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Evolution Time of Stochastic Systems
with Multiple Final Sequences of States

Alexandru Lazari

Abstract. A stochastic system with multiple final sequences of states represents a
stochastic system that stops its evolution as soon as one of the given final sequences
of states is reached. The transition time of the system is unitary and the transition
probability depends on source and destination states. We prove that the distribution
of the evolution time is a homogeneous linear recurrent sequence and, based on this,
a polynomial algorithm for determining the initial state and the generating vector of
this recurrence is developed. Using the generating function, the main probabilistic
characteristics are determined.
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1 Introduction and Problem Formulation

The zero-order Markov processes with multiple final sequences of states were
introduced in [1] and the linear recurrent homogeneity property of the distribution
of their evolution time has been used for determining the main probabilistic charac-
teristics of the evolution time in [3].

In this paper a generalization of these Markov processes is considered. The
stochastic systems with multiple final sequences of states are defined in the same
way, the difference consisting only in transition probability matrix which does not
have all the rows equal. This means that the transition probability from one source
state to another destination state depends on both states, not only on destination
state.

Here, similarly as in [1], we consider a discrete stochastic system L with finite
set of states V = {v1, v2, . . . , vω}, |V | = ω. At every discrete moment of time t ∈ N
the state of the system is v(t) ∈ V . The system L starts its evolution from the state
v with the probability p∗(v), for each v ∈ V , where

∑
v∈V

p∗(v) = 1.

At this point, we introduce the transition probability matrix of the Markov
process L. The transition from one state u to another state v is performed according
to the probability p(u, v) that depends on the source state u and destination state
v, for every u ∈ V and v ∈ V . Additionally, we assume that r different sequences

of states X(ℓ) = (x
(ℓ)
1 , x

(ℓ)
2 , . . . , x

(ℓ)
m ) ∈ V m, ℓ = 1, r, are given and the stochastic
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system stops as soon as the states x
(ℓ)
1 , x

(ℓ)
2 , . . . , x

(ℓ)
m are reached consecutively in

given order for an arbitrary ℓ ∈ {1, 2, . . . , r}. The time T , when the system stops, is
called evolution time of the stochastic system L with given final sequences of states
X = {X(1), X(2), . . . , X(r)}.

The system L, described above, represents a stochastic system with final se-
quences of states X = {X(1), X(2), . . . , X(r)}. For the particular case r = 1, im-
portant results were elaborated and presented in [3], [9] and [10]. Also, several
interpretations of these Markov processes for the games, compositions and opti-
mization problems were analyzed in [2], [4] and [5]. Based on polynomial algorithms
proposed in [3], the main probabilistic characteristics (expectation, variance, mean
square deviation, n-order moments) of evolution time and game duration were effi-
ciently determined.

Next, in this paper, the generalization of this problem for any r ≥ 1 is considered.
This generalized problem is a bit different than the parallel compositions, studied
in [5], because the dynamics of the systems are performed in a mixed one and they
are interdependent.

Our goal is to analyze the evolution time T of the stochastic system L. We
prove that the distribution of the evolution time T is a homogeneous linear recur-
rent sequence, and a polynomial algorithm to determine the initial state and the
generating vector of this recurrence is developed. Having the generating vector and
the initial state of the recurrence, we can use the related algorithm from [3], which
was mentioned above, for determining the main probabilistic characteristics of the
evolution time.

2 Determining the Distribution of the Evolution Time

In this section we will determine the distribution of the evolution time T . We
assume that m ≥ 2 and introduce the following notations

X
(ℓ)
k = {x(ℓ)k }, π

(ℓ)
k = p∗(x

(ℓ)
k ), π

(ℓ)
ik = p(x

(ℓ)
i , x

(ℓ)
k ), w

(ℓ)
k =

k∏
j=3

π
(ℓ)
j−1,j ,

Y
(ℓ)
k = (x

(ℓ)
1 , x

(ℓ)
2 , . . . , x

(ℓ)
k ), Yk = {Y (1)

k , Y
(2)
k , . . . , Y

(r)
k },

(1)

for each i, k = 1,m and ℓ = 1, r.
Let a = (an)

∞
n=0 be the distribution of the evolution time T , i.e. an = P(T = n),

n = 0,∞. Since T ≥ m − 1, we have an = 0, n = 0,m− 2. If T = m − 1, then

∃ℓ ∈ {1, 2, . . . , r} such that v(j) = x
(ℓ)
j+1, j = 0,m− 1, that implies

am−1 = P(T = m− 1) =
r∑

ℓ=1

p∗(x
(ℓ)
1 )

m∏
j=2

p(x
(ℓ)
j−1, x

(ℓ)
j )

