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Abstract. In this paper we present a complete study of degenerate quadratic dif-
ferential systems, i.e. the polynomials from right-hand sides of these systems are not
co-prime. We give the complete set of their phase portraits together with the necessary
and sufficient conditions for the realization of each one of them. These conditions are
given in using invariant polynomials and we present here the “bifurcation” diagram
directly in the space R'? of the whole set of the parameters of the quadratic systems.

This paper is part of a project whose ultimate goal is the complete classification
of all topologically distinct phase portraits of quadratic systems modulo limit cycles.
We also provide a label for each phase portrait inside the global codification related
to the global configurations of singularities and their topological codimensions.
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1 Introduction and the statement of the main result

We consider here differential systems of the form

%:p(xay)v %ZQ(xay)’ (1)
where p, ¢ € R|z,y|, i.e. p, ¢ are polynomials in z, y with real coefficients. We
call degree of a system (1) the integer n = max(deg p, deg ¢). In particular we call
quadratic a differential system (1) with n = 2. We denote here by QS the whole
class of real quadratic differential systems.

The motivation of the authors for writing this paper is to advance towards the
complete classification of topologically distinct phase portraits of quadratic differen-
tial systems modulo limit cycles. During the last decades, more than one thousand
of papers have been dedicated to quadratic systems producing many hundreds of
phase portraits.

The approaches used by these papers have been of different kinds:

e Some papers considered phase portraits of quadratic systems under very re-
stricted conditions like: existence of centers (see [26,30,32]), chordal quadratic
systems (see [19,24]), systems with just one finite singularity (see [17,25]) and
many others.
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e Some papers considered phase portraits of a large family of quadratic systems
with few restrictions obtaining the full corresponding bifurcations diagrams
like: systems with a finite nilpotent singularity [22], systems with a weak
focus of order two [4], systems with two saddle-nodes [11,12,15] and many
others.

e Some papers considered phase portraits of the most generic classes like: struc-
turally stable phase portraits of quadratic systems (i.e. of codimension 0) [2],
structurally unstable phase portraits of quadratic systems of codimension 1 [3],
and some papers dealing with phase portraits of codimension 2 [1,13,14].

All these approaches for the study of quadratic systems are important and useful.
But none of them alone can completely determine all the possible phase portraits.
The interaction among all three approaches is needed for obtaining the full classifi-
cation.

The class of degenerate quadratic systems (denoted by QSD) is among the most
restrictive systems and has not yet been completely classified.

The local behavior of the trajectories in the vicinity of the line at infinity in
the generic case of quadratic systems with finite number of singularities (finite and
infinite) has been studied in [27] where 40 classes were detected.

In [5] we added the systems with infinite number of infinite singularities (6
classes) as well as the systems with infinite number of finite singularities (30 classes
denoted by QD{*~-QDs5). However in the second case one class was omitted and
in fact we have 31 topologically distinct phase portraits in the vicinity at infinity
for the class QSD which we present here in Figure 1 using, for the new class, the
notation QDS3.

Remark 1. We note that the existence of the class QDS was already detected in [7]
and in paper [6] where one configuration of singularities for systems in QSD (where
the common factor is formed by two complex parallel lines) did not correspond to
any of the 30 initial classes. However QD3] was not formally presented until now.
We point out that the existence of this class allows us to detect that the topological
configuration (192) from [6] is topologically equivalent to topological configuration
(137). This happens because the infinite intersection of two complex parallel lines
produces a real singularity topologically equivalent to an intricate singularity with
two hyperbolic sectors. More detailed explanation could be found in [8, Remark 2]
where we already decided not to shift the code of configurations from (193) up to
(208) and left the gap related to (192) considering this class empty.

In [7] the authors gave the set of all global geometric configurations of singular-
ities for the whole family of quadratic systems including systems in QSD (in total
1764 cases).

In [6] the authors grouped the set of 1764 geometric configurations into 208
global topologically distinct configurations of singularities. During this process some
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Figure 1. Topologically distinct local configurations of infinite singular points of
systems in QSD.

geometric configurations of singularities in QSD became identified with other con-
figurations having a finite number of singularities. These cases are the ones that
produce the phase portraits in Figure 2.

The reader must notice that the phase portrait QS4752) is drawn here as coming
from a degenerate system and the finite singularity looks like an intricate singularity
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Figure 2. Phase portraits of systems in QSD topologically equivalent to phase por-
traits of non-degenerate systems.

with two hyperbolic sectors. But the most generic topological representative of
QS47§2) is with a nilpotent cusp which is a singularity of codimension two.

Our main result is:
Main Theorem. The following statements hold:

(i) The family QSD possesses a total of 41 topologically distinct phase portraits
given in Figures 2 and 3. Moreover for each one of these phase portraits its
codimension is determined.

