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Abstract. This is a survey on characteristic properties of centrally symmetric convex
sets in the n-dimensional Euclidean space. These properties are formulated in terms
of orthogonal projections, plane sections, shadow-boundaries, affine diameters, and
tiling polytopes.
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1 Introduction

Among various geometric concepts of symmetry, central symmetry of sets is one
of the most simple to deal with. Convex geometry provides an extensive study of
centrally symmetric sets, including their characteristic properties. This fact became
visible on the turn of 20th century (see, e. g., Bonnesen and Fenchel [13], § 14). Since
then the study of such sets became an established topic of proper interest.

Besides the intuitive appeal and simplicity of description, centrally symmetric
sets mark their existence in various brunches of mathematics due to the fact that
many analytical or geometric problems on arbitrary sets can be essentially simplified
for the case of central symmetry.

For instance, an essential part of geometric number theory deals with lat-
tice packing of centrally symmetric convex bodies. The classical theorem of
Minkowski [56, Chapter 3] asserts that if a convex body K in the n-dimensional
Euclidean space is symmetric about the origin o and has volume V (K) ≥ 2n, then
it contains at least one nonzero lattice point.

Another example give the results on measures of symmetry of convex bodies,
where centrally symmetric convex bodies form the core of this discipline (see, e. g.,
Grünbaum [32] and Toth [81]).

Centrally symmetric polytopes naturally appear in the study of parallelohedra,
that is, convex polytopes which admit tiling of the space by translates (see, e. g.,
Fedorov [28] and Gruber [31]), and also in the theory of zonotopes and zonoids (see,
e. g., McMullen [53], Schneider and Weil [70]).

Geometric theory of vector normed spaces gives one more instance, where cen-
trally symmetric convex bodies are often interpreted as unit balls. Consequently,
properties of these spaces are closely related to the properties of the bodies.
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There are two survey articles, due to Grünbaum [32] and Heil and Martini [36],
which contain a large selection of results on characteristic properties of centrally
symmetric convex sets, published prior to 1993. The present paper aims to com-
plement these surveys with additional and more recent references. While our text
is divided into well-contoured groups of results, additional sporadic characteristic
properties of centrally symmetry convex sets can be found in the above surveys. We
also omit the topic on measures of symmetry of convex sets, which, in our opinion,
deserves a separate survey.

For the uniformity of presentation, we assume throughout the text that all convex
sets in question are closed and n-dimensional. Such a restriction does not affect the
generality of the argument, since we always can consider the sets in their affine
spans, where they become full-dimensional.

We conclude this section with necessary definitions and terminology (see, e. g.,
[78] for a detailed account).

In what follows, Rn stands for the n-dimensional Euclidean space. A plane
L ⊂ Rn of dimension m, 0 ≤ m ≤ n, is a translate of an m-dimensional subspace
S ⊂ Rn: L = c + S for a suitable point c ∈ Rn. A hyperplane in Rn is a plane of
dimension n− 1. Planes L1 and L2 are called parallel provided they are translates
of each other. A mapping f : Rn → Rm is called an affine transformation provided
f(x) = u + g(x), where u ∈ Rm and g : Rn → Rm is a linear transformation. The
origin (zero vector) of Rn is denoted o.

A set X ⊂ Rn is called centrally symmetric provided there is a point v ∈ Rn such
that X = 2v−X (in this case v is the center of X). Sets X1 and X2 in Rn are called
homothetic if X1 = z + λX2 for a suitable point z ∈ Rn and a nonzero scalar λ.
Furthermore, X1 and X2 are directly (inversely) homothetic if λ > 0 (respectively,
λ < 0). In particular, X1 and X2 are translates of each other if λ = 1, and are
symmetric to each other if λ = −1. A line l ⊂ Rn is called an axis of symmetry of
a nonempty set X ⊂ Rn provided for every hyperplane H orthogonal to l the set
X ∩H is symmetric about the point l ∩H.