 =

=
r∑

ℓ=1

(
π
(ℓ)
1 π

(ℓ)
1,2π

(ℓ)
2,3 . . . π

(ℓ)
m−1,m

)
=

r∑
ℓ=1

(
π
(ℓ)
1 π

(ℓ)
1,2w

(ℓ)
m

)
. (2)
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We consider ∀n ∈ Z. Let be S(V ) = {A | A ⊆ V }. Denote by PΦ(n) the probability
that T = n and v(j) ∈ Φj , j = 0, t− 1, supposing that the initial state of the
system is known, for all Φ = (Φj)

t−1
j=0 ∈ (S(V ))t, t ∈ N and ℓ = 1, r. We introduce

the following functions on Z, k = 1,m, ℓ = 1, r:

β
(ℓ)
k (n) = P

(X
(ℓ)
1 ,X

(ℓ)
2 ,...,X

(ℓ)
k )

(n),

γ
(ℓ)
k (n) = P

(X
(ℓ)
2 ,X

(ℓ)
3 ,...,X

(ℓ)
k )

(n).
(3)

After that, we extend the definition of the functions β
(ℓ)
k (n) for ℓ = r + 1, r + ω in

the following way:

β
(r+i)
k (n) = P({vi})(n), i = 1, ω, k = 1,m, (4)

where v1, v2, . . . , vω, as defined in Section 1, are all the states of the stochastic system
L in a predefined order. If, for each x ∈ V , we denote by ι(x) the index that satisfies
the equality vι(x) = x, then the relation (4) becomes

P({x})(n) = P({vι(x)})(n) = β
(r+ι(x))
1 (n), ∀x ∈ V. (5)

On the other hand, for each x ∈ {x(1)1 , x
(2)
1 , . . . , x

(r)
1 }, there exists at least one

index ℓ(x) ∈ {1, 2, . . . , r} such that x = x
(ℓ(x))
1 . So, in this case, we also have

β
(r+ι(x))
k (n) = P({x})(n) = β

(ℓ(x))
1 (n), k = 1,m. (6)

Instead, for x /∈ {x(1)1 , x
(2)
1 , . . . , x

(r)
1 }, we can write the following relation:

β
(r+ι(x))
k (n) = P({x})(n) =

∑
y∈V

p(x, y)P({y})(n− 1) =

=
∑
y∈V

p(x, y)β
(r+ι(y))
1 (n− 1), k = 1,m. (7)

Let firstly analyze the functions β
(ℓ)
k (n) for ∀n ≥ m, k = 1,m, ℓ = 1, r. For every

k > 1 we have
β
(ℓ)
k (n) = P

(X
(ℓ)
1 ,X

(ℓ)
2 ,...,X

(ℓ)
k )

(n) =

= π
(ℓ)
1,2P(X

(ℓ)
2 ,...,X

(ℓ)
k )

(n− 1)−
∑

j: 1≤j≤r, Y
(j)
k =Y

(ℓ)
k

π
(j)
1,2P(X

(j)
2 ,...,X

(j)
m )

(n− 1) =

= π
(ℓ)
1,2γ

(ℓ)
k (n− 1)−

r∑
j=1

(
π
(j)
1,2 · I{s|Y (s)

k =Y
(ℓ)
k }(j) · γ

(j)
m (n− 1)

)
. (8)

Similarly, for k = 1, the next formula holds

β
(ℓ)
1 (n) = P

(X
(ℓ)
1 )

(n) =
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=
∑
y∈V

p(x
(ℓ)
1 , y)P({y})(n− 1)−

∑
j: 1≤j≤r, Y

(j)
1 =Y

(ℓ)
1

π
(j)
1,2P(X

(j)
2 ,...,X

(j)
m )

(n− 1) =

=
∑
y∈V

p(x
(ℓ)
1 , y)β

(r+ι(y))
1 (n− 1)−

r∑
j=1

(
π
(j)
1,2 · I{s|Y (s)

k =Y
(ℓ)
k }(j) · γ

(j)
m (n− 1)

)
. (9)

By combining the relations (8) − (9) we obtain the following formula for ∀n ≥ m,
k = 1,m, ℓ = 1, r:

