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minimize job earliness and tardiness while balancing

employee workload
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Abstract. This study aims to propose an original and flexible integrated mixed
integer linear programming (MILP) model for scheduling jobs and crews with job
earliness and tardiness, employee workload balancing, relationships between jobs, and
multi-skilled crews. The objective is to minimize the total costs related to assigning
jobs to crews, job earliness and tardiness, and employee workload heterogeneity.
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1 Introduction

Scheduling of jobs and crews is essential in manufacturing and the service indus-
try. Effectively assigning jobs to crews can significantly reduce costs and increase
company productivity. On the other hand, improper job and crew scheduling can
make a company uncompetitive and even lead to failure.

Scheduling problems are known to be NP-hard [1], meaning they cannot be
solved in polynomial time. As a result, most papers on scheduling problems focus
on models for finding exact solutions and on heuristic algorithms to obtain near-
optimal solutions.

The paper [2] provides a thorough comparative analysis of mixed integer pro-
gramming models (MILP) for the classical job shop scheduling problem. A sig-
nificant area of research in scheduling focuses on crew and manpower schedul-
ing [3],[4]. Various scheduling models are designed to minimize job earliness and
tardiness [5],[6]. Some studies prioritize balancing employee workload as a primary
objective [7],[8]. Mathematical models incorporating multi-skilled crews and rela-
tionships between jobs are developed less frequently [9],[10].

The last decades have seen a substantial move forward regarding the development
of integrated job and crew scheduling models in various industrial areas [11],[12],
[13]. Considering the continuous improvement in IT and the existence of high-
performance MILP solvers, it is now possible to formulate a more comprehensive
version of the integrated problem. This version can include job and crew scheduling,
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job earliness and tardiness, balancing employee workload, relationships between jobs,
and multi-skilled crews.

As a consequence, this article presents just such a rich and flexible model. The
objective is to minimize the total costs of assigning jobs to crews, job earliness and
tardiness, and employee workload heterogeneity.

The remainder of the paper is organized in four sections. Section 2 describes
the problem, Section 3 develops the MILP model, Section 4 proposes a solution
approach, and the final section concludes the findings.

2 Problem description

We consider time discrete, and the entire planning horizon is divided into time
intervals of the same duration d > 0. A time interval is the smallest unit of time.
In job scheduling, a time interval is either fully included in the duration of the job
or not. Each time interval is assigned a corresponding time index associated with
the interval’s start time. We denote a set of time indexes T = {0, 1, ..., |T | − 1}
for referring to time intervals of the planning horizon. Here, 0 and |T | − 1 are the
planning horizon’s first and last indexes, and 0 and |T | ·d are the planning horizon’s
start and end times. For t ∈ T , t ∗ d is the start time and (t+ 1) ∗ d is the end time
of the corresponding time interval. Further, when we say time, we consider the time
index of the time interval.

The basic assumptions that describe the proposed problem are as follow:

1. There is a set of jobs to be performed by a set of crews.

2. Each job is assigned to exactly one crew at one time. Each job can be per-
formed by any crew.

3. Each crew can perform many jobs at a time such that the number of crew em-
ployees working at a time can be at most the total number of crew employees.

4. There is a set of options for performing each job by each crew. An option
is associated with the number of crew employees allocated to perform the
assigned job for the job duration. The number of employees assigned to the
job remains the same throughout performing the job.

5. Each crew’s working timetable, including working and non-working time in-
ternals, is known in advance.

6. The performing duration (the number of time intervals) of a job by a crew
according to each possible option and starting time is known in advance. The
crew performs the assigned job without interruptions in accordance with the
option. This means that all crew working time intervals that fall into job
duration according to the option are used to perform the job by the allocated
number of crew employees.

7. Each job’s earliest starting time and latest completion time are known. Nev-
ertheless, the earliness of job starting and the tardiness of job completion are
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admissible but penalized. Job earliness appears when the job starts before
the job’s earliest starting time, and job tardiness appears when the job is
completed later than the job’s latest completion time.

8. All jobs must be completed within the planning horizon.

9. The cost of assigning a job to a crew reflects the crew’s skill level. The higher
the crew’s skill level in performing the job, the lower the cost of assigning the
job to the crew.

10. Employee workload balance is measured by the difference between the highest
workload per employee and the lowest workload per employee among all crews.

11. Some traditional relationships can be defined for a pair of jobs. For more
flexibility, lag times are defined in relationships between jobs.

12. The manpower of all crews is assumed to be sufficient to complete all jobs
within the planning horizon.

As for job relationships, there are four traditional types of relationships between
any two jobs:

� Finish-to-start (FS) – a relationship in which the completion time of the first
job is coordinated with the start times of the second job.

� Start-to-start (SS) – a relationship in which the start time of the first job is
coordinated with the start time of the second job.

