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Existence of positive periodic solution of second-order
neutral differential equations with distributed deviating
arguments
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Abstract. In this work, sufficient conditions are established for the existence of
positive w-periodic solutions of the second-order neutral differential equations with
distributed deviating arguments. The proof of our results is based on the Krasnoselskii
fixed point theorem. An example is given to illustrate the application of the results.
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1 Introduction

In this article, we study the existence of positive T-periodic solutions for the
following second-order neutral differential equations:

b " b
[za(t)—a(t) / x(t—a(t,u»du} — a(t)e(t) - / [t — ot p)ds (1)

and

"

b b
[sc@)—c(t) / x(t—a(t,u»du} ——a(tja(t) + [ f(t.alt - ot))dn, (2

where ¢ € C(R,R), a € C(R, (0,00)) are T- periodic functions, o € C(R x [a, b],R)
(b > a > 0) is a T- periodic function with respect to t and f € C(R x R,R) is a
T-periodic in its first variable.

These equations appear in a number of fields, such as mechanics, physics, and
biology, as discussed in [10,11,15|. Recently, several authors have investigated the
existence of positive periodic solutions for first- and second-order neutral differential
equations, as seen in [2-9,12-14,16] and related references.

This paper is motivated by recent work [8], in which the authors investigate the
existence of positive periodic solutions for this problem.

[2(t) — ca(t — 7(1)]" = a()x(t) — f(t,z(t — 7(1))) (3)
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and

[2(t) — ca(t — 7(t))" = —a(t)z(t) + f(t, 2(t — 7(t))), (4)

where 7 € C(R,R), a € C(R,(0,00)), f € C(R x [0,00),[0,00)), and a,7 are T-
periodic functions, with f being T-periodic with respect to the first variable. In this
paper, we extend the results in [8] to the case of distributed deviating arguments
and variable coefficient ¢(t) in (1) and (2), as opposed to the constant coefficient ¢
in (3) and (4).

The rest of this paper is organized as follows. In Section 2, we introduce some
notation and state some lemmas from [8]. In Section 3, we present our existence
results for equations (1) and (2), respectively, along with an example.

2  Preliminaries

Let &7 = {¢(t) : ¢(t) € C(R,R), ¢(t+1T) = ¢(t), t & R} be with the sup

norm ||¢|| = sup |p(t)|. It is clear that ®p is a Banach space. Define
te[0,T

Cr ={o(t) : ¢(t) € C(R,(0,00)), ot +T) = ¢(t)},
Cr ={8(t) : 8(t) € C(R,(=00,0)), o(t+T)=o(t)}.
Let M = max{a(t) : t € [0,7]}, m =min{a(t):tec[0,T]} and B=+/M.
Lemma 1. (/8]) The equation
y'(t) = My(t) = h(t), heCp

has a unique T-pertodic solution

t+T

) = | Gilts)(=hls))ds,

where

exp(—fB(s —t)) + exp(B(s —t —T))
28(1 — exp(—pT)) ’

Lemma 2. (/8]) Gi(t,s) > 0 and ftHTGl(t,s)ds = 3 forallt € [0,T] and s €
[t,t+T).

Gi(t,s) = s€e[t,t+T).

Lemma 3. (/8]) Consider the equation

y'(t) —a(t)y(t) = h(t), heCr. (5)
Define T, By : &7 — O by
t+T

(Mn)(t) = | Gilt,s)(=h(s)ds,  (Buy)(t) = [=M +a(t)]y(®).
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Obviously Ty and By are completely continuous, (T1h)(t) > 0 for h(t) < 0 and
|B1|| < (M —m). By Lemma 1, the solution of (5) can be written as y(t) = (T1h)(t)+
(TlBly)(t). Since HTIBIH <1-— % < 1,

y(t) = (I = T1By) Y (T1h) ().
Define Py : &p — &1 by
(Pih)(t) = (I = T1B1) " (T1R)(t),

since 11 and By are completely continuous, Py is completely continuous. Moreover,
we have

M
0 < (Thh)(t) < (PLh)(t) < EHTth’ heC.
Lemma 4. (/8]) The equation
y'(t) + My(t) = h(t), heCqF

has a unique T-pertodic solution
t+T
yt)= [ Galt,s)h(s)ds,
t
where
cos(ﬁ(% +t—39))
23 sin(BTT)

Golt,s) = . sett+T.