β
(ℓ)
k (n) = π

(ℓ)
1,2 · IN\{1}(k) · γ

(ℓ)
k (n− 1)+

+
∑
y∈V

(
p(x

(ℓ)
1 , y) · I{1}(k) · β

(r+ι(y))
1 (n− 1)

)
−

−
r∑

j=1

(
π
(j)
1,2 · I{s|Y (s)

k =Y
(ℓ)
k }(j) · γ

(j)
m (n− 1)

)
. (10)

We consider the sets

T (ℓ)
s = {s+ 1} ∪ {t ∈ {2, 3, . . . , s} | (x(ℓ)t , x

(ℓ)
t+1, . . . , x

(ℓ)
s ) ∈ Ys+1−t},

for each s = 1,m and ℓ = 1, r. The minimal elements from these sets are

t(ℓ)s = min
k∈T (ℓ)

s

k, s = 1,m, ℓ = 1, r. (11)

The value t
(ℓ)
s represents the position in the sequence (x

(ℓ)
1 , x

(ℓ)
2 , . . . , x

(ℓ)
s ) starting

with which, if we overlap a final sequence of states X(τ
(ℓ)
s ) ∈ X, the superposed ele-

ments are equal. Here by τ
(ℓ)
s we denote the minimal index from the set {1, 2, . . . , r}

that satisfies given condition.

Next, we analyze the expression γ
(ℓ)
s (n− 1) for s = 1,m and ℓ = 1, r. For s = 1

we have

γ
(ℓ)
1 (n− 1) = P()(n− 1) =

∑
x∈V

P({x})(n− 1) =
∑
x∈V

β
(r+ι(x))
1 (n− 1). (12)

Instead, for s = 2,m, we have two cases. In the case when t
(ℓ)
s ≤ s we obtain

γ(ℓ)s (n− 1) = P
(X

(ℓ)
2 ,X

(ℓ)
3 ,...,X

(ℓ)
s )

(n− 1) =

= π
(ℓ)
2,3π

(ℓ)
3,4 . . . π

(ℓ)

t
(ℓ)
s −1,t

(ℓ)
s

P(X
t
(ℓ)
s

,X
t
(ℓ)
s +1

,...,Xs)(n− t(ℓ)s + 1) =

= w
(ℓ)

t
(ℓ)
s

P
(X

(τ
(ℓ)
s )

1 ,X
(τ

(ℓ)
s )

2 ,...,X
(τ

(ℓ)
s )

s+1−t
(ℓ)
s

)
(n− t(ℓ)s + 1) =

= w
(ℓ)

t
(ℓ)
s

β
(τ

(ℓ)
s )

s+1−t
(ℓ)
s

(n− t(ℓ)s + 1). (13)
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and for t
(ℓ)
s = s+ 1 we have

γ(ℓ)s (n− 1) = P
(X

(ℓ)
2 ,X

(ℓ)
3 ,...,X

(ℓ)
s )

(n− 1) =

= π
(ℓ)
2,3π

(ℓ)
3,4 . . . π

(ℓ)
s−1,sP(x

(ℓ)
s )

(n− s+ 1) =

= w(ℓ)
s β

(r+ι(x
(ℓ)
s ))

1 (n− s+ 1). (14)

By combining the relations (12)− (14) we obtain the next formula for ∀n ≥ m,
s = 1,m, ℓ = 1, r:

γ(ℓ)s (n− 1) =
∑
x∈V

I{1}(s) · β
(r+ι(x))
1 (n− 1)+

+w
(ℓ)

t
(ℓ)
s

· I{k|2≤t
(ℓ)
k ≤k}(s) · β

(τ
(ℓ)
s )

s+1−t
(ℓ)
s

(n− t(ℓ)s + 1)+

+w(ℓ)
s · I{k|3≤t

(ℓ)
k =k+1}(s) · β

(r+ι(x
(ℓ)
s ))

1 (n− s+ 1). (15)

Substituting the relation (15) in (10) and taking into account that I{1}(m) = 0
for m ≥ 2 and IN\{1}(k)·I{1}(k) = 0, we obtain the following recurrence for k = 1,m,
ℓ = 1, r and ∀n ∈ Z:

β
(ℓ)
k (n) = π

(ℓ)
1,2 · IN\{1}(k) · γ

(ℓ)
k (n− 1)+

+
∑
y∈V

(
p(x

(ℓ)
1 , y) · I{1}(k) · β

(r+ι(y))
1 (n− 1)

)
−

−
r∑

j=1

(
π
(j)
1,2 · I{s|Y (s)

k =Y
(ℓ)
k }(j) · γ

(j)
m (n− 1)