� Finish-to-finish (FF) – a relationship in which the completion time of the first
job is coordinated with the completion time of the second job.

� Start-to-finish (SF) – a relationship in which the start time of the first job is
coordinated with the completion time of the second job.

More details about these types of relationships can be found in [9].
The objective of the problem is to minimize the total costs, consisting of assign-

ing jobs to crews costs, job earliness and tardiness costs, and employee workload
heterogeneity costs.

3 MILP model

In order to formulate an integrated MILP model for job and crew scheduling
problem, the notations used in the model are given.

Sets and parameters:

J – set of jobs.

C – set of crews.

Oj,c – set of options for performing each job j by crew c. An option is associated
with the employees number of crew c allocated to perform job j.
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T – set of time indexes of the planning horizon.

T crew
c – set of time indexes associated to working time intervals of crew c accord-

ing to it’s work timetable, T crew
c ⊆ T .

ej – the earliest starting time of job j.

lj – the latest completion time of job j.

ncrew
c – total number of employees in crew c.

nwork
j,c,o – number of employees required to perform job j by crew c in line with

option o.

dallj,c,o,t – number of all time intervals (working and non-working) during which
job j is performed by crew c in conformity to option o when the job starts at time t.

dwork
j,c,o,t – number of working time intervals during which job j is performed by

crew c in conformity to option o when the job starts at time t.

rFS
j,j′ – FS relationship indicator between jobs j and j′. rFS

j,j′ = 1 if the completion

time of job j is coordinated with the start times of job j′, and rFS
j,j′ = 0 otherwise.

rSSj,j′ – SS relationship indicator between jobs j and j′. rSSj,j′ = 1 if the start time

of job j is coordinated with the start times of job j′, and rSSj,j′ = 0 otherwise.

rFF
j,j′ – FF relationship indicator between jobs j and j′. rFF

j,j′ = 1 if the completion

time of job j is coordinated with the completion times of job j′, and rFF
j,j′ = 0

otherwise.

rSFj,j′ – SF relationship indicator between jobs j and j′. rSFj,j′ = 1 if the start time

of job j is coordinated with the completion times of job j′, and rSFj,j′ = 0 otherwise.

gFS
j,j′ , g

SS
j,j′ , g

FF
j,j′ , g

SF
j,j′ – lag times (number of time intervals) between jobs j and j′

related to FS, SS, FF and SF relationships, respectively.

αj,c – cost of assigning job j to crew c. This cost expresses the skill of crew c in
performing job j.

βearly
j – earliness cost of job j.

βtard
j – tardiness cost of job j.

γ – employee workload heterogeneity costs.

Decision variables:

xj,c,o,t – binary variable that is equal to 1 if job j is performed by crew c in
conformity to option o and starting at time t, and 0 otherwise.

yearlyj , ytardj – non-negative integer variables indicating earliness and tardiness of
job j as a number of time intervals.

zlow, zhigh – non-negative real variables indicating the lowest and, respectively,
the highest workload per employee among all crews.

Now, the job and crew scheduling problem is formulated as a mixed integer linear
programming (MILP) model as follows:
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Objective function:

∑
j∈J

∑
c∈C

αj,c ·
∑

o∈Oj,c

∑
t∈T crew

c

t≤|T |−dallj,c,o,t

xj,c,o,t+

+
∑
j∈J

(βearly
j · yearlyj + βtard

j · ytardj ) + γ · (zhigh − zlow) → min (1)

Subject to: ∑
c∈C

∑
o∈Oj,c

∑
t∈T crew

c

t≤|T |−dallj,c,o,t

xj,c,o,t = 1 ∀j ∈ J (2)

∑
j∈J

∑
o∈Oj,c

nwork
j,c,o ·

∑
t′∈T crew

c

t−dall
j,c,o,t′+1≤t′≤t

xj,c,o,t′ ≤ ncrew
c ∀c ∈ C,∀t ∈ T crew

c (3)

∑
c∈C

∑
o∈Oj,c

∑
t∈T crew

c

t≤|T |−dallj,c,o,t

(t+ dallj,c,o,t) · xj,c,o,t + gFS
j,j′ ≤

≤
∑
c∈C

∑
o∈Oj′,c

∑
t∈T crew

c

t≤|T |−dall
j′,c,o,t

t · xj′,c,o,t ∀j, j′ ∈ J, j ̸= j′, rFS
j,j′ = 1 (4)

∑
c∈C

∑
o∈Oj,c

∑
t∈T crew

c

t≤|T |−dallj,c,o,t

t · xj,c,o,t + gSSj,j′ ≤

≤
∑
c∈C

∑
o∈Oj′,c

∑
t∈T crew

c

t≤|T |−dall
j′,c,o,t

t · xj′,c,o,t ∀j, j′ ∈ J, j ̸= j′, rSSj,j′ = 1 (5)