For a nonempty set X ⊂ Rn and a line l ⊂ Rn, the (both-way infinite) generated
cylinder Zl(X) is the union of all lines which are parallel to l and meet X. Given a
point p ∈ Rn, the generated cone Cp(X) is defined as the union of all closed halflines
with endpoint p which meet X, and the generated double-cone Dp(X) is defined as
the union of all lines through p which meet X

Finally, bdX, clX, and intX, denote, respectively, the boundary, closure, and
interior of a set X ⊂ Rn. By a convex solid in Rn we will mean an n-dimensional
closed convex set in Rn, possibly unbounded. A convex body is a bounded convex
solid. An intersection of finitely many closed halfspaces of Rn is called a polyhedron,
and a polytope is a bounded polyhedron.

2 Algebra of centrally symmetric sets

This section describes some basic facts on algebraic and set-theoretic operations
that involve centrally symmetric sets.



122 VALERIU SOLTAN

2.1. For a set X ⊂ Rn and a point v ∈ Rn, the set v +X −X is symmetric about
v.

2.2. For a set X ⊂ Rn and a point v ∈ Rn, the intersection X ∩ (2v − X) is
symmetric about v.

2.3. If a set X ⊂ Rn is symmetric about a point v ∈ Rn and f : Rn → Rm is an
affine transformation, then the image f(X) is symmetric about f(v).

2.4. If a set X ⊂ Rn is symmetric about a point v ∈ Rn, and l is a 1-dimensional
subspace of Rn, then the generated cylinder Zl(X) is symmetric about v and the
line v + l is its axis of symmetry.

2.5. If a set X ⊂ Rn is symmetric about a point v ∈ Rn, then both sets clX and
intX are symmetric about v.

2.6. If {Xλ} is a family of sets in Rn, all symmetric about a point v ∈ Rn, then
their intersection ∩Xλ and their union ∪Xλ are symmetric about v.

2.7. If sets X1 and X2 in Rn are symmetric about points v1 and v2, respectively,
then their vector sum X1 +X2 is symmetric about v1 + v2.

2.8. Let K ⊂ Rn be a convex set and X ⊂ Rn be a nonempty bounded set symmetric
about a point v ∈ Rn. If the vector sum K +X is symmetric about a point w ∈ Rn,
then clK is symmetric about w − v.

The assertion 2.8 follows from the equality K +X = (2(w − v) −K) +X, and
the result of R̊adström [65]: If K1 and K2 are convex sets and X is a bounded set
in Rn such that K1 +X = K2 +X, then clK1 = clK2.

3 Orthogonal Projections

The assertion 2.3 implies that parallel projections of a centrally symmetric convex
body in Rn on all proper planes of Rn again are centrally symmetric. A natural
question here is whether a convex bodyK ⊂ Rn itself is centrally symmetric provided
its parallel (or even only orthogonal) projections on all proper planes of Rn are
centrally symmetric. Trivially, this question has a negative answer for n = 2, since
the orthogonal projection of any convex body K ⊂ R2 on a line l ⊂ R2 is a closed
segment. Nevertheless, the above question has an affirmative answer for the case
n ≥ 3, as described below.

In 1918, Blaschke and Hessenberg [10] showed that a convex body K ⊂ R3 is
centrally symmetric if and only if the orthogonal projections of K on all planes of
R3 are centrally symmetric (see also Kubota [43] in terms of sections of generated
cylinders). This assertion was generalized by Bonnesen and Fenchel [13, p. 132] to
the case of n ≥ 3.

3.1 ([13]). A convex body K ⊂ Rn, n ≥ 3, is centrally symmetric if and only if there
is an integer m, 2 ≤ m ≤ n − 1, such that the orthogonal projections of K on all
m-dimensional planes of Rn are centrally symmetric.
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The original assertion of Blaschke and Hessenberg [10] was complemented by
Ôishi [63], who proved the following result: If K ⊂ R3 is a strictly convex regular
body and L is a plane in R3, then K is centrally symmetric if and only if, for any line
l ⊂ L, the orthogonal projection of K on any plane perpendicular to l is centrally
symmetric.

The next refinements of 3.1 are due to Montejano [58] and Boltyanski and
Jerónimo Castro [12].

3.2 ([58]). Let K ⊂ Rn, n ≥ 3, be a strictly convex body and m be an integer,
1 ≤ m ≤ n − 2, and S be an m-dimensional subspace of Rn. Then K is centrally
symmetric if and only if the orthogonal projections of K on all (m+1)-dimensional
subspaces of Rn that contain S are centrally symmetric.

3.3 ([58]). Let K ⊂ Rn, n ≥ 3, be a strictly convex body and m be an integer,
2n/3 ≤ m ≤ n − 1. Denote by H a family of m-dimensional subspaces in Rn such
that every 1-dimensional subspace of Rn is contained in a suitable subspace S ∈ H.
Then K is centrally symmetric if and only if the orthogonal projections of K on all
subspaces S ∈ H is centrally symmetric.

3.4 ([12]). Let K ⊂ Rn, n ≥ 3, be a convex body, m be an integer, 1 ≤ m ≤
n − 2, and L be a fixed m-dimensional subspace of Rn. Assume that there exists
a hyperplane H ⊂ Rn such that H is orthogonal to a line contained in L and each
support hyperplane of K parallel to H has only one common point with K. Then
K is centrally symmetric if and only if for every (m + 1)-dimensional subspace S
containing L, the orthogonal projection of K on S is centrally symmetric.

We observe that the assertions 3.2–3.4 do not hold if the body K is not strictly
convex. Indeed, if K is the triangular prism in R3 given by

K = {(x, y, z) : x ≥ 0, y ≥ 0, x+ y ≤ 1, 0 ≤ z ≤ 1},

and if l is the coordinate z-axis of R3, then orthogonal projections of K on all planes
through l are rectangles, while K has no center of symmetry.

Another approach to the proof of 3.1 is due to Rogers [66]. We will say that a
collection F of planes in Rn is an H-family provided any pair of convex bodies K1

and K2 in Rn are directly homothetic if and only if orthogonal projections of these
bodies on all planes from F are directly homothetic. Similarly, a collection F of
planes in Rn is called an S-family provided any convex body K in Rn is centrally
symmetric if and only if the orthogonal projections of K on all planes from F are
centrally symmetric.

It is easy to see that any H-family of planes in Rn also is an S-family. Indeed,
if F is an H-family and all orthogonal projections of a convex body K ⊂ Rn on the
planes from F are centrally symmetric, then the orthogonal projections of K and
−K are translates of each other, and thus K and −K are translates of each other,
implying that K is centrally symmetric.
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Rogers [66] proved that the collection of all 2-dimensional planes in Rn is an
H-family and deduced from here that this collection also is an S-family (thus de-
ducing 3.1). The latter approach allows us to describe two more S-families in Rn,
previously known as H-families, due to Soltan [74] and Székely [80] (and later to
Golubyatnikov [30] for the case of translates).

3.5 ([74]). Given a convex body K ⊂ Rn, n ≥ 3, there exists a line l ⊂ Rn (whose
position depends on K) with the following property: K is centrally symmetric if and
only if the orthogonal projections of K on all 2-dimensional planes of Rn containing
l are centrally symmetric.

3.6 ([30, 80]). Let F be a collection of (n− 1)-dimensional subspaces in Rn, n ≥ 3,
and let N(F) be the family of unit normals to the subspaces from F . Then F is an
H-family (and thus is an S-family) provided the following conditions are satisfied:

(a) N(F) contains three non-collinear vectors,

(b) the closure of N(F) meets every big (n − 2)-dimensional sphere of the unit
sphere in Rn.

4 Plane sections and ellipsoids

In 1889, Brunn [14, Chapter IV] showed that a regular convex body K ⊂ R3

is a solid ellipsoid provided all plane sections of K are centrally symmetric. This
assertion was generalized and sharpened in various ways, as shown below.

Using arguments of Blaschke [9, § 44], Olovjanishnikov [64] established a local
characterization of convex quadrics: Let S ⊂ R3 be a three times differentiable
bounded convex surface of positive curvature, and let H be a tangent plane of S.
If all plane sections of S, which are sufficiently close to H, are centrally symmetric,
then a set of all points from S sufficiently close to H is contained in a convex quadric.

Aitchison [2] considered the following condition (A) on a convex body K ⊂ Rn:

(A) Given a unit vector u ∈ Rn and the hyperplane H(u) ⊂ Rn which supports K
and has outer normal u, there is a scalar ε(u) > 0 such that every nonempty
section of K by a hyperplane H ⊂ Rn which is parallel to H(u) and lies within
a distance ε(u) from H(u) is centrally symmetric.