(i) The topological classification is done using algebraic invariant polynomials and
hence it is independent of the normal forms in which the systems may be
presented.

(#ii) The bifurcation diagram of the phase portraits of systems in the family QSD
is done in the twelve-dimensional parameter space RY? and it is presented in
Figure 4. This diagram gives us an algorithm to determine for any given
system its corresponding phase portrait.

Remark 2. The phase portraits from Figure 2 are those which are topologically
equivalent to non-degenerate phase portraits. So they have a lower codimension than
the one they would have if they where realizable only as degenerate phase portraits.
The phase portraits presented in Figure 8 are those which imply the existence of an
infinite number of real finite singularities.

In order to construct the set of phase portraits of the family of systems in QSD

there are at least three ways to do it, which we describe below.

1. One can start from the ten topologically different phase portraits of linear
systems in the Poincaré disc adding one straight line filled up with singularities
(from now on a singular line). One must also consider the constant systems
adding a conic filled up with singularities (from now on a singular conic).

2. One can start from the 31 topologically distinct local configurations of infinite
singularities given in Figure 1 and complete them with the possible singular
curves compatible with each QD°-QD5] and add a compatible finite singu-
larity if necessary.

3. One may consider each one of the geometrical configurations of singularities
from [7] of systems in QSD (or topological configurations from [6]) and find
the possible phase portrait generated by each one of them.
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Figure 3. Phase portraits of systems in QSD with an infinite number of real singu-
larities.

We have followed all three ways and obtained the same results concerning the
phase portraits. However if one wants to obtain the “bifurcation” diagram, i.e. to
determine the necessary and sufficient conditions for the realization of each one of
the obtained phase portraits, the third way is compulsory.
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FIGURE 3 (cont.) Phase portraits of systems in QSD with an infinite number of
real singularities.

This article is organized as follows. In Section 2 we give notations for singularities
and for the phase portraits, we describe the source from which we take the concept of
codimension and we construct affine invariant polynomials which completely classify
the systems in the family QSD.

Section 3 is dedicated to the proof of Main Theorem.

2 Preliminaries

In this section we bring some concepts and notations from other papers which
will be used here.

2.1 Notations for singularities

In the book [7] we defined some new concepts for singularities closely related to
the Jacobian matrix because they are more convenient for the geometrical classifi-
cation rather than the classical concepts. The new definitions are:

We call elemental a singular point with its two eigenvalues not zero.

We call semi-elemental a singular point with exactly one of its eigenvalues
equal to zero.

We maintain the name of nilpotent for a singular point with its two eigenvalues
zero but with its Jacobian matrix at this point not identically zero.

We call intricate a singular point with its Jacobian matrix identically zero.

Since in this paper we deal with the class QSD, we may shorten the description
and simplify it for this specific class. Some concepts such as for example order of
weak singularities are not needed so we remove them. However, since the notation of
the most degenerate configuration includes many other simpler notations, we must
incorporate most part of what is exposed in [7].
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Figure 4. Diagram for the phase portraits of systems in QSD.
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First we start describing the finite and infinite singularities, denoting the first
ones with lower case letters and the second with capital letters. When describing
in a sequence both finite and infinite singular points, we will always place first the

finite ones and only later the infinite ones, separating them by a semicolon

7. Even

though finite and infinite singular points may either be real or complex, from the
topological viewpoint, only the real ones are interesting and only these will be listed.

Elemental singularities: We use the letters ‘s’,°S’ for “saddles”

; ‘n’, ‘N’ for
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FIGURE 4 (cont.) Diagram for the phase portraits of systems in QSD.

“nodes”; ‘ f’ for “foci” and ‘¢’ for “centers”. We will also denote by ‘a’ (anti-saddle)
for either a focus or any type of node when the local phase portraits are topologically
equivalent. Since the number of characteristic directions of nodes is critical in the
class QSD, we need to keep the following notations:

e ‘n’ for a node with two distinct eigenvalues;

e ‘n® (a one-direction node) for a node with two identical eigenvalues whose
Jacobian matrix cannot be diagonal;

Con k0

e ‘n*’ (a star node) for a node with two identical eigenvalues whose Jacobian
matrix is diagonal.

Moreover, in the case of an elemental infinite node, there is a geometrical feature
that distinguishes whether all orbits except one arrive tangent to infinity or to an
affine direction, and this concept is also important in the class QSD.

So we must use the notations ‘N, ‘N7’ ‘N% and ‘N° for infinite nodes as
they were defined in [7].