∑
c∈C

∑
o∈Oj,c

∑
t∈T crew

c

t≤|T |−dallj,c,o,t

(t+ dallj,c,o,t) · xj,c,o,t + gFF
j,j′ ≤

≤
∑
c∈C

∑
o∈Oj′,c

∑
t∈T crew

c

t≤|T |−dall
j′,c,o,t

(t+ dallj′,c,o,t) · xj′,c,o,t ∀j, j′ ∈ J, j ̸= j′, rFF
j,j′ = 1 (6)
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∑
c∈C

∑
o∈Oj,c

∑
t∈T crew

c

t≤|T |−dallj,c,o,t

t · xj,c,o,t + gSFj,j′ ≤

≤
∑
c∈C

∑
o∈Oj′,c

∑
t∈T crew

c

t≤|T |−dall
j′,c,o,t

(t+ dallj′,c,o,t) · xj′,c,o,t ∀j, j′ ∈ J, j ̸= j′, rSFj,j′ = 1 (7)

ej −
∑
c∈C

∑
o∈Oj,c

∑
t∈T crew

c

t≤|T |−dallj,c,o,t

t · xj,c,o,t ≤ yearlyj ∀j ∈ J (8)

∑
c∈C

∑
o∈Oj,c

∑
t∈T crew

c

t≤|T |−dallj,c,o,t

(t+ dallj,c,o,t) · xj,c,o,t − lj − 1 ≤ ytardj ∀j ∈ J (9)

∑
j∈J

∑
o∈Oj,c

dwork
j,c,o · nwork

j,c,o ·
∑

t∈T crew
c

t≤|T |−dallj,c,o,t

xj,c,o,t ≤ ncrew
c · zhigh ∀c ∈ C (10)

∑
j∈J

∑
o∈Oj,c

dwork
j,c,o · nwork

j,c,o ·
∑

t∈T crew
c

t≤|T |−dallj,c,o,t

xj,c,o,t ≥ ncrew
c · zlow ∀c ∈ C (11)

xj,c,o,t ∈ {0, 1} ∀j ∈ J, ∀c ∈ C,∀o ∈ Oj,c,∀t ∈ T crew
c (12)

yearlyj , ytardj ∈ N ∀j ∈ J (13)

zhigh, zlow ∈ R+ (14)

The objective function (1) minimizes the overall costs while fulfilling the set of
constraints (2)-(14). It includes the costs of assigning jobs to crews, the cost of job
earliness and tardiness, and the cost of workload heterogeneity per employee among
all crews. Constraints (2) ensure that a unique crew, work option, and start time
are chosen for each job in the final solution. Constraints (3) guarantee that the
number of crew employees working at a time can be at most the total number of
crew employees. Constraints (4), (5), (6) and (7) assure satisfying relationships FS,
SS, FF and SF , respectively. Constraints (8) and (9) are used to calculate job
earliness and tardiness. Constraints (10) and (11), in turn, are used to calculate the
highest and the lowest workload per employee among all crews. Finally, constraints
(12)-(14) define the types of decision variables.
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4 Solution approach

The problem can be solved using the branch and cut algorithm, which is widely
used to solve MILP problems. It combines a branch and bound algorithm with a
cutting plane method. The branch and bound algorithm starts with a linear pro-
gramming relaxation of the MILP. If some variables of the solution are not integer,
the algorithm ”branches” on a variable to create two new subproblems: one con-
straining the variable to be less than or equal to its floor value and the other to
be greater than or equal to its ceiling value. The cutting plane method adds linear
constraints to the linear programming relaxation to eliminate areas of the feasible
region containing fractional solutions. By iteratively using the branch and bound
algorithm and adding cuts, the algorithm explores different branches of the solution
tree until it finds an optimal integer solution or proves that no feasible solution
exists. For a detailed description see, for example, [14]

So, modern commercial high-performance MILP solvers such as CPLEX and
Gurobi, which use the branch and cut algorithm, are capable of solving medium size
instances of the proposed MILP model. For smaller instances of the problem, even
open-source MILP solvers like SCIP or HiGHS can be utilized. However, large real
industrial instances of the problem involve a vast number of variables, and in such
cases, only near-optimal heuristic algorithms remain effective.

5 Conclusion

We have developed a precise MILP model for the flexible scheduling of jobs and
multi-skilled crews. This model takes into account job earliness and tardiness, as
well as workload balancing for employees. It also considers realistic job relationships,
such as finish-to-start, start-to-start, finish-to-finish, and start-to-finish.

In our upcoming research, our primary goal is to create an efficient heuristic
algorithm for solving the described problem. We also plan to compare the MILP
model and future heuristic with other currently used solution methods.
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