Aitchison [2] showed that the boundary of a strictly convex body K ⊂ R3 sat-
isfying the condition (A) consists of finitely many pieces of ellipsoids. Furthermore,
if the scalar ε(u) in condition (A) is constant, then K is a solid ellipsoid (see [1]).

Based on Aitchison’s argument, Burton [17,18] proved the following deep result.
We recall that a convex polytope Q ⊂ Rn is a zonotope if all it faces are centrally
symmetric; equivalently, Q is a vector sum of segments. Also, we observe that the
zonotope in 4.1 can be of any dimension m, where 0 ≤ m ≤ n.

4.1 ([17,18]). A convex body K ⊂ Rn, n ≥ 3, satisfies the condition (A) if and only
if K is the vector sum of a zonotope and a solid ellipsoid. In particular, if K is
strictly convex, then K is a solid ellipsoid.
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The following proposition gives an analog of 4.1 to the case of line-free convex
solids. We recall that a convex hypersurface S ⊂ Rn is called a convex quadric
provided there is a quadric hypersurface T ⊂ Rn and a component U of Rn \T such
that U is a convex set and S = bdU (see [76]).

4.2 ([77]). Let K ⊂ Rn, n ≥ 3, be a line-free convex solid and δ > 0 be a scalar such
that all proper 2-dimensional sections of K of diameter less than δ are centrally
symmetric. Then bdK is a convex quadric.

Another characteristic property of solid ellipsoids is given by Montejano and
Morales-Amaya [60].

4.3 ([60]). A centrally symmetric convex body K ⊂ Rn, n ≥ 3, is a solid ellipsoid if
all 2-dimensional planes sufficiently close to a given diametral chord of K meet K
along centrally symmetric sets.

Montejano and Morales-Amaya [60] also conjectured that a convex bodyK ⊂ Rn,
n ≥ 3, symmetric about a point p, is a solid ellipsoid provided there is a point
q ∈ Rn \{p} such that all 2-dimensional planes through q sufficiently close to p meet
K along centrally symmetric sets.

Olovjanishnikov [64] proved one more extension of Brunn’s result from [14].

4.4 ([64]). A convex body K ⊂ Rn, n ≥ 3, is a solid ellipsoid provided all hyperplane
sections of K that divide the volume of K in a given ratio λ ̸= 1 are centrally
symmetric.

Another development of Brunn’s ideas was initiated by Rogers [66]. Follow-
ing [66], we say that a point p ∈ Rn is a pseudocenter of a convex body K ⊂ Rn

provided all sections of K by 2-dimensional planes through p are centrally symmet-
ric, not necessarily about p. Furthermore, a pseudocenter p of K is called a false
center if K is not symmetric about p. Rogers [66] (see also Burton [16]) proved that
a convex body K ⊂ Rn with a pseudocenter p ∈ intK has a true center of symmetry
and conjectured that K must be a solid ellipsoid if p is a false center of K. This
conjecture was confirmed by Aitchison, Petty, and Rogers [3].

Höbinger [38] showed that Roger’s conjecture remains true if the body K is reg-
ular and a false center p lies anywhere in Rn; he also asked whether the assumption
on the regularity of K can be removed. This question was affirmatively answered
by Larman [44] (see also Burton and Mani [19] for another proof). Summing up,
one can formulate the following assertion.

4.5 ([3, 44]). Let K ⊂ Rn be a convex body and p be a point in Rn, n ≥ 3. If all
sections of K by 2-dimensional planes through p are centrally symmetric, then K
is centrally symmetric. Furthermore, if p is not a center of K, then K is a solid
ellipsoid.

The following assertions of Montejano [59] and Jerónomi-Castro, Montejano, and
Morales-Amaya [39] characterize centrally symmetric strictly convex bodies in R3 in
terms of plane sections:
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(a) a strictly convex body K ⊂ R3 is centrally symmetric provided for every
2-dimensional subspace S ⊂ R3 one can choose continuously a centrally symmetric
plane section of K ([59]),

(b) a strictly convex body K ⊂ R3 is centrally symmetric provided for every
2-dimensional subspace S ⊂ R3 one can choose continuously a pair of plane sections
of K which are parallel to S and inversely homothetic ([39]).