All non-elemental singular points are multiple points. Even though multiplicity
is in most cases irrelevant for the local topological phase portrait, for some infinite
singularities the type of multiplicity could be relevant and we must point out the way
we denote these cases. We denote by ‘(Z) ...” the maximum number a (respectively b)
of finite (respectively infinite) singularities which can be obtained by perturbation of
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the multiple point. For example, ‘(})S N’ and ‘(g)S N’ correspond to two saddle-nodes
at infinity which are locally topologically distinct.

Semi-elemental singularities: They can either be nodes, saddles or saddle-
nodes, finite or infinite. However semi-elemental nodes and saddles are respectively
topologically equivalent with elemental nodes and saddles. So we will use the same
notation as if they were elemental ones. The only new semi-elemental singularity
is the saddle-node which we denote by ‘sn’. As indicated above for infinite saddle-
nodes SN we will also keep the multiplicity. Moreover, as in [7] we also need the
notation ‘(})N S’ for some infinite saddle-nodes.

Nilpotent singularities: They can either be saddles, nodes, saddle-nodes,
elliptic-saddles, cusps, foci or centers. The first four of these could be at infinity.
The only finite nilpotent points for which we need to introduce notation are the
elliptic-saddles and cusps which we denote respectively by es and cp.

In the case of nilpotent infinite points, the relative positions of the sectors with
respect to the line at infinity can produce topologically different phase portraits.
This forces us to use a notation for these points similar to the notation which we
will use for the intricate points.

Intricate singularities: It is known that the neighborhood of any singular
point of a polynomial vector field (except for foci and centers) is formed by a finite
number of sectors which could only be of three types: parabolic, hyperbolic and
elliptic (see [18]). Then, a reasonable way to describe intricate and nilpotent points
at infinity is to use a sequence formed by the types of their sectors. In the book [7]
we use a geometrical notion of sector which is more subtle but which looses part of
its meaning in the topological setting. More precisely any two adjacent parabolic
geometrical sectors merge into one, and parabolic sectors adjacent to elliptic ones
can be omitted. To lighten the notation, we make the convention to eliminate the
parabolic sectors adjacent to the elliptic sectors.

Thus in quadratic systems, we have just four topological possibilities for finite
intricate singular points of multiplicity four (see [10]) which are the following ones:
a) phph; b) hh; c¢) hhhhhh; d) ee.

It is worth noting that the singularity hh is topologically equivalent with cp.

For intricate and nilpotent singular points at infinity, we insert a dash (hyphen)
between the sectors to split those which appear on one side or the other of the
equator of the sphere. In this way we will distinguish between @)P — HHP and
(g) PH — PH. When describing a single finite nilpotent or intricate singular point,
one can always apply an affine change of coordinates to the system, so it does not
really matter which sector starts the sequence, or the direction (clockwise or counter-
clockwise) we choose. If it is an infinite nilpotent or intricate singular point, then
we will always start with a sector bordering the infinity (to avoid using two dashes).

The lack of finite singular points after the removal of degeneracies will be encap-
sulated in the notation ¢ (i.e. small size ()). In similar cases when we need to point
out the lack of an infinite singular point, we will use the symbol (.

Finally there is also the possibility that we have an infinite number of finite or of
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infinite singular points. In the first case, this means that the quadratic polynomials
defining the differential system are not coprime. Their common factor may produce
a line or conic with real coefficients filled up with singular points. This is mainly
the class under study in this paper.

Line at infinity filled up with singularities: It is known that any such sys-
tem has in a sufficiently small neighborhood of infinity one of 6 topological distinct
phase portraits (see [27]). The way to determine these portraits is by studying the
reduced systems on the infinite local charts after removing the degeneracy of the sys-
tems within these charts. Following [7] we use the notation [0co; ()], [0o; N, [oo; N9,
[00; 5], [00; C1, [o0; (g)SN] or [oo; (S)ES] indicating the singularities obtained after
removing the line filled with singularities.

Degenerate systems: We will denote with the symbol & the case when the
polynomials defining the system have a common factor. The degeneracy can be
produced by a common factor of degree one which defines a straight line or a common
quadratic factor which defines a conic. Following [7] we will indicate each case by
the following symbols:

¢ O[] for a real straight line;
e OJo] for a real ellipse;

¢ 9[©)] for a complex ellipse (i.e. an irreducible conic over R which has only
complex points);

¢ O[)(] for a hyperbola;

U] for a parabola,

x] for two real straight lines intersecting at a finite point;

-] for two complex straight lines which intersect at a real finite point;
|I] for two real parallel lines;

||| for two complex parallel lines;

° @[
° @[
S]]
« o
« o
e Ol|2] for a double real straight line.

It is worth noticing that the degeneracy ©[()] implies the non-existence of real
singularities, so we have a chordal system whose phase portrait is equivalent to the
case when there are four complex finite singularities and one real infinite singularity.
Moreover, the degeneracy |- | implies the existence of one finite real singularity and
its local phase portrait is the same as that of a singularity Ah which turns out to be
topologically equivalent to a cusp. And finally, we point out that degeneracy S]]
produces one real singularity with configuration H — H at infinity.