)
=

=
∑
y∈V

(
p(x

(ℓ)
1 , y) · I{1}(k) · β

(r+ι(y))
1 (n− 1)

)
+

+

[
π
(ℓ)
1,2 · IN\{1}(k)·( ∑

y∈V
I{1}(k) · β

(r+ι(y))
1 (n− 1)+

+w
(ℓ)

t
(ℓ)
k

· I{s|2≤t
(ℓ)
s ≤s}(k) · β

(τ
(ℓ)
k )

k+1−t
(ℓ)
k

(n− t
(ℓ)
k + 1)+

+w
(ℓ)
k · I{s|3≤t

(ℓ)
s =s+1}(k) · β

(r+ι(x
(ℓ)
k ))

1 (n− k + 1)

)]

−
r∑

j=1

[
π
(j)
1,2 · I{s|Y (s)

k =Y
(ℓ)
k }(j)·
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(∑
y∈V

I{1}(m) · β(r+ι(y))
1 (n− 1)+

+w
(j)

t
(j)
m

· I{s|2≤t
(j)
s ≤s}(m) · β(τ

(j)
m )

m+1−t
(j)
m

(n− t(j)m + 1)+

+w(j)
m · I{s|3≤t

(j)
s =s+1}(m) · β(r+ι(x

(j)
m ))

1 (n−m+ 1)

)]
=

=
∑
y∈V

(
p(x

(ℓ)
1 , y) · I{1}(k)

)
· β(r+ι(y))

1 (n− 1)+

+π
(ℓ)
1,2 · w

(ℓ)

t
(ℓ)
k

· I{s|2≤t
(ℓ)
s ≤s}(k) · β

(τ
(ℓ)
k )

k+1−t
(ℓ)
k

(n− t
(ℓ)
k + 1)+

+π
(ℓ)
1,2 · w

(ℓ)
k · I{s|3≤t

(ℓ)
s =s+1}(k) · β

(r+ι(x
(ℓ)
k ))

1 (n− k + 1)−

−
r∑

j=1

(
π
(j)
1,2 · w

(j)

t
(j)
m

· I{s|Y (s)
k =Y

(ℓ)
k , 2≤t

(j)
m ≤m}(j) · β

(τ
(j)
m )

m+1−t
(j)
m

(n− t(j)m + 1)

)
−

−
r∑

j=1

(
π
(j)
1,2 · w

(j)
m · I{s|Y (s)

k =Y
(ℓ)
k , 3≤t

(j)
m =m+1}(j) · β

(r+ι(x
(j)
m ))

1 (n−m+ 1)

)
. (16)

According to recurrent relations (6), (7) and (16), there exist some real coeffi-

cients v
(i)
jksℓ, j = 0,m− 1, k, s = 1,m, i, ℓ = 1, r + ω, such that

β
(ℓ)
k (n) =

r+ω∑
i=1

m−1∑
j=0

m∑
s=1

v
(i)
jksℓ β

(i)
s (n− 1− j), k = 1,m, ℓ = 1, r + ω, ∀n ≥ m. (17)

So, we have

βk(n) =
m−1∑
j=0

m∑
s=1

Vjks βs(n− 1− j), k = 1,m, ∀n ≥ m,

where Vjks = (v
(i)
jksℓ)ℓ, i=1,r+ω, βk(n) = (β

(ℓ)
k (n))ℓ=1,r+ω, k, s = 1,m, j = 0,m− 1.

This recurrence relation can be written in the form

β(n) =
m−1∑
j=0

Vj β(n− 1− j), ∀n ≥ m,

where Vj = (Vjks)k,s=1,m and β(n) = ((βk(n))
m
k=1)

T , j = 0,m− 1, ∀n ∈ Z. From this
relation, we obtain that β = (β(n))∞n=0 ∈ Rol∗[Mm(Mr+ω(R))][m] with generating
vector V = (Vj)

m−1
j=0 ∈ G∗[Mm(Mr+ω(R))][m](β). Using the results from [2], we

have β ∈ Rol∗[R][m2(r + ω)], which implies that also

(β
(ℓ)
k (n))∞n=0 ∈ Rol∗[R][m2(r + ω)], k = 1,m, ℓ = 1, r + ω,
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with the same generating vector. Since

an =
∑
x∈V

p∗(x)P(x)(n) =
∑
x∈V

p∗(x)β
(r+ι(x))
1 (n), ∀n ∈ Z, (18)

we have
a = (an)

∞
n=0 ∈ Rol∗[R][m2(r + ω)].