5 Generated cylinders and shadow-boundaries

We recall that the cylinder Zl(K) generated by a convex body K ⊂ Rn in the
direction of a line l ⊂ Rn is the union of all lines which are parallel to l and meet
K. The set Sl(K) = bdK ∩ bdZl(K) is called the shadow-boundary of K in the
direction l. Based on results from Section 2, we easily obtain the following result.

5.1. For convex body K ⊂ Rn, the assertions below are equivalent:

(a) K is centrally symmetric,

(b) all generated cylinders Zl(K) are centrally symmetric,

(c) all shadow-boundaries Sl(K) are centrally symmetric.

Every shadow-boundary Sl(K) of a convex bodyK ⊂ Rn divides the boundary of
K into two parts, namely, the components of bdK \ Sl(K). The following assertion
is due to Schneider [69]; afterwards it was generalized by Averkov, Makai, and
Martini [7] for the case of the n-dimensional Minkowski space.

5.2 ([69]). A convex body K ⊂ Rn, n ≥ 2, is centrally symmetric if and only if every
its shadow-boundary Sl(K) divides bdK into two parts of equal surface area.

An analog of 5.2 was obtained by Morales-Amaya, Jerónimo-Castro, and Ver-
dusco Hernández [61].

5.3 ([61]). Let K ⊂ Rn, n ≥ 3, be a strictly convex body, and let L ⊂ Rn be a
hypersurface, which is the image of the unit sphere such that K is contained in
the interior of L. Suppose that for every point x ∈ L there exists another point
y ∈ L such that the generated double-cones of K with apices at x and y, differ by a
translation. Then bdK and L are centrally symmetric and concentric.

6 Affine diameters and central symmetry

We recall that a chord [a, b] of a convex body K ⊂ Rn is an affine diameter of
K provided there are two parallel, distinct hyperplanes Ha and Hb both supporting
K such that a ∈ Ha and b ∈ Hb. It is easy to see that any point x ∈ K belongs to
an affine diameter of K, and for any direction l in Rn there is an affine diameter of
K parallel to l (see, e. g., [73] for these and other properties of affine diameters).

In 1954, Hammer [34] proved the following assertion (see also Busemann [20,
pp. 89–90] and Dharmadhikari and Jogdeo [24] for n = 2).
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6.1 ([34]). A convex body K ⊂ Rn, n ≥ 2, is symmetric about a given point v ∈ intK
if and only if every chord of K through v is an affine diameter of K.

The next result is due to Falkoner [27] for n = 2 and to Khassa [42] for all n ≥ 3.

6.2 ([27, 42]). A convex body K ⊂ Rn, n ≥ 2, is centrally symmetric provided
for every line l and for every pair of parallel hyperplanes H1 and H2 in Rn both
supporting K and parallel to l, there is an affine diameter of K in the direction l
lying mid-way between H1 and H2.

The following assertion collects some known criteria of central symmetry of con-
vex sets in the plane.

6.3. A convex body K ⊂ R2 is centrally symmetric if and only if any of the following
conditions holds:

(a) Every chord of K dividing the boundary of K into two arcs of equal length is
an affine diameter K (Zindler [84] for the case when K is strictly convex and
has continuous curvature, Hammer and Smith [35] for any plane convex body).

(b) Every chord of K that divides the area of K into two parts of equal areas is
an affine diameter of K (Hammer and Smith [35] and Kharazishvili [41]).

(c) Every midcurve of K bisects the area of the body (Falkoner [27]).

(d) There is a unique point v ∈ intK which belongs to three chords each halving
the area of K (Menon [55] and Zarankiewicz [83]).

(e) If, additionally, K is strictly convex, then K is centrally symmetric if and
only if every affine diameter divides the area of K in a constant ratio (Naka-
jima [62]).

Hammer and Smith [35] announced that part (a) in 6.3 holds for the case of
Minkowski norm in the plane, and this fact was proved by Averkov [6].

7 Central sections and symmetry

Following Grünbaum [32], a vast amount of literature is devoted to measures of
symmetry on convex bodies, where centrally symmetric bodies appear in natural
way. We provide below some known geometric characteristics for a given point
p ∈ intK to be the center of symmetry of the convex body K ⊂ Rn.

