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A REPUBLICII MOLDOVA. MATEMATICA
Numbers 3(106), 2024, Pages 103–119
ISSN 1024–7696, E-ISSN 2587–4322

On LCA groups with local ring of
continuous endomorphisms

Valeriu Popa

Abstract. In this paper, we determine the locally compact abelian (LCA) groups
whose ring of continuous endomorphisms is local.

Mathematics subject classification: 16W80.
Keywords and phrases: LCA groups, rings of continuous endomorphisms, local
rings.

1 Introduction

A ring is local if it is unital and its non-invertible elements form an ideal. In [19],
A. Orsatti tackled the problem of characterizing the abelian groups with local endo-
morphism ring, and obtained some partial results. Later R. Ware [21] considered
a similar problem in the context of modules. Specifically, A. Orsatti has observed
that an abelian group with local endomorphism ring is necessarily indecomposable,
and has proved that in the class of abelian groups with non-zero torsion subgroup the
only groups having local endomorphism ring are the co-cyclic groups. This reduces
the considered problem to the case of indecomposable torsion-free groups. Further,
A. Orsatti established that a torsion-free abelian group of rank one has a local
endomorphism ring if and only if it is isomorphic to the additive group of a local
subring of the field of rational numbers. Excluding the additive group of rational
numbers, for any such a group X there is a prime number p with the property that
the type of X is represented by the sequence (∞, . . . ,∞, 0,∞, . . .), where 0 occupies
the same position as does p in the ascending sequence (pn)n≥1 of prime numbers.
Since any abelian group isomorphic with a pure subgroup of the group Jp of p-adic
integers has the same type, A. Orsatti initiated the study of endomorphism rings of
these groups. By a result of J. W. Armstrong [2], this class of groups can also be
described as the class of homogeneous with the type of Jp purely indecomposable
groups. A. Orsatti proved that the pure subgroups of finite rank of Jp have local
endomorphism ring. He also showed that for any cardinal number µ ≤ ℵ1, there
exist pure subgroups of rank µ in Jp whose endomorphism ring is local.

The work of A. Orsatti was followed up by R.B. Warfield and P. Krylov. In [22],
R.B. Warfield proved that an indecomposable abelian group has local endomorphism
ring if and only if it has the finite exchange property, and thus obtained a complete
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solution to A. Orsatti’s problem. The full characterization of pure subgroups of Jp
with local endomorphism ring has been obtained by P. Krylov in [12]. This result
can also be found in [13, Theorem 19.10].

In the present paper, we extend these investigations by considering a similar
problem in the more general context of LCA groups. Precisely speaking, we shall
deal with the problem of determining the LCA groups X whose ring of continuous
endomorphisms, E(X), is local. Our main results, established in Theorem 8 and
Theorem 10, generalize the above mentioned results of P. Krylov and R.B. Warfield
to the case of LCA groups.

2 Notation

In the following, P stands for the set of prime numbers, N for the set of natural
numbers (including zero), and N0 = N\{0}. We denote by R the group of reals with
its usual topology and by Q the group of rationals, taken discrete. For p ∈ P, we
denote by Qp the group of p-adic numbers, by Zp the group of p-adic integers, both
with their usual topologies, and by Jp the group of p-adic integers taken discrete.
We also denote by Ip the group of rational numbers with denominators prime to p,
by Z(p∞) the quasi-cyclic group corresponding to p, and by Z(pn), n ∈ N, the cyclic
group of order pn, all with the discrete topology.

Let L be the class of locally compact abelian groups. For X ∈ L, we
denote by E(X) the ring of all continuous endomorphisms of X, by J(E(X))
the Jacobson radical of E(X), and by D(X) the minimal divisible extension of
X, topologized in such a way that X becomes open in D(X). Further, we let
1X , c(X), d(X), k(X), m(X), t(X), and X∗ denote respectively the iden-
tity map on X, the connected component of X, the maximal divisible subgroup of
X, the subgroup of compact elements of X, the smallest closed subgroup K of X
such that the quotient group X/K is torsion-free, the torsion subgroup of X, and
the character group of X. If S is a subset of X and C is a closed subgroup of X,
we write S for the closure of S in X, ⟨S⟩ for the subgroup of X generated by S,
A(X∗, C) for the annihilator of C in X∗, and X/C for the quotient group of X
modulo C taken with the quotient topology. For p ∈ P, tp(X) stands for the p-
primary component of t(X) and Xp for the topological p-primary component of X,
i.e. Xp = {x ∈ X | limn→∞(n!)x = 0}. For n ∈ N0, we let X[n] = {x ∈ X | nx = 0}
and nX = {nx | x ∈ X}. We also write ⊕ for topological direct sum, ∔ for algebraic
direct sum, and ∼= for topological group isomorphism.

3 Discrete and compact abelian groups

In this section, we apply the results of A. Orsatti and P. Krylov to exhibit
examples of non-discrete groups in L having local ring of continuous endomorphisms.

We will need the anti-isomorphism defined in the following lemma from [17].
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Lemma 1. Let X ∈ L. If E(X) is endowed with the compact-open topology, then
E(X) is a topological ring, and the mapping u 7→ u∗, where u∗(γ) = γ ◦ u for all
u ∈ E(X) and γ ∈ X∗, is a topological ring anti-isomorphism from E(X) onto
E(X∗).

We start with the following result obtained by A. Orsatti.

Theorem 1 (A. Orsatti). Let X ∈ L be discrete.

(i) If t(X) ̸= {0}, the ring E(X) is local if and only if X is isomorphic with Z(pn),
where p ∈ P and n ∈ N ∪ {∞}.

(ii) If X is of rank one, the ring E(X) is local if and only if X is isomorphic with
either Q or Ip for some p ∈ P.

As a consequence of Theorem 1, we get two classes of compact abelian groups
in which the groups with local ring of continuous endomorphisms can be completely
described.

Corollary 1. Let X ∈ L be compact.

(i) If X has proper closed subgroups of finite index, the ring E(X) is local if and
only if X is topologically isomorphic with either Zp or Z(pn), where p ∈ P and
n ∈ N.

(ii) If X is of dimension one, the ring E(X) is local if and only if X is topologically
isomorphic with either Q∗ or I∗p for some p ∈ P.

Proof. It is clear that X has proper closed subgroups of finite index if and only if
X∗ has non-zero elements of finite order [10, (23.25) and (24.11)]. Also, X is of
dimension one if and only if X∗ is of rank one [10, (24.28)]. Taking into account the
fact that E(X) and E(X∗) are anti-isomorphic, the result follows from Theorem 1
and duality.

We continue with

Theorem 2 (A. Orsatti). Let p ∈ P. Every finite rank, pure subgroup of Jp has local
endomorphism ring.

Recall that a closed subgroup C of a group X ∈ L is said to be of finite codi-
mension if X/C is of finite dimension. We have

Corollary 2. Let p ∈ P. For every closed pure subgroup of finite codimension C of
J∗p, E(J∗p/C) is local.

As we already mentioned, P. Krylov gave in [12, Theorem 1] (see also [13, Theo-
rem 19.10]) a complete characterization of pure subgroups of Jp, p ∈ P, which have
local endomorphism ring. To state this result, we need some definitions. A unital
ring E is strongly homogeneous if every element a ∈ E can be written in the form
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a = nu, where n ∈ N0 and u is invertible in E. A discrete valuation domain is a local,
principal ideal, commutative domain. For an abelian group X, