradiction proves the
required statement. Theorem is completely proved.

Theorem 14. Let (X,T, π) be a semigroup of dynamical system and x ∈ X be a
Lagrange stable point. Then the following statements are equivalent:

1. for arbitrary ε > 0 there exists a relatively dense in T subset P(ε, x) with the
property that for any τ ∈ P(ε, x) there exists a positive number L(ε, x, τ) such
that

ρ(π(t+ τ, x), π(t, x)) < ε (58)

for any t ≥ L(ε, x, τ);

2. for arbitrary ε > 0 there exists a relatively dense in S subset P(ε, x) with the
property that for any τ ∈ P(ε, x) there exists a positive number L(ε, x, τ) such
that (58) holds for any t ≥ L(ε, x, τ) and t+ τ ≥ L(ε, x, τ).

Proof. It is easy to see that (ii) implies (i). The converse implication follows directly
from Theorem 13 (item (v)). Theorem is proved.

Corollary 7. Let (X,S, π) be a group of dynamical system and x ∈ X be a positively
Lagrange stable point. Then the following statements are equivalent:

1. the point x is remotely almost periodic;

2. the omega limit set ωx of the point x is equi-almost periodic.

Proof. This statement follows from Theorem 14 and Lemma 11

Remark 8. Note if S = R (i.e., the dynamical system (X,T, π) is two-sided with the
continuous time), then Corollary 7 generalizes a result from [8] (Proposition 2.8).

Let (X,T, π) be a dynamical system on the complete metric space (X, ρ) and K
be a nonempty compact invariant subset.

Denote by C(K,X) the family of all continuous functions f : K → X equipped
with the distance

d(f, g) := max
x∈K

ρ(f(x), g(x)). (59)
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Remark 9. 1. By the formula (59) a complete metric on the space C(K,X) is
defined.

2. The distance d generates on the space C(K,X) the topology of the uniform
convergence on K, i.e., d(fn, f) → 0 as n → ∞ if and only if lim

n→∞
fn(x) = f(x)

uniformly with respect to x ∈ K.

Let F ∈ C(T ×K,X). Denote by FK the mapping FK : T → C(K,X) defined
by the equality

FK(t) := F (t, ·)

for any t ∈ T.

Lemma 18. [10] The mapping FK : T → C(K,X) is continuous.

Lemma 19. The compact invariant set K ⊆ X is equi-almost periodic if and only
if the function ΠK ∈ C(T, C(K,X))) is almost periodic, where ΠK(t) := πt

∣∣
K

for
any t ∈ T and πt := π(t, ·).

Proof. Let K be an equi-almost periodic compact invariant subset of (X,T, π) and
ε be an arbitrary positive number. Then there exists a relatively dense in T subset
P(ε,K) of T such that (15) holds. Note that

d(ΠK(t+ τ),ΠK(t)) = max
x∈K

ρ(π(t+ τ, x), π(t, x)) (60)

for any (t, τ) ∈ T× P(ε,K). From (15) and (60) we obtain

d(ΠK(t+ τ),ΠK(t)) < ε (61)

for any (t, τ) ∈ T× P(ε,K). This means that the mapping ΠK ∈ C(T, C(K,X)) is
almost periodic.

Assume now that the mapping ΠK ∈ C(T, C(K,X)) is almost periodic, i.e.,
for any ε > 0 there exists a relatively dense in T subset P(ε,ΠK) of T such that
(61) holds. Let now p be an arbitrary element from K and (t, τ) ∈ T × P(ε,K)
(P(ε,K) := P(ε,ΠK)), then taking into account (60) and (61) we obtain

ρ(π(t+ τ, p), π(t, p)) ≤ max
x∈K

ρ(π(t+ τ, x), π(t, x)) = d(ΠK(t+ τ),ΠK(t)) < ε.

Lemma is completely proved.

Lemma 20. Assume that K1,K2, . . . ,Km are the equi-almost periodic compact in-
variant subsets of (X,T, π). Then the following statements hold:

1. the compact invariant subset K := K1 × K2 × . . .Km of the product dy-
namical system (Xm,T, [π]) (Xm := X × X × . . . × X and [π](t, x) :=
(π(t, x1), π(t, x2), . . . , π(t, xm)) for any t ∈ T and x := (x1, x2, . . . , xm) ∈ Xm)
is equi-almost periodic;

2. the compact invariant subset K :=
⋃m

i=1Ki of (X,T, π) is equi-almost periodic;
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3. the compact invariant subset K :=
⋂m

i=1Ki of (X,T, π) is equi-almost periodic.

Proof. If the compact invariant subset Ki (i = 1, . . . ,m) of (X,T, π) is equi-almost
periodic, then by Lemma 19 the mapping ΠKi ∈ C(T, C(Ki, X)) (i = 1, . . . ,m) is
almost periodic and, consequently, the mapping (ΠK1 , . . . ,ΠKm) is almost periodic
(the mappings ΠK1 , . . . ,ΠKm are jointly almost periodic). Note that

ΠK = (ΠK1 , . . . ,ΠKm).

By Lemma 19 the compact invariant set K = K1 × . . . ×Km of dynamical system
(Xm,T, [π]) is equi-almost periodic.

Let Ki (i = 1, . . . ,m) be a compact invariant subset of (X,T, π), then by the
first statement of Lemma the compact invariant subsets K1, . . . ,Km are jointly
equi-almost periodic, i.e., for any ε > 0 there exists a relatively dense subset
P(ε,K1, . . . ,Km) of T such that

ρ(π(t+ τ, xi), π(t, x)) < ε/m (62)

for any t ∈ T, τ ∈ P(ε,K1, . . . ,Km) and i = 1, . . . ,m.
Let x be an arbitrary point from K :=

⋃m
i=1Ki, then there exists an index

i0 ∈ {1, . . . ,m} such that x ∈ Ki0 and, consequently, from (62) we obtain

ρ(π(t+ τ, x), π(t, x)) = ρ(π(t+ τ, xi0), π(t, xi0)) < ε (63)

for any (t, τ, x) ∈ T× P(ε,K)×K, where P(ε,K) := P(ε,K1, . . . ,Km).
Finally, if x ∈ K =

⋂m
i=1Ki ̸= ∅, then x ∈ Ki for any i = 1, . . . ,m and,

consequently, we have the relation (63) for the point x. Lema is completely proved.

Remark 10. Note that Lemma 20 remains true if the subset Ki is an equi-almost
periodic compact invariant subset of the dynamical systems (Xi,T, πi (i = 1, . . . ,m).

6 Two-Sided Remotely Almost Periodic Motions

Consider a two-sided dynamical system (X,S, π).

Definition 16. A point x ∈ X (respectively, a motion π(t, x)) is said to be two-sided
remotely almost periodic if the following two conditions are fulfilled:

1. the point x is Lagrange stable, i.e., the set Σx := {π(t, x)| t ∈ S} is precompact;

2. for any ε > 0 there exists a relatively dense in S subset P(ε, x) such that

lim sup
|t|→+∞

ρ(π(t+ τ, x), π(t, x)) < ε

or equivalently for any ε > 0 and τ ∈ P(ε, x) there exists a positive number
L(ε, x, τ) such that

ρ(π(t+ τ, x), π(t, x)) < ε

for any |t| ≥ L(ε, x, τ).
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Theorem 15. A motion π(t, x) of dynamical system (X,S, π) is two-sided remotely
almost periodic if and only if its dynamical limit set ∆x := αx

⋃
ωx is equi-almost

periodic.

Proof. Let the motion π(t, x) be two-sided remotely almost periodic. Then for any
ε > 0 there exists a relatively dense subset P(ε/2, x) such that for τ ∈ P(ε/2, x)
there exists a number L(ε/2, x, τ) for which we have

ρ(π(t+ τ, x), π(t, x)) < ε/2 (64)

for any |t| ≥ L(ε/2, x, τ).
On the other hand since the motion π(t, x) is Lagrange stable then its dynamical

limit set ∆x is nonempty, compact and invariant. Let now p ∈ ∆x be an arbitrary
point, then there exists a sequence {tn} ⊂ S such that |tn| → +∞ and π(tn, x) → p
as n → ∞. Let nε ∈ N be a natural number such that |tn| ≥ L(ε/2, x, τ) for any
n ≥ nε, then from (64) we have

ρ(π(tn + τ, x), π(tn, x)) = ρ(π(τ, π(tn, x)), π(tn, x)) < ε/2 (65)

for any n ≥ nε. Passing to the limit in (65) as n→ ∞ we receive

ρ(π(τ, p), p) ≤ ε/2 < ε

for any τ ∈ P(ε/2, x) and p ∈ ∆x. Since the set ∆x is invariant then π(t, p) ∈ ∆x

for any (t, p) ∈ S×∆x and, consequently, we have

ρ(π(t+ τ, π(t, p)) = ρ(π(τ, π(t, p)), π(t, p)) ≤ ε/2 < ε

for any τ ∈ P(ε,∆x) (P(ε,∆x) := P(ε/2, x)) and p ∈ ∆x.
Assume that the motion π(t, x) is Lagrange stable and its limit set ∆x is equi-

almost periodic. Then for any ε > 0 there exists a relatively dense in S subset
P(ε,∆x) of S such that

ρ(π(t+ τ, p), π(t, p)) < ε (66)

for any (t, τ, p) ∈ S × P(ε,∆x) × ∆x. We will show that for any ε > 0 and τ ∈
P(ε, x) := P(ε,∆x) there exists a positive number L(ε, x, τ) so that

ρ(π(t+ τ, x), π(t, x)) < ε

for any |t| ≥ L(ε, x, τ). If we suppose that this is not true, then there exist positive
number ε0, τ0 ∈ P(ε0, x) and a sequence {tn} ⊂ S such that

ρ(π(tn + τ0, x), π(tn, x)) = ρ(π(τ0, π(tn, x)), π(tn, x)) ≥ ε0 (67)

for any n ∈ N and |tn| → +∞ as n→ ∞. Since the motion π(t, x) is Lagrange stable
then without loss of generality we can suppose that the sequence π(tn, x) converges.
Denote by p0 its limit. Taking into account that |tn| → +∞ as n → ∞ we have
p0 ∈ ∆x. Passing to the limit in the inequality (67) as n→ ∞ we obtain

ρ(π(τ0, p0), p0) ≥ ε0. (68)

The relations (66) and (68) are contradictory. The obtained contradiction proves
our statement. Theorem is completely proved.
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Theorem 16. Let x ∈ X be a Lagrange stable point of the two-sided dynamical
system (X,S, π). The point x is two-sided remotely almost periodic if and only if it
is remotely almost periodic in both positive and negative directions.

Proof. Let x be a two-sided remotely almost periodic point, then it is easy to check
that the point x will be remotely almost periodic in both directions.

Let x be remotely almost periodic in the positive and negative directions. Then
by Lemma 11 (see also Remark 7) the motion π(t, x) is two-sided Lagrange stable
and the limit sets ωx and αx are equi-almost periodic. According to Lemma 20 (item
(ii)) the set ∆x := ωx

⋃
αx is equi-almost periodic and by Theorem 15 the motion

π(t, x) is two-sided remotely almost periodic. Theorem is proved.

Let (Y,S, σ) be a two-sided dynamical system. Denote by Ly := {{tn} ⊂
S| |tn| → +∞ and {σ(tn, y)} converges }.

Theorem 17. Let y ∈ Y be a Lagrange stable and two-sided remotely almost periodic
point of the dynamical system (Y, S, σ). If Ly ⊆ Lx, then the point x is Lagrange
stable and x is two-sided remotely almost periodic.

Proof. Firstly, under the conditions of theorem the point x is Lagrange stable. Let
{tn} be an arbitrary sequence from S. We will show that the sequence {π(tn, x)} is
precompact in X. Indeed, since the point y is Lagrange stable then without loss of
generality we can suppose that the sequence {σ(tn, y)} converges.

a. If from the sequence {tn} it is possible to extract a convergent subsequence
{tkn}, then evidently the sequence {π(tkn , x)} converges. Thus in this case the
sequence {π(tn, x)} is precompact.

b. If from the sequence {tn} it is impossible to extract a convergent subsequence
and, consequently, {tn} ∈ Ly ⊆ Lx. Thus the sequence {π(tn, x)} is convergent.

Now we will show that the motion π(t, x) is two-sided remotely almost periodic.
To this end we note that the inclusion Ly ⊆ Lx implies L+∞

y ⊆ L+∞
x and L−∞

y ⊆
L−∞
x . According to Theorem 7 (see also Remark 7) from the inclusion L+∞

y ⊆ L+∞
x

(respectively, L−∞
y ⊆ L−∞

x ) we obtain positive (respectively, negative) remote almost
periodicity of the motion π(t, x). Now to finish the proof of Theorem it suffices to
apply Theorem 16. Theorem is completely proved.

