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Existence of positive periodic solution of second-order

neutral di�erential equations with distributed deviating

arguments
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Abstract. In this work, su�cient conditions are established for the existence of
positive ω-periodic solutions of the second-order neutral di�erential equations with
distributed deviating arguments. The proof of our results is based on the Krasnoselskii
�xed point theorem. An example is given to illustrate the application of the results.
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1 Introduction

In this article, we study the existence of positive T -periodic solutions for the
following second-order neutral di�erential equations:[

x(t)− c(t)

∫ b

a
x(t− σ(t, µ))dµ

]′′
= a(t)x(t)−

∫ b

a
f(t, x(t− σ(t, µ)))dµ (1)

and[
x(t)− c(t)

∫ b

a
x(t− σ(t, µ))dµ

]′′
= −a(t)x(t) +

∫ b

a
f(t, x(t− σ(t, µ)))dµ, (2)

where c ∈ C(R,R), a ∈ C(R, (0,∞)) are T - periodic functions, σ ∈ C(R × [a, b],R)
(b > a ⩾ 0) is a T - periodic function with respect to t and f ∈ C(R × R,R) is a
T -periodic in its �rst variable.

These equations appear in a number of �elds, such as mechanics, physics, and
biology, as discussed in [10, 11, 15]. Recently, several authors have investigated the
existence of positive periodic solutions for �rst- and second-order neutral di�erential
equations, as seen in [2�9,12�14,16] and related references.

This paper is motivated by recent work [8], in which the authors investigate the
existence of positive periodic solutions for this problem.

[x(t)− cx(t− τ(t))]′′ = a(t)x(t)− f(t, x(t− τ(t))) (3)
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and

[x(t)− cx(t− τ(t))]′′ = −a(t)x(t) + f(t, x(t− τ(t))), (4)

where τ ∈ C(R,R), a ∈ C(R, (0,∞)), f ∈ C(R × [0,∞), [0,∞)), and a, τ are T -
periodic functions, with f being T -periodic with respect to the �rst variable. In this
paper, we extend the results in [8] to the case of distributed deviating arguments
and variable coe�cient c(t) in (1) and (2), as opposed to the constant coe�cient c
in (3) and (4).

The rest of this paper is organized as follows. In Section 2, we introduce some
notation and state some lemmas from [8]. In Section 3, we present our existence
results for equations (1) and (2), respectively, along with an example.

2 Preliminaries

Let ΦT = {ϕ(t) : ϕ(t) ∈ C(R,R), ϕ(t + T ) = ϕ(t), t ∈ R} be with the sup
norm ∥ϕ∥ = sup

t∈[0,T ]
|ϕ(t)|. It is clear that ΦT is a Banach space. De�ne

C+
T = {ϕ(t) : ϕ(t) ∈ C(R, (0,∞)), ϕ(t+ T ) = ϕ(t)},

C−
T = {ϕ(t) : ϕ(t) ∈ C(R, (−∞, 0)), ϕ(t+ T ) = ϕ(t)}.

Let M = max{a(t) : t ∈ [0, T ]}, m = min{a(t) : t ∈ [0, T ]} and β =
√
M.

Lemma 1. ([8]) The equation

y′′(t)−My(t) = h(t), h ∈ C−
T

has a unique T -periodic solution

y(t) =

∫ t+T

t
G1(t, s)(−h(s))ds,

where

G1(t, s) =
exp(−β(s− t)) + exp(β(s− t− T ))

2β(1− exp(−βT ))
, s ∈ [t, t+ T ].

Lemma 2. ([8]) G1(t, s) > 0 and
∫ t+T
t G1(t, s)ds = 1

M for all t ∈ [0, T ] and s ∈
[t, t+ T ].

Lemma 3. ([8]) Consider the equation

y′′(t)− a(t)y(t) = h(t), h ∈ C−
T . (5)

De�ne T1, B1 : ΦT → ΦT by

(T1h)(t) =

∫ t+T

t
G1(t, s)(−h(s))ds, (B1y)(t) = [−M + a(t)]y(t).
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Obviously T1 and B1 are completely continuous, (T1h)(t) > 0 for h(t) < 0 and
∥B1∥ ≤ (M−m). By Lemma 1, the solution of (5) can be written as y(t) = (T1h)(t)+
(T1B1y)(t). Since ∥T1B1∥ ≤ 1− m

M < 1,

y(t) = (I − T1B1)
−1(T1h)(t).