Moreover, we also want to determine whether after removing the common factor
of the polynomials, singular points remain on the curve defined by this common
factor. If the reduced system has no finite singularity on this curve, we will use
the symbol ¢ to describe this situation. If some singular points remain we will use
the corresponding notation of their various kinds. In this situation, the geometrical
properties of the singularity that remains after the removal of the degeneracy may
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produce topologically different phenomena, even if they are topologically equivalent
singularities. So, we will need to keep the geometrical information associated to that
singularity. Some examples of the way we denote the complete notation are:

(© [|];p) denotes the presence of a real straight line filled up with singular
points such that the reduced system has no singularity on this line;

(6 ; f ) denotes the presence of the same straight line such that the reduced
system has a strong focus on this line;

(9 1IE nd) denotes the presence of the same straight line such that the reduced
system has a node n¢ on this line;

(6 [U];@) denotes the presence of a parabola filled up with singularities such
that no singular point of the reduced system is situated on this parabola.

Degenerate systems with a non-isolated infinite singular point, which
however is isolated on the line at infinity: The existence of a common factor
of the polynomials defining the differential system also affects the infinite singular
points. We point out that the projective completion of a real affine line filled up
with singular points has a point on the line at infinity which will then be also a
non-isolated singularity.

There is a detailed description of this notation in [7]. In case that after the
removal of the finite degeneracy, a singular point at infinity remains on the same
place, we must denote it with all its geometrical properties since they may influence
the local topological phase portrait. We give below some examples:

N, S, (©]]);0) means that the system has at infinity a node, a saddle, and one
pair of non-isolated singular point which is part of a real straight line filled up
with singularities (other that the line at infinity), and that the reduced linear
system has no infinite singular point in that position;

S, (6 [|]; N*) means that the system has a saddle at infinity, and one pair
of non-isolated singular point which is part of a real straight line filled up
with singularities (other that the line at infinity), and that the reduced linear
system has a star node in that position;

S, (9 (50, (Z)) means that the system has a saddle at infinity, and two pairs
of non-isolated singular points which are part of a hyperbola filled up with
singularities, and that the reduced constant system has no singularities in
those positions;

(9 [x]; N*, @) means that the system has two pairs of non-isolated singular
points at infinity which are part of two real intersecting straight lines filled up
with singularities, and that the reduced constant system has a star node in
one of those positions and no singularity in the other;

S, (@ [o]; 0, @) means that the system has a saddle at infinity, and two pairs of
non-isolated (complex) singular points which are the two points at infinity on
the complexification of a (real) ellipse, and the reduced constant system has
no singularities in those positions.
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e S, (6 [|],N§°) means that the system has a saddle at infinity, and one pair
of non-isolated singular point which is part of a real straight line filled up
with singularities (other that the line at infinity), and that the reduced linear
system has in that position a node such that none of the eigenvectors of the
node coincides with the line of singularities and all the orbits (except one)
arriving at the node are tangent to the line at infinity.

Degenerate systems with the line at infinity filled up with singular-
ities: According to [7] there are only two geometrical configurations of this class
which are also topologically distinct, and which produce just the two phase portraits
QS 207&7) and QS 20858) given in Figure 3. The notations of configurations of infinite
singularities are [0o; (&[|]; #3)] for picture QSQO?@ and [oo; (8][|]; 02)], for picture
Q5208§8)as explained in Figure 3.21 of [7].

On the link http://mat.uab.cat/~artes/articles/notation.pdf we offer a table
with the geometrical notations of singularities (from which the topological one can
be easily extracted) for an easy access during unlimited time in principle.

2.2 Codimension

In paper [8] the concept of codimension applied to polynomial differential systems
was developed covering different equivalence classes (topological or geometrical).
Using the new definition of codimension given in [8] one can assign a codimension
to singularities, to global configurations of singularities or to phase portraits in the
Poincaré disc.

In the paper [8] a topological codimension was given to each one of the 207
global topologically distinct configurations of singularities, except those with the
centers for the reasons explained there. The topological codimension of a phase
portrait is greater than or equal to the topological codimension of its configuration
of singularities. More precisely it is greater if the phase portrait has one (or more)
non-forced separatrix connection. In the case of systems in QSD there does not exist
any non-forced separatrix connection and therefore the topological codimension of a
phase portrait coincides always with the topological codimension of its configuration
of singularities.

In this current paper we indicate the topological codimension (modulo limit
cycles) of each phase portrait of a system in QSD.

2.3 Notations for phase portraits

In the paper [8] a new notation to identify every phase portrait of a quadratic
system was proposed.