Lemma 5. (/8/) ftHT Ga(t,s)ds = 35 for all t € [0,T). Purthermore, if M < (%),

then Ga(t,s) >0 for allt € [0,T] and s € [t,t +T).
Lemma 6. ([8]) Let M < (). Consider the equation
y'(t) + a(t)y(t) = h(t), heCFf. (6)

Deﬁne T5,By : &7 — & by

t+T

(T2h)(t)=t Ga(t,s)(h(s))ds, (Bay)(t) = [M — a(t)]y(t).

Clearly, Ty and By are completely continuous, (Toh)(t) > 0 for h(t) > 0 and || Ba|| <
(M — m). By Lemmma 1, the solution of (5) can be written as y(t) = (Txh)(t) +
(Tngy)(t). Since HTQBQH S 1-— %,

y(t) = (I = TiB1)~{(T1h)(1).
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Define Py : &7 — ®p by
(Poh)(t) = (I = ToBa) "' (T2h)(1),

since Ty and By are completely continuous, Po is completely continuous. Moreover,
we have

M
0 < (Toh)(t) < (P2h)(t) < E”TI}LH’ heC.

Lemma 7. (Krasnoselskii’s Fized Point Theorem [1]). Let X be a Banach space.
Assume that Q) is o bounded closed and convex subset of X. If Q,S : Q — X satisfy

1. Qx4+ Sye), Vr,yel
2. @ is a contractive operator and S is completely continuous operator,

then Q + S has a fized point in €.

3 Main Results

Theorem 1. Suppose that 0 < ¢(t)(b—a) < ¢ < 1 and there exist constants N1 and
Ny with 0 < N1 < Ny such that

mN2(1 — Cl)
(b—a)

= < f(t,2) — e(t)a(t)z < Y(t,z) € [0,T] x [N1,No].  (7)

Then (1) has at least one positive T-periodic solution x(t) such that N1 < x(t) < Na.

Proof. We show that
b b
w>=fﬂ@mm/ﬂwwmmw—/fww—mwmw)

b
4 elt) [ alt - ottm)dn )

is a solution of (1). The equation

[ww—dwlzw—awumwy—am[mw—dwﬁzw—amumw}
b b
=mm@lav—dmmm—4fwnwwmmwm (9)

is equivalent to (1). Let y(t) = z(t) — c(t) f::E(t — o(t,n))dp in the equation (9),
then we have

b b
y'(t) — a(t)y(t) = a(t)c(t) / 2t —o(t, p))dp — / fta(t —o(t, p))dp.
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Applying Lemma 3 to this equation yields

y(t) = P (a(t)C(t) /abl’(t —o(t, p))dp — /ab [t a(t —o(t, u)))du)

which is equivalent to (8). Let Q = {x € &7 : Ny < z(t) < Na, t € [0,7]}. One can
see that Q is a bounded, closed and convex subset of ®7. We define two mappings
Q,S : Q — &7 as follows

b b
Q1) = P (a(t)a(t) [ att=ottman- | f<t,x<t—a<t7u>>>du) and

b
(S2)(t) = eft) / £(t - o(t, p))dp.

It is easy to verify that Qx and Sz are continuous and T-periodic, i.e we have
Q) C &7 and S(Q) C Pp. For all z1, 20 € Q and t € R, from (7), Lemma 2 and
Lemma 3, we get

b
(@o0)e) + (S22)(0) = A (at0ete) [ (e = ote. )i
b : b
- [ sttt ot wan) +eto) [ aate ~ ote i

M
<=
m

T <a(t)c(t) /ab z1(t — o(t, p))dp — /ab flt,z1(t — oft, u)))du> H

/ e / [fs.1(s — o(s.0)

M
4+ 1Ny = — sup
M telo,T]

—a(s)q(s)xi(s —o(s, u))} dpds| + 1Ny

< % /H_T Gl(t, S)TfLNQ(l — cl)ds + ClNQ = N2
and
b
(Qu)(t) + (Sza)(t) = Py (a<t>c(t> [ e = ottman
b : b
- [ e~ atan) + ) [ ate = ote )i
b b
7 <a<t>c<t> / r1(t — o(t, p))dp — / F(tma(t — ot u)))du>

t+T

b
=/ Ga(t, 8)/ [f(s, z1(s —a(s,p)) — a(s)g(s)zi(s — o (s, u))} dpds
2 o Gl(t,S)MNldS = Nl
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from which we conclude that Ny < (Qz1)(t) + (Sx2)(t) < Na for all x1, 22 €  and
t € R, ie. we have Q1 + Sxo € Q. For 21,22 € ), we obtain

b b
(Sz2)(t) = Sz = |elt) [ w1lt = olt)du—c(t) [ aalt = o(t, )

b
< et) / (@1 (t — ot 1)) — w2t — o (t, 1) dps.