De�ne P1 : ΦT → ΦT by

(P1h)(t) = (I − T1B1)
−1(T1h)(t),

since T1 and B1 are completely continuous, P1 is completely continuous. Moreover,
we have

0 < (T1h)(t) ⩽ (P1h)(t) ⩽
M

m
∥T1h∥, h ∈ C−

T .

Lemma 4. ([8]) The equation

y′′(t) +My(t) = h(t), h ∈ C+
T

has a unique T -periodic solution

y(t) =

∫ t+T

t
G2(t, s)h(s)ds,

where

G2(t, s) =
cos(β(T2 + t− s))

2β sin(βT2 )
, s ∈ [t, t+ T ].

Lemma 5. ([8])
∫ t+T
t G2(t, s)ds = 1

M for all t ∈ [0, T ]. Furthermore, if M < ( πT )
2,

then G2(t, s) > 0 for all t ∈ [0, T ] and s ∈ [t, t+ T ].

Lemma 6. ([8]) Let M < ( πT )
2. Consider the equation

y′′(t) + a(t)y(t) = h(t), h ∈ C+
T . (6)

De�ne T2, B2 : ΦT → ΦT by

(T2h)(t) =

∫ t+T

t
G2(t, s)(h(s))ds, (B2y)(t) = [M − a(t)]y(t).

Clearly, T2 and B2 are completely continuous, (T2h)(t) > 0 for h(t) > 0 and ∥B2∥ ≤
(M − m). By Lemmma 1, the solution of (5) can be written as y(t) = (T2h)(t) +
(T2B2y)(t). Since ∥T2B2∥ ≤ 1− m

M ,

y(t) = (I − T1B1)
−1(T1h)(t).
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De�ne P2 : ΦT → ΦT by

(P2h)(t) = (I − T2B2)
−1(T2h)(t),

since T2 and B2 are completely continuous, P2 is completely continuous. Moreover,
we have

0 < (T2h)(t) ⩽ (P2h)(t) ⩽
M

m
∥T1h∥, h ∈ C+

T .

Lemma 7. (Krasnoselskii's Fixed Point Theorem [1]). Let X be a Banach space.
Assume that Ω is a bounded closed and convex subset of X. If Q,S : Ω → X satisfy

1. Qx+ Sy ∈ Ω, ∀x, y ∈ Ω

2. Q is a contractive operator and S is completely continuous operator,

then Q+ S has a �xed point in Ω.

3 Main Results

Theorem 1. Suppose that 0 ⩽ c(t)(b−a) ⩽ c1 < 1 and there exist constants N1 and
N2 with 0 < N1 < N2 such that

N1M

(b− a)
⩽ f(t, x)− c(t)a(t)x ⩽

mN2(1− c1)

(b− a)
, ∀(t, x) ∈ [0, T ]× [N1, N2]. (7)

Then (1) has at least one positive T -periodic solution x(t) such that N1 ⩽ x(t) ⩽ N2.

Proof. We show that

x(t) = P1

(
a(t)c(t)

∫ b

a
x(t− σ(t, µ))dµ−

∫ b

a
f(t, x(t− σ(t, µ)))dµ

)
+ c(t)

∫ b

a
x(t− σ(t, µ))dµ (8)

is a solution of (1). The equation[
x(t)− c(t)

∫ b

a
x(t− σ(t, µ))dµ

]′′
− a(t)

[
x(t)− c(t)

∫ b

a
x(t− σ(t, µ))dµ

]
= a(t)c(t)

∫ b

a
x(t− σ(t, µ))dµ−

∫ b

a
f(t, x(t− σ(t, µ)))dµ (9)

is equivalent to (1). Let y(t) = x(t) − c(t)
∫ b
a x(t − σ(t, µ))dµ in the equation (9),

then we have

y′′(t)− a(t)y(t) = a(t)c(t)

∫ b

a
x(t− σ(t, µ))dµ−

∫ b

a
f(t, x(t− σ(t, µ)))dµ.
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Applying Lemma 3 to this equation yields

y(t) = P1

(
a(t)c(t)

∫ b

a
x(t− σ(t, µ))dµ−

∫ b

a
f(t, x(t− σ(t, µ)))dµ

)
which is equivalent to (8). Let Ω = {x ∈ ΦT : N1 ⩽ x(t) ⩽ N2, t ∈ [0, T ]}. One can
see that Ω is a bounded, closed and convex subset of ΦT . We de�ne two mappings
Q,S : Ω → ΦT as follows

(Qx)(t) = P1

(
a(t)c(t)

∫ b

a
x(t− σ(t, µ))dµ−

∫ b

a
f(t, x(t− σ(t, µ)))dµ

)
and

(Sx)(t) = c(t)

∫ b

a
x(t− σ(t, µ))dµ.