Notation 1. We denote each phase portrait as QST((lb) where QS stands for
“quadratic differential system”, r is the number of the configuration of singularities
from [6], b’ is the topological codimension of the phase portrait and ’a’ is simply a
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cardinal to enumerate the different phase portraits which have the same configuration
and codimension.

This notation has already been widely used in paper [9] where every phase por-
trait having a nilpotent or intricate infinite singularity has already received its defini-
tive name. In the current paper we continue using the style described in Notation 1.

The final goal of this general project is to obtain all the phase portraits of
quadratic systems modulo limit cycles and recognize each one of them by an indi-
vidual name.

2.4 Invariant polynomials associated to the systems in the class

QSD

Consider real quadratic systems of the form

dx
E=m+mmw+mwsz@w,
dy (2)

E=%+mmw+@@wszw,

with homogeneous polynomials p; and ¢; (i = 0,1,2) of degree i in x,y:

po = ago, pi(x,y) = aor +any, p2(z,y)= agoz? + 2a117y + a02y2,
9 = boo, q1(2,y) = b0z + b1y, ga(x,y) = baox® + 2b112Y + boay®.

It is known that on the set of quadratic systems the group Aff(2,R) of affine trans-
formations of the plane acts (cf. [27]). For every subgroup G C Aff(2,R) we have
an induced action of G on QS. We can identify the set QS of systems (2) with a
subset of R'? via the map QS— R'2 which associates to each system (2) the 12—
tuple a = (aoo, aio, aop1, a20,a11, ap2, bog, bl(), b()l, 520, b11, bog) of its coefficients. We
associate to this group action polynomials in x,y and parameters which behave well
with respect to this action, the GL—comitants (GL-invariants), the T—comitants
(affine invariants) and the CT—comitants. For their definitions as well as their de-
tailed constructions we refer the reader to the paper [27] (see also [7]).

Following [7] (see also [16]) we apply the differential operator £ = x - Lo —y - Ly
acting on Rla, z,y| with

L1 =2a 9 +a 9 + L —a 9 —l— 2b 4 +b g 1 i
1= 008 10 Dazg | 2 01— By 00 57— Db1g 1057, — 8620 5001 Dbyt
8 0 1 8 0 0 1 0
Lo =2 2b b —b
2 Ctooaa01 + CLmaa0 + 6110a an + 00 55— o + 001 77— 8b02 5 108611

to construct several invariant polynomials which are needed here. More precisely
using the operator £ and the affine invariant pg = Res, (pg(d,w,y),qg(d,w,y))/y4
we construct the following polynomials

~ 1 i . i i—
wi(a, x,y) = 5£( Npo), i =1,..,4, where £ (o) = L(LT (0)).
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According to [7, Lemma 5.2] these invariant polynomials are responsible for the
total multiplicity of the finite singular points of an arbitrary quadratic system. In
particular by [7, Lemma 5.2, statement (4i7) | we have the following

Lemma 1. An arbitrary quadratic system belongs to the family QSD (i.e. it is
degenerate) if and only if u; =0 for every i =0,1,2,3,4.

We single out the following five polynomials, basic ingredients in constructing
invariant polynomials for systems (2):

Ci(a,z,y) = ypi(v,y) — xq;(z,y), (i =0,1,2)

_ opi  Oqi . (3)
Di(a,m,y) = 8]; + 87(;7 (7': 172>

As it was shown in [29] these polynomials of degree one in the coefficients of systems
(2) are G L—comitants of these systems. Let f, g € R[a, z,y] and

k
k o f oFg
(k) — E _1)h
(fag) h:()( 1) <h) 8:ck_h(9yh axhayk—h'

The polynomial (f,¢)*) € R[a,z,y] is called the transvectant of index k of (f,g)
(et [21],[23))).

Proposition 1 (see [31]). Any GL-comitant of systems (2) can be constructed from
the elements (3) by using the operations: +, —, X, and by applying the differential
operation (x, %)),

Remark 3. We point out that the elements (3) generate the whole set of GL-
comitants and hence also the set of affine comitants as well as the set of T'-comitants.