7.1. A convex body K ⊂ Rn, n ≥ 3, is symmetric about p if and only if every
hyperplane through p divides the boundary of K into two parts of equal surface area
(Funk [29] and Blaschke [8] for n = 3, Schneider [69] for n ≥ 3).

7.2. A convex body K ⊂ R3 is symmetric about p if and only if every plane through
p halves the volume of K (Blaschke [9, p. 250]).
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7.3. A convex body K ⊂ R3 is symmetric about p if and only if p is the gravity
center of every plane section of K through p (Blaschke [8]).

7.4. Let K ⊂ Rn, n ≥ 2, be a convex body and p1 and p2 be distinct points in
Rn. Then K is symmetric about the midpoint p of the segment [p1, p2] if and only
if every pair of parallel hyperplanes through p1 and p2, respectively, meet K in sec-
tions of equal (n − 1)-dimensional volume (Rogers [67] for n = 2 and Larman and
Tamvakis [45] for all n ≥ 2).

7.5. Let K ⊂ Rn, n ≥ 2, be a convex body, with p ∈ intK, and let m, 1 ≤ m ≤ n−1,
be an integer. Then K is centered about p if and only if the m-dimensional volume
function x → Vm(K ∩ (x + Lm)), x ∈ Rn, attains its maximum at x = p for every
choice of the m-dimensional subspace Lm ⊂ Rn (Makai, Martini, and Ödor [49]).

See also Makai and Martini [48] for an assertion of a similar to 7.5 spirit.
Given a convex body K ⊂ Rn, with o ∈ intK, the intersection body IK of K is

defined by the radial function ρIK(e) = Voln−1(K ∩ e⊥), e ∈ Sn−1:

IK = {te : 0 ≤ t ≤ ρIK(e), e ∈ Sn−1},

where Voln−1 stands for the (n−1)-dimensional volume and e⊥ denotes the (n−1)-
dimensional subspace of Rn orthogonal to e (see Lutwak [46]).

Similarly (see Martini [50]), the cross-section body CK of K is defined by the
radial function:

ρCK(e) = max{Voln−1(K ∩ (e⊥ + λe)) : λ ∈ R}, e ∈ Sn−1.

7.6. Let K ⊂ Rn, n ≥ 2, be a convex body, with o ∈ intK. If there is a constant
δ > 0 such that IK = δ CK, then K is centered about o (Makai and Martini [47]).

We recall that the Steiner symmetrization Su(K) of a convex body K ⊂ Rn in
the direction of a nonzero vector u ∈ Rn is defined to be the convex body symmetric
with respect to the (n − 1)-dimensional subspace u⊥ and whose intersection with
any line l parallel to u is a segment of the same length as the segment K ∩ l. It
is well-known that all Steiner symmetrizations of a convex body K ⊂ Rn also are
convex bodies (see, e. g., Bonnesen and Fenchel [13], § 9).

7.7. Let K ⊂ Rn be a convex body and U ⊂ Rn be an open non-empty set such
that for each u ∈ U , the Steiner symmetrization Su(K) of K is centrally symmetric.
Then K itself is centrally symmetric (Saroglou [68]).

Following a problem of Makai, Martini, and Ödor [49] (formulated by them for
the case of convex bodies), Stephen [79] proved the following assertion, where rbd
stands for the relative boundary of a low-dimensional convex set.

7.8. Let Q ⊂ Rn be a polytope, with o ∈ intQ, such that

Voln−2(rbd (Q ∩ e⊥)) = maxVoln−2(rbd (Q ∩ (λe+ e⊥)))

for all e ∈ Sn−1 and λ ∈ R. Then Q is centered about o.
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8 Antipodality and symmetric intersections of translates

Kharazishvili [40] proved that a convex body K ⊂ Rn is a parallelotope if and
only if there is a real number λ ∈ (0, 1) such that all intersections K ∩ (x + λK),
x ∈ Rn, are centrally symmetric. This assertion was generalized in [72,75], as follows.

In a standard way, a subset F of a convex body K ⊂ Rn is called an exposed
face of K provided there is a hyperplane H supporting K such that F = K ∩H. If
an exposed face F of K consists of a single point (respectively, of a line segment),
then it is called an exposed point (respectively, an exposed line segment).