It is easy to verify that Qx and Sx are continuous and T -periodic, i.e we have
Q(Ω) ⊂ ΦT and S(Ω) ⊂ ΦT . For all x1, x2 ∈ Ω and t ∈ R, from (7), Lemma 2 and
Lemma 3, we get

(Qx1)(t) + (Sx2)(t) = P1

(
a(t)c(t)

∫ b

a
x1(t− σ(t, µ))dµ

−
∫ b

a
f(t, x1(t− σ(t, µ)))dµ

)
+ c(t)

∫ b

a
x2(t− σ(t, µ))dµ

⩽
M

m

∥∥∥∥∥T1

(
a(t)c(t)

∫ b

a
x1(t− σ(t, µ))dµ−

∫ b

a
f(t, x1(t− σ(t, µ)))dµ

)∥∥∥∥∥
+ c1N2 =

M

m
sup

t∈[0,T ]

∣∣∣∣∣
∫ t+T

t
G1(t, s)

∫ b

a

[
f(s, x1(s− σ(s, µ)))

− a(s)q(s)x1(s− σ(s, µ))
]
dµds

∣∣∣∣∣+ c1N2

⩽
M

m

∫ t+T

t
G1(t, s)mN2(1− c1)ds+ c1N2 = N2

and

(Qx1)(t) + (Sx2)(t) = P1

(
a(t)c(t)

∫ b

a
x1(t− σ(t, µ))dµ

−
∫ b

a
f(t, x1(t− σ(t, µ)))dµ

)
+ c(t)

∫ b

a
x2(t− σ(t, µ))dµ

⩾ T1

(
a(t)c(t)

∫ b

a
x1(t− σ(t, µ))dµ−

∫ b

a
f(t, x1(t− σ(t, µ)))dµ

)
=

∫ t+T

t
G1(t, s)

∫ b

a

[
f(s, x1(s− σ(s, µ)))− a(s)q(s)x1(s− σ(s, µ))

]
dµds

⩾
∫ t+T

t
G1(t, s)MN1ds = N1
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from which we conclude that N1 ⩽ (Qx1)(t) + (Sx2)(t) ⩽ N2 for all x1, x2 ∈ Ω and
t ∈ R, i.e. we have Qx1 + Sx2 ∈ Ω. For x1, x2 ∈ Ω, we obtain

|(Sx1)(t)− (Sx2)(t))| =

∣∣∣∣c(t) ∫ b

a
x1(t− σ(t, µ))dµ− c(t)

∫ b

a
x2(t− σ(t, µ))dµ

∣∣∣∣
⩽ c(t)

∫ b

a
|x1(t− σ(t, µ))− x2(t− σ(t, µ))|dµ.

By taking the supremum norm, we conclude that

∥Sx1 − Sx2∥ ⩽ c1∥x1 − x2∥,

which implies that S is a contraction mapping on Ω. It is known that P1 is completely
continuous by Lemma 3, so isQ. Then, from Lemma 7, (1) has at least one T -periodic
solution x(t).

Theorem 2. Suppose that −1 < c0 ⩽ c(t)(b − a) ⩽ 0, −c0M < m and there exist
constants N1 and N2 with 0 < N1 < N2 such that

(N1 − c0N2)M

(b− a)
⩽ f(t, x)− c(t)a(t)x ⩽

mN2

(b− a)
, ∀(t, x) ∈ [0, T ]× [N1, N2]. (10)

Then (1) has at least one positive T -periodic solution x(t) such that N1 ⩽ x(t) ⩽ N2.

Proof. De�ne Q and S as in the proof of Theorem 1 and let Ω = {x ∈ ΦT : N1 ⩽
x(t) ⩽ N2, t ∈ [0, T ]}. It is clear that Ω is a bounded, closed and convex subset of
ΦT and Q(Ω) ⊂ ΦT and S(Ω) ⊂ ΦT . We show that Qx1+Sx2 ∈ Ω for all x1, x2 ∈ Ω.
For x1, x2 ∈ Ω and t ∈ R, we have from (10), Lemma 2 and Lemma 3 that

(Qx1)(t) + (Sx2)(t) = P1

(
a(t)c(t)

∫ b

a
x1(t− σ(t, µ))dµ

−
∫ b

a
f(t, x1(t− σ(t, µ)))dµ

)
+ c(t)