We construct the following G L—comitants of the second degree with respect to
the coefficients of the initial systems

T = (Co,Cl)El) , Ty = (CO,CQ)(I) , I3 = (COaDQ)(I) ,

T4 = (01701) 2) ) T5 = (01702)(1) ) T6 = (01702)(2) ) (4)
Ty = (C1, Do)V, Ty = (Cy, o), Ty = (Cy, Do)V

Using these G L-comitants as well as the polynomials (3) we construct the addi-
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tional invariant polynomials (see also [27])

M(&,x,y) :(CQ,CQ)(Q) = 2Hess(02(d,33,y));
n(a) :(M, M)(Q)/?)Sél = Discrim(Cg(d, x, y));
K(a,z,y) =[Ts + 4Ty + 4D3] /18;
H(a,z,y) =[Ts — 8Ty — 2D3] /18;
D(a,x,y) =[2CoTs — 16CoTy — 4CyD3 — C1 Ty + 6C1 Ty — 6D1Ts + 6C1 D1 Dy
—9D{Cy — (Cy, T5)M] /36
Ki(a,z,y) =[T5 + 2C1D3 — 3C2D1] /6;
Ks(a, z,y) =4(Ta, M — 2K)D 4 3Dy (Cy, M — 2K)V) — (M — 2K)(16T3 — 3T,/2 + 3D?);
Ks3(a,z,y) =C3(4T5 + 3T4) 4+ Co(3Co K — 2C1T%) + 2K, (3K, — C1Dy);
L(a,z,y) =4K + 8H — M;
Ly(a,z,y) =(Cs, D)?
Lo(a, z,y) =(Cy, D)W:
Ls(a,z,y) :C12 —4CyCy;
ﬁ(&, x,y) =L+ 8I~(,
r(a) =(M, K)? /4
k1 (@) =(M,Cy)®
05(a) =(Cy, N)? /16;
Os(a, x,y) =ChTg — 2CT5.

3 Proof of the Main Theorem

We start by reproducing here Diagram 12.2 from [7] as diagram in Figure 5. We
apply to this diagram some few modifications:

e Since for the systems in QSD with an infinite number of real finite singular-
ities there is a bijective map between the set of geometric configurations of
singularities and the set of topological configurations of singularities, we have
added the code of the topological configuration given in [6] to the correspond-
ing geometric configuration.

¢ In the case of configurations of singularities of systems in QSD with a complex
singular conic, we have added the code and configuration of the non-degenerate
topologically equivalent configurations.

e We have removed from the configurations of singularities the complex infinite
singularities which are irrelevant for systems in QSD.

e We have corrected an error in [6] which was already pointed out in [8]; more
precisely the geometric configuration which received the code (192) in [6] is
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topologically equivalent to configuration (137) as we indicate in diagram from
Figure 5.

Remark 4. Some of the configurations of singularities in Figure 5 correspond to
systems with a singular line and no finite singular point. However removing this
singular line, the resulting linear system has a finite singularity. For example this
occurs in (173), (174) and others. For shortness we will say that the finite singularity
1s located “under” the singular line.

Remark 5. Some of the configurations of singularities in Figure 5 correspond to
systems with a singular curve (line or conic) which intersects the line at infinity.
Remowving this singular curve the resulting linear or constant system has an infinite
singularity at one of the intersection points of the singular curve with the infinite
line. For example this occurs in (185), (193) and others. For shortness we will say
that the infinite singularity is located “under” the singular curve.

In what follows we examine case by case the configurations provided by the
diagram of Figure 5 and present the corresponding phase portrait (given in Figures
2 and 3) with one exception when we have two phase portraits generated by the
same configuration of singularities.

(171) This configuration has a finite focus and a singular line which does not pass
through it. The only possible phase portrait is QS 171%4). The codimension
value 4 assigned to this phase portrait comes directly from the topological

codimension of the configuration of singularities (171).

(172) We have a center and a singular line which does not pass through it. As a
result we get a single phase portrait QS1721 also known as Vulag (see [30]). We
do not assign a codimension to this phase portrait because we do not assign
codimensions to configurations with centers.

(173) We have a singular line and a focus *

Q5173
(174) We have a singular line and a center “under” it. The unique phase portrait
is Q517449

‘under” it. The unique phase portrait is

(175) This configuration has a real ellipse as a singular curve. Therefore the system
obtained after removing this singular curve is constant. The unique phase
portrait is QS175§5).

(12) This configuration has a complex ellipse as a singular curve. Therefore there is
no finite real singular points and this configuration is topologically equivalent
o (12). The unique phase portrait is QS 12&0). The topological codimension
of this portrait is 0 because it is structurally stable even though the geomet-
rical codimension of the original configuration of singularities is much higher.
This same configuration (12) will appear again but for a different geometric
configuration.
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M& flemn; ©:0) ()

R=0, ¢ (emo); ©[10) (172)

g0 L (ot 1) @ 11:0) (173)
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Figure 5. Diagram for the geometric configurations of singularities of systems in

QSD.
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FIGURE 5 (cont.) Diagram for the geometric configurations of singularities of sys-
tems in QSD.

(47) This configuration has two complex lines (intersecting at a finite point) as
a singular curve. The neighborhood of this singular point is formed by two
hyperbolic sectors and looks like an intricate singular point hh(4). Moreover
such a singular point is topologically equivalent to a nilpotent cusp and the
global configuration is topologically equivalent to (47). The unique phase

portrait is QS47§2). The topological codimension of this portrait is 2 because
this is the codimension of the cusp.