For any hyperplane H supporting K, denote by H ′ the hyperplane parallel to
H and supporting K from the opposite side. In this case, the exposed face F ′ =
K ∩H ′ of K is called associate to the exposed face F = M ∩H. He next assertion
immediately follows from arguments of the papers [72,75].

8.1. A convex body K ⊂ Rn is centrally symmetric if and only if the following two
conditions are satisfied:

(a) every exposed point a of K has an associate exposed point a′ such that (−K)∩
(a′ +W ) is a translate of K ∩ (a+W ) for a suitable neighborhood W of o,

(b) every exposed line segment [a, b] of K has an associate exposed line segment
[a′, b′] which is a translate of [a, b] (a− b and a′ − b′ have the same direction)
and such that, for a suitable neighborhood W of o, the sets K ∩ (a′ +W ) and
K ∩ (b′ +W ) are symmetric to K ∩ (b+W ) and K ∩ (a+W ), respectively.

The assertion 8.1 provides the main tool for the proof of the following result.

8.2 ([72, 75]). For a pair of line-free convex solids K and K ′ in Rn, the following
three conditions are equivalent.

(a) All intersections K ∩ (x+K ′), x ∈ Rn, are centrally symmetric.

(b) All n-dimensional intersections K∩(x+K ′), x ∈ Rn, are centrally symmetric.

(c) K and K ′ are represented as direct vector sums K = P ⊕Q and K ′ = P ′ ⊕Q′

such that conditions (i) and (ii) below are satisfied:

(i) P is a line-free closed convex set of some dimension m, 0 ≤ m ≤ n, and
P ′ = z − P for a suitable point z ∈ Rn,

(ii) Q and Q′ are compatible generalized parallelotopes, both of dimension
n−m.

Here a generalized parallelotope is a direct vector sum of finitely many line seg-
ments or closed halflines. Two generalized parallelotopes Q and Q′ of the same
dimension m are called isothetic provided they can be represented as direct vector
sums

Q = Q1 + · · ·+Qm, Q′ = Q′
1 + · · ·+Q′

m,
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where Qi and Q′
i are parallel one-dimensional convex sets, i. e., each of Qi, Q

′
i is

either a line segment or a closed halfline, i = 1, . . . ,m. Finally, isothetic generalized
parallelotopes Q and Q′ are called compatible, if, for each i = 1, . . . ,m, either at
least one of Qi, Q

′
i is a segment, or both Qi, Q

′
i are closed halflines with opposite

directions.
The next assertion is proved by Minkowski [57, p. 118] for n = 3 and generalized

by Bonnesen and Fenchel [13, p. 133] for all n ≥ 3.

8.3 ([13, 57]). If the boundary of an n-polytope Q ⊂ Rn, n ≥ 3, consists of pairwise
parallel (n− 1)-dimensional faces of equal areas, then Q is centrally symmetric.

Given an n-polytope Q ⊂ Rn and a nonzero vector e ∈ Rn, we denote by He and
H ′

e the parallel hyperplanes both supporting Q and having outward normals e and
−e, respectively. Furthermore, let Fe = He ∩ Q and F ′

e = H ′
e ∩ Q. The following

result is proved by Bolker [11], who also posed a list of related open problems.

8.4 ([11]). A polytope Q ⊂ Rn, n ≥ 3, is centrally symmetric if and only if any of
the following conditions (a)–(c) holds.

(a) For all e ∈ Rn, the vector sum Fe + F ′
e is centrally symmetric.

(b) If dimF ′
e ≤ dimFe = 2, then Fe + F ′

e is centrally symmetric.

(c) If dimF ′
e ≤ dimFe = 1, then Fe and F ′

e are line segments of the same length.

9 Tiling and symmetric polytopes

We recall that an n-polytope Q ⊂ Rn is called a parallelohedron provided the
whole space Rn can be tiled by translates of Q. Their study was originated by
Fedorov [28, Section IV], who described parallelohedra in dimensions two and three.

Figure 1. Parallelogons in R2.

In the plane, there are two types of such parallelogons: parallelograms and cen-
trally symmetric hexagons (see Figure 1). In the 3-space, there are five types of such
parallelohedra: parallelepipeds, hexagonal prisms, rhombic dodecahedrons, elon-
gated dodecahedrons, and truncated octahedrons (see Figure 2).