By taking the supremum norm, we conclude that
[Sz1 — Saaf| <erllzr — a2,

which implies that .S is a contraction mapping on €). It is known that P is completely
continuous by Lemma 3, so is Q. Then, from Lemma 7, (1) has at least one T-periodic
solution z(t). O

Theorem 2. Suppose that —1 < ¢y < ¢(t)(b—a) < 0, —coM < m and there exist
constants N1 and No with 0 < N1 < No such that

(N1 — coNo)M mNy

(b—a)

< ft,x) — c(t)a(t)x < b—a)’

V(t,x) € [0,T] x [Ny, Na|. (10)

Then (1) has at least one positive T-periodic solution x(t) such that N1 < z(t) < Na.

Proof. Define @@ and S as in the proof of Theorem 1 and let Q@ = {x € &7 : N; <
z(t) < No, t € [0,T]}. Tt is clear that € is a bounded, closed and convex subset of
& and Q(2) C & and S(Q) C ¢p. We show that Qx4+ Sxo € Q for all 1, x9 € .
For x1,29 € Q and ¢t € R, we have from (10), Lemma 2 and Lemma 3 that

b
(Qua)(t) + (Sa)(t) = Py (a<t>c<t> [ o= otean

b b
-/ f(t,m(t—a(t,u)))du)+c<t> [ st = otts i

b b
<Mln (a<t>c<t> / 21t — ot 1))y — / f(t,rcl(t—a(t,u)))du> H
M t+T b
= | [ @ [ [femt ot

— als)a(s)a1(s — o(s, 1)) | duds

M t+T
< / Gl(t, S)mNQdS = N2
m Jt

and

b
(Qua)(t) + (Sza)(t) = Py (a<t>c(t> [ e = ottman
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b b
-/ f(t,xl(t—a(t,u)))du)+C(t) [ aate = te. i

> <a<t>c<t> / "1t — ot )t / fn(t ot u)))du>

+e(t)(b— a)Ny
t+T

b

> | G / |/ (s,w1(s = (5. ))) = als)a(s)1 (5 — o (s, 1)) | dpds
t+T

4+ cogNy > i ' Gl(t, S)(Nl — CoNg)MdS 4+ ¢ogNoy = N7.

Thus, we have Q1 + Sxzo € Q for all 1,22 € 2. Now we show S is a contraction
operator on €. In fact, for xz1,x2 € 2, we have

b b
(Sz)(t) — (Sz2)()] = |e(t) / 21t — o(t, w)dp — e(t) / ra(t — o (t, p))dp

b
< =) [ lr(t = ot ) — aafe — ot )l
a
By taking the supremum norm, we conclude that
1521 = Saaf| < —collzr — z2,

which implies that .S is a contraction mapping on ). It is known that P; is completely
continuous by Lemma 3, so is Q. Then, from Lemma 7, (1) has at least one T-periodic
solution x(t). O

Theorem 3. Let M < (%)% Suppose that 0 < c(t)(b—a) < ¢1 < 1 and there exist
constants N1 and No with 0 < N1 < Ny such that

Ni1M

mNQ(l — Cl)
(b—a)

< f(t,ﬂ?) - c(t)a(t)x < (b _ a) ’

V(t,ﬂ?) € [O,T] X [Nl,NQ].

Then (2) has at least one positive T-periodic solution x(t) such that N1 < z(t) < Na.

Theorem 4. Let M < (%)?. Suppose that —1 < co < c(t)(b—a) <0, —coM < m
and there exist constants N1 and Ny with 0 < N1 < Ny such that

mN2
(b—a)’

(N1 — coN2) M

(b—a) < f(t,z) — c(t)a(t)r <

V(t,x) € [O,T] X [Nl,NQ}.

Then (2) has at least one positive T-periodic solution x(t) such that N1 < z(t) < Na.

The proofs of Theorem 3 and Theorem 4 are omitted, as they are very similar to
those of Theorem 1 and Theorem 2, respectively.
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Example 1. Counsider the following equation

"

_exp(cost) /”/2 B . B cost
x(t) 100 » x(t — 10p — sint)du| = 1—|——10 x(t)

m/2
- / (17 4 exp(cost) + cos(x5(t — 10 — sint)))dp. (11)
w/4

Comparing (1) to (11), we see T = 27, ¢(t) = ZRESD " q(4) = (14 958) f(t,2) =
17+exp(cost)+cos(z?), o(t, ) = 10u+sint, a = 7 /4 and b = /2. It can be verified
that the conditions of Theorem 1 are satisfied with N7 = 10 and Ny = 20.Therefore,

(11) has at least one positive T-periodic solution.
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