Next, we will use only the relation a ∈ Rol∗[C][m2(r + ω)], the minimal gene-
rating vector being determined using the minimization method based on the matrix
rank, described in [3]. So, according to this method, we have that the minimal
generating vector q = (q0, q1, . . . , qR−1) ∈ G∗[C][R](a) is obtained from the unique
solution x = (qR−1, qR−2, . . . , q0) of the system

A
[a]
R xT = (f

[a]
R )T , (19)

where
f
[a]
R = (aR, aR+1, . . . , a2R−1), A[a]

n = (ai+j)i,j=0,n−1, ∀n ∈ N∗ (20)

and R is the rank of the matrix A
[a]
m2(r+ω)

.

In order to apply this minimization method, we need to have only the values ak,
k = 0, 2m2(r + ω)− 1. These values can be determined using the recurrences (2),
(6), (7), (16) and (18).

For the case m = 1 we have similar recurrent formula as (17). Indeed, it is easy
to observe the following relations for P({x})(n), ∀x ∈ V , ∀n ∈ N:

β
(ℓ)
1 (0) = β

(r+ι(x
(ℓ)
1 ))

1 (0) = P
(X

(ℓ)
1 )

(0) = 1,

β
(ℓ)
1 (n) = β

(r+ι(x
(ℓ)
1 ))

1 (n) = P
(X

(ℓ)
1 )

(n) = 0, ∀n ≥ 1, ℓ = 1, r,

β
(r+ι(x))
1 (0) = P({x})(0) = 0,

β
(r+ι(x))
1 (n) = P({x})(n) =

=
∑
y∈V

p(x, y)P({y})(n− 1) =
∑
y∈V

p(x, y)β
(r+ι(y))
1 (n− 1),

∀n ≥ 1, ∀x ∈ V \{x(1)1 , x
(2)
1 , . . . , x

(r)
1 }. (21)

As result, these relations can be written in the same form as (17):

β
(ℓ)
1 (n) =

r+ω∑
i=1

0∑
j=0

1∑
s=1

v
(i)
jksℓ β

(i)
s (n− 1− j), ℓ = 1, r + ω, ∀n ≥ 1,

this meaning that the homogeneous linear recurrence of the sequence a = (an)
∞
n=0,

proved above, is applicable for m = 1 too.



STOCHASTIC SYSTEMS WITH MULTIPLE FINAL SEQUENCES OF STATES 61

3 Describing the developed algorithm

In previous section we theoretically grounded the following algorithm for deter-
mining the main probabilistic characteristics of the evolution time T : the distri-
bution (P(T = n))∞n=0, the expectation E(T ), the variance V(T ), the mean square
deviation σ(T ) and the k-order moments νk(T ), k = 1, 2, . . . .

Algorithm 1.

Input: X(ℓ) = (x
(ℓ)
1 , x

(ℓ)
2 , . . . , x

(ℓ)
m ) ∈ V m, ℓ = 1, r, p∗(x) and p(x, y), ∀x, y ∈ V ;

Output: E(T ), V(T ), σ(T ), νk(T ), k = 1, t, t ≥ 2.

1. Determine the values ak, k = 0, 2m2(r + ω)− 1, using the recurrence (16) and
the relations (2), (6), (7), (18) and (21);

2. Find the minimal generating vector q = (q0, q1, . . . , qR−1) ∈ G∗[R][R](a) by
solving the system (19), taking into account the relation (20);

3. Consider the distribution a = (an)
∞
n=0 = (P(T = n))∞n=0 of the evolution time

T as a homogeneous linear recurrence with the initial state I
[a]
R = (an)

R−1
n=0 and

the minimal generating vector q = (qk)
R−1
k=0 , determined at the steps 1 and 2;

4. Determine the expectation E(T ), the variance V(T ), the mean square deviation
σ(T ) and the k-order moments νk(T ), k = 1, t, of the evolution time T by using
the corresponding algorithm from [3].

4 Conclusions

A generalization of zero-order Markov processes with multiple final sequences
of states is formulated and studied. It is shown that the evolution time of such
stochastic system is a discrete random variable with homogeneous linear recurrent
distribution. Based on this, algorithms for determining the main probabilistic cha-
racteristics of the evolution time are proposed.

References

[1] Lazari A. Zero-Order Markov Processes with Multiple Final Sequences of States. Bul. Acad.
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