(176) This configuration has a finite generic node (with two different eigenvalues)
and a singular line which does not pass through it. Moreover the singular line
is not parallel to the invariant lines generated by the eigenvectors of the finite

node. The only possible phase portrait is Q.S 17654).

(177) We have a singular line and a generic node “under” it. Moreover the singular
line is not parallel to the invariant lines generated by the eigenvectors of this

node. The unique phase portrait is Q.S 17755).

(178) This configuration has a finite saddle and a singular line which does not
pass through it and it is not parallel to the invariant lines generated by the

eigenvectors of the saddle. The only possible phase portrait is QS 178&4).

(179) We have a singular line and a generic saddle “under” it. Moreover the singular
line is not parallel to the invariant lines generated by the eigenvectors of this

. e 5
saddle. The unique phase portrait is Q.S 1795 ),



DEGENERATE QUADRATIC SYSTEMS 47

(180) This configuration has no finite isolated singularities and a singular line.
The linear system after the removal of this line has an infinite semi-elemental

G) SN and a node N? ie. a node with coinciding eigenvalues and non-
diagonalizable Jacobian matrix. The infinite singular points are not “under”
the singular line. This leads to the unique phase portrait QS 18055).

(181) This configuration has a real hyperbola as a singular curve and an isolated
infinite singularity which is a star node. This is the unique configuration for
a system in QSD which produces two different phase portraits. It depends
on whether the infinite star node is located between the two infinite singular
points produced by the same component of the hyperbola or not. In the first

case we get the phase portrait Q.S 181%5), whereas in the second case we obtain

5
Qs181%.

(182) This configuration has two complex singular straight lines intersecting at
a real finite singularity. The constant flow that remains after removing the
singular curve has an infinite singularity which does not coincide with any of
the infinite singularities produced by the singular curve. The only possible
phase portrait is QS 182&6).

(183) This configuration has a finite one-direction node (n?) and a singular line
which does not pass through it. Moreover the singular line is not parallel to
the invariant line generated by the eigenvector of the finite node. The only

possible phase portrait is QS 18355).

(184) We have a singular line and a finite one-direction node “under” it. Moreover
the singular line is not parallel to the invariant line generated by the eigenvector
of the finite node. This leads to the unique phase portrait Q.S 184§6).

(185) This configuration has a finite saddle and a singular line which does not
pass through it. But the singular line is parallel to one of the invariant lines
generated by the eigenvectors of the saddle. The only possible phase portrait

is Q5185

(186) We have a singular line and a generic saddle “under” it. Moreover the singular
line coincides with one of the invariant lines generated by the eigenvectors of
this saddle. The unique phase portrait is Q.S 18656).

(187) This configuration has a finite generic node (with two different eigenvalues)
and a singular line which does not pass through it. Moreover the singular line
is parallel to the invariant line generated by the eigenvector corresponding to
eigenvalue of higher absolute value of the finite node. The only possible phase

o 5
portrait is QSlS?g ),

(188) We have a singular line and a generic node “under” it. Moreover the singular
line coincides with the invariant line generated by the eigenvector correspond-
ing to the eigenvalue of higher absolute value of the finite node. This leads to

the unique phase portrait QS 18856).
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(189) This configuration has a finite generic node (with two different eigenvalues)
and a singular line which does not pass through it. Moreover the singular line
is parallel to the invariant line generated by the eigenvector corresponding to
the eigenvalue of lower absolute value of the finite node. The only possible
phase portrait is Q5189§5).

(190) We have a singular line and a generic node “under” it. Moreover the singular
line coincides with the invariant line generated by the eigenvector correspond-
ing to the eigenvalue of lower absolute value of the finite node. This leads to

the unique phase portrait QS 19056).

(191) This configuration has a real parabola as a singular curve. Moreover the
system obtained after removing this singular curve is constant and it has an
infinite singularity not contained in the singular parabola. The unique phase
portrait is Q519119

(192)—(137) This configuration has two parallel complex singular straight lines.
Moreover the system obtained after removing this singular curve is constant
and it has an infinite singularity not contained in the singular curve. The
intersection between two parallel complex singular straight lines is a real sin-
gular point at infinity whose neighborhood behaves like an intricate singularity
with two hyperbolic sectors. Then the geometrical configuration of singulari-
ties is topologically equivalent to (137) and we get the unique phase portrait
QS 137§3). We point out that this configuration was not detected being topo-
logically equivalent to (137) in [6]. The error was detected in [8] where we
decided to leave the code (192) unassigned.