∫ b

a
x2(t− σ(t, µ))dµ

⩽
M

m

∥∥∥∥∥T1

(
a(t)c(t)

∫ b

a
x1(t− σ(t, µ))dµ−

∫ b

a
f(t, x1(t− σ(t, µ)))dµ

)∥∥∥∥∥
=

M

m
sup

t∈[0,T ]

∣∣∣∣∣
∫ t+T

t
G1(t, s)

∫ b

a

[
f(s, x1(s− σ(s, µ)))

− a(s)q(s)x1(s− σ(s, µ))
]
dµds

∣∣∣∣∣
⩽

M

m

∫ t+T

t
G1(t, s)mN2ds = N2

and

(Qx1)(t) + (Sx2)(t) = P1

(
a(t)c(t)

∫ b

a
x1(t− σ(t, µ))dµ
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−
∫ b

a
f(t, x1(t− σ(t, µ)))dµ

)
+ c(t)

∫ b

a
x2(t− σ(t, µ))dµ

⩾ T1

(
a(t)c(t)

∫ b

a
x1(t− σ(t, µ))dµ−

∫ b

a
f(t, x1(t− σ(t, µ)))dµ

)
+ c(t)(b− a)N2

⩾
∫ t+T

t
G1(t, s)

∫ b

a

[
f(s, x1(s− σ(s, µ)))− a(s)q(s)x1(s− σ(s, µ))

]
dµds

+ c0N2 ⩾
∫ t+T

t
G1(t, s)(N1 − c0N2)Mds+ c0N2 = N1.

Thus, we have Qx1 + Sx2 ∈ Ω for all x1, x2 ∈ Ω. Now we show S is a contraction
operator on Ω. In fact, for x1, x2 ∈ Ω, we have

|(Sx1)(t)− (Sx2)(t))| =

∣∣∣∣c(t)∫ b

a
x1(t− σ(t, µ))dµ− c(t)

∫ b

a
x2(t− σ(t, µ))dµ

∣∣∣∣
⩽ −c(t)

∫ b

a
|x1(t− σ(t, µ))− x2(t− σ(t, µ))|dµ.

By taking the supremum norm, we conclude that

∥Sx1 − Sx2∥ ⩽ −c0∥x1 − x2∥,

which implies that S is a contraction mapping on Ω. It is known that P1 is completely
continuous by Lemma 3, so isQ. Then, from Lemma 7, (1) has at least one T -periodic
solution x(t).

Theorem 3. Let M < ( πT )
2. Suppose that 0 ⩽ c(t)(b− a) ⩽ c1 < 1 and there exist

constants N1 and N2 with 0 < N1 < N2 such that

N1M

(b− a)
⩽ f(t, x)− c(t)a(t)x ⩽

mN2(1− c1)

(b− a)
, ∀(t, x) ∈ [0, T ]× [N1, N2].

Then (2) has at least one positive T -periodic solution x(t) such that N1 ⩽ x(t) ⩽ N2.

Theorem 4. Let M < ( πT )
2. Suppose that −1 < c0 ⩽ c(t)(b − a) ⩽ 0, −c0M < m

and there exist constants N1 and N2 with 0 < N1 < N2 such that

(N1 − c0N2)M

(b− a)
⩽ f(t, x)− c(t)a(t)x ⩽

mN2

(b− a)
, ∀(t, x) ∈ [0, T ]× [N1, N2].

Then (2) has at least one positive T -periodic solution x(t) such that N1 ⩽ x(t) ⩽ N2.

The proofs of Theorem 3 and Theorem 4 are omitted, as they are very similar to
those of Theorem 1 and Theorem 2, respectively.
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Example 1. Consider the following equation[
x(t)− exp(cos t)

100

∫ π/2

π/4
x(t− 10µ− sin t)dµ

]′′

=

(
1 +

cos t

10

)
x(t)

−
∫ π/2

π/4
(17 + exp(cos t) + cos(x5(t− 10µ− sin t)))dµ. (11)

Comparing (1) to (11), we see T = 2π, c(t) = exp(cos t)
100 , a(t) =

(
1 + cos t

10

)
, f(t, x) =

17+exp(cos t)+cos(x5), σ(t, µ) = 10µ+sin t, a = π/4 and b = π/2. It can be veri�ed
that the conditions of Theorem 1 are satis�ed with N1 = 10 and N2 = 20.Therefore,
(11) has at least one positive T -periodic solution.
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