Fedorov assumed without proof that every parallelohedron in R3 is centrally
symmetric. This fact was established by Minkowski [57]. Delaunay [23] and Alexan-
drov [5] observed that Minkowski’s argument can be routinely extended to the case
of higher dimensions and formulated the following necessary conditions for an n-
polytope Q ⊂ Rn to be a parallelohedron:
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Figure 2. Parallelohedra in R3.

(P1) Q is centrally symmetric,

(P2) every (n− 1)-dimensional face of Q is centrally symmetric,

(P3) every parallel projection of Q on a 2-dimensional plane along an (n − 2)-
dimensional face of Q is either a parallelogram or a centrally symmetric
hexagon.

Based on these observations, Venkov [82, Theorem 5] (later also McMullen [54] and
Dolbilin [25]) proved the following assertion.

9.1 ([82]). An n-polytope Q ⊂ Rn, n ≥ 3, is a parallelohedron if and only if it
satisfies the above conditions (P1)–(P3).

In fact, condition (P1) can be omitted in 9.1, because (P2) implies (P1) for the
case of any n-polytope in Rn. This result was proved by Alexandrov [4] for the case
n = 3 (see Burckhardt [15] for another proof, also [22]). A more general statement
was obtained by Shephard [71] (see also McMullen [52] for another proof).

9.2 ([71]). If every j-face of an n-polytope Q ⊂ Rn, n ≥ 3, is centrally symmetric,
where j is a given integer satisfying 2 ≤ j ≤ n − 2, then the k-faces of Q are also
centrally symmetric for all k such that j ≤ k ≤ n; in particular, Q is itself centrally
symmetric.

McMullen [51] further refined 9.2 (see also Dolbilin and Kozachok [26]).

9.3 ([51]). Let Q ⊂ Rn be an n-polytope, n ≥ 4, such that for some integer j
satisfying 2 ≤ j ≤ n− 2, all j-faces of Q are centrally symmetric. Then all faces of
Q of each dimension are centrally symmetric.

The inequality j ≤ n− 2 in 9.2 and 9.3 cannot be replaced the weaker condition
j ≤ n−1 (see [51]). Indeed, a routine verification shows that all (n−1)-dimensional
faces of the n-polytope

Q = {(x1, . . . , xn) ∈ Rn : |xi| ≤ 2, i = 1, . . . , n,
n∑

i=1
|xi| ≤ n}
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are centrally symmetric. On the other hand, the (n − 2)-face F1 ∩ F2 of Q is not
centrally symmetric, where

F1 = {(x1, . . . , xn) ∈ Q : xn = 2}, F2 = {(x1, . . . , xn) ∈ Q :
n∑

i=1
xi = n}.

Another example of a similar spirit is given in [26]: if Q4 is the regular 4-polytope
with 24 three-dimensional faces, then all these faces are octahedra, while its 2-
dimensional faces are triangles.

10 Various results

Chakerian and Klamkin [21] established a necessary and sufficient condition un-
der which a compact set (not necessarily convex) is centrally symmetric.

10.1 ([21]). A compact set X ⊂ Rn is centrally symmetric if and only if for every
three-point set F = {a, b, c} contained in X there exists a point v ∈ Rn, depending
on F , such that the set F ′ = 2v − F also is contained in X.

Boltyanski and Jerónimo Castro [12] proved a dual assertion of similar spirit.

10.2 ([12]). A compact convex set K ⊂ Rn is centrally symmetric if and only if
for every n-dimensional simplex T ⊂ Rn that contains K there exists a point v,
depending on T , such that the simplex T ′ = 2v − T also contains K.

Two more results of Minkowski [57, p. 119] and Hadwiger [33] (for n = 3) and
Hertel [37] (for n = 4) are related to partitions of symmetric polytopes.

10.3 ([57]). If a convex body K ⊂ Rn, n ≥ 2, can be expressed as the union of
finitely many pairwise non-overlapping centrally symmetric polytopes, then K is a
centrally symmetric polytope itself.

10.4 ([33,37]). An n-polytope in Rn, n = 3, 4, is equivalent to a cube, by dissection
and translation, if and only if it is centrally symmetric and has centrally symmetric
(n− 1)-dimensional faces.
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