(193) This configuration has no finite isolated singularities and a singular line.
The linear system after the removal of this line has an infinite semi-elemental

singularity G) SN and a node N?. However the infinite saddle-node is “under”
the singular line which does not coincide with the invariant line of the linear

system. This leads to the unique phase portrait Q.S 193&6).

(194) This configuration has two real parallel singular straight lines. Moreover
the system obtained after removing this singular curve is constant and it has
an infinite singularity not contained in the singular curve. The unique phase
portrait is Q5194(17).

(195) This configuration has no finite isolated singularities and a singular line.
The linear system after the removal of this line has an infinite semi-elemental

singularity (}) SN and a node N?. However the infinite saddle-node is “under”
the singular line which coincides with the invariant line of the linear system.
This leads to the unique phase portrait Q.S 19557).

(196) This configuration has a double real singular straight line. Moreover the
system obtained after removing this singular line is constant and it has an in-
finite singularity not contained in the singular line. The unique phase portrait

is Q5196
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(197) This configuration has no finite isolated singularities and a singular line. The
linear system after the removal of this line has an infinite nilpotent elliptic

saddle (%) E — H. However the infinite nilpotent saddle is not “under” the

singular line. This leads to the unique phase portrait QS 197&6).

(198) This configuration has no finite isolated singularities and a singular line.
The linear system after the removal of this line has an infinite semi-elemental

singularity G) SN and a node N¢. However the infinite node is “under” the
singular line. It is important to notice that all orbits that arrive at this infinite
node are tangent to the infinite line'. So every orbit going out from the infinite
node must cross exactly once the singular line.

_ . . 6
This leads to the unique phase portrait QS 198§ ),

(199) This configuration has a real hyperbola as a singular curve and an infinite

« » s . (6)
star node “under” it. Then the only phase portrait is 2.5199;".

(200) This configuration has real non-parallel straight lines as a singular curve,
and an infinite star node “under” it. This leads to the unique phase portrait
Q520047

(201) This configuration has a finite one-direction node (n?) and a singular line
which does not pass through it. However the singular line is parallel to the
invariant line generated by the eigenvector of the finite node. The only possible
phase portrait is QSQOlgG).

(202) We have a singular line and a finite one-direction node “under” it. Moreover
the singular line coincides with the invariant line generated by the eigenvector
of the finite node. This leads to the unique phase portrait Q.S 202%7).

(203) This configuration has no finite isolated singularities and a singular line. The
linear system after the removal of this line has an infinite nilpotent elliptic

saddle (é) E — H. Moreover the infinite nilpotent elliptic saddle is “under” the

singular line. Then we get to the unique phase portrait Q5’203§7).

(204) This configuration has a real parabola as a singular curve. Moreover the
system obtained after removing this singular curve is constant and it has an
infinite singularity “under” the singular parabola. The unique phase portrait
is Q520447

(12) This configuration has two parallel complex singular straight lines. Moreover
the system obtained after removing this singular curve is constant and it has
an infinite singularity which is a star node “under” the singular curve. In
this case the coincidence of the real infinite star node of the constant system
with the real infinite singularity produced by the intersection of the complex
parallel lines, produces a point whose neighborhood behaves like a normal

star node. Thus this configuration is topologically equivalent to (12) and the

unique phase portrait is QS 12&0).

!The infinite node in configurations (180), (193) and (195) is also an N¢. But since it is not
under the singular line, this is not relevant.
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(205) This configuration has two real parallel singular straight lines. Moreover the
system obtained after removing this singular curve is constant and it has an
infinite singularity “under” the singular curve. The unique phase portrait is
Q52051

(206) This configuration has a double real singular straight line. Moreover the
system obtained after removing this singular line is constant and it has an
infinite singularity “under” the singular line. The only possible phase portrait
is Q5206

(207) This configuration has the line at infinity filled up with singularities, a real
singular straight line and a finite star node. The unique phase portrait is

7
Qs5207".

(208) This configuration has the line at infinity filled up with singularities and a
real singular straight line with a finite star node “under” it. This leads to the

unique phase portrait QS 208&8).

Since we examined all the branches of the diagram given in Figure 5 we conclude
that the Main Theorem is proved.

4 Conclusions

In this paper we have already classified all the phase portraits of quadratic
systems belonging to the family QSD, i.e. degenerate systems. Among them we
have found two systems with the infinite line filled up with singularities. We have also
“baptized” them with a definitive name according to our Notation 1. We think that
it is an opportunity to include here the rest of phase portraits of quadratic systems
that have an infinite number of singularity at infinity. This family of systems was
already investigated in [20,28], where 11 phase portraits for non-degenerate systems
in this class were detected. Here in Figure 6 these phase portraits are presented
with their definitive names.
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Figure 6. Phase portraits of non-degenerate quadratic systems with infinite singular

line.
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