Definition 17. Let (X,S, π) be a two-sided dynamical system. A Lagrange stable
point x ∈ X is said to be

1. two-sided remotely τ -periodic if

lim sup
|t|→+∞

ρ(π(t+ τ, x), π(t, x)) = 0; (69)

2. two-sided remotely stationary if the point x is two-sided remotely τ -periodic
for any τ ∈ S.

Theorem 18. A Lagrange stable point x ∈ X
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1. is two-sided remotely τ -periodic if and only if its dynamical limit set ∆x con-
sists of τ -periodic points;

2. is two-sided remotely stationary if and only if its dynamical limit set ∆x con-
sists of stationary points.

Proof. Let x ∈ X be a Lagrange stable, two-sided remotely τ -periodic point and ε
be an arbitrary positive number. By (69) there exists a positive number L = L(ε)
such that

ρ(π(t+ τ, x), π(t, x)) < ε (70)

for any |t| ≥ L(ε). Let now p be an arbitrary dynamical limit point of x. Then there
exists a sequence {tn} ⊂ S such that |tn| → +∞ and

lim
n→∞

π(tn, x) = p

as n→ ∞ and, consequently, we have

ρ(π(τ, p), p) ≤ ρ(π(τ, p), π(τ, π(tn, x)) + (71)

ρ(π(τ, π(tn, x)), π(tn, x)) + ρ(π(tn, x), p)

for any n ∈ N. From (70) and (71) we obtain

ρ(π(τ, p), p) ≤ ρ(π(τ, p), π(τ, π(tn, x)) + ε+ ρ(π(tn, x), p) (72)

for any n ∈ N. Passing to the limit in (72) and taking into account the relation (71)
we obtain

ρ(π(τ, p), p) ≤ ε

for any ε > 0 and, consequently, π(τ, p) = p.

Converse. Let x ∈ X be a Lagrange stable point and its dynamical limit set ∆x

consists of τ -periodic points. If we assume that the point x is not two-sided remotely
τ -periodic, then there are ε0 > 0 and a sequence {tn} ⊂ S such that

ρ(π(tn + τ, x), π(tn, x)) ≥ ε0 (73)

for any n→ ∞ and |tn| → +∞ as n→ ∞. Since the point x is Lagrange stable then
without loss of generality we can suppose that the sequence {π(tn, x)} is convergent.
Denote by p0 := lim

n→∞
π(tn, x) then p0 ∈ ∆x and passing to the limit in (73) we

obtain

ρ(π(τ, p0), p0) ≥ ε0.

The last relation contradicts to our assumption that ∆x consists of τ -periodic points.
This contradiction proves required statement.

The second statement of Theorem follows directly from the first one. In fact, if
the Lagrange stable point x ∈ X is two-sided remotely stationary, then the point x
is τ -periodic and according to the first statement of Theorem the dynamically limit
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set ∆x consists of τ -periodic points for any τ ∈ S, i.e., for every point p ∈ ∆x we
have π(τ, p) = p for any τ ∈ S.

Now assume the point x ∈ X is Lagrange stable and its dynamically limit set
∆x consists of stationary points of (X,S, π). We will show that

lim sup
|t|→+∞

ρ(π(t+ τ, x), π(t, x)) = 0 (74)

for any τ ∈ S. If we suppose that (74) is false, then there are τ0 ∈ S (with τ0 ̸= 0),
ε0 > 0 and {tn} ⊂ S such that |tn| → ∞ as n→ ∞ and

ρ(π(tn + τ0, x), π(tn, x)) ≥ ε0 (75)

for any n ∈ N. Since the point x is Lagrange stable then without loss of generality
we can assume that the sequence {π(tn, x)} converges. Let p0 be the limit of the
sequence {π(tn, x)} then passing to the limit in (75) as n→ ∞ we obtain

ρ(π(τ0, p0), p0) ≥ ε0,

i.e., p0 ∈ ∆x is not a stationary point. The last fact contradict our assumption that
the dynamical limit set ∆x consists of stationary points. The obtained contradiction
completes the proof of the second statement of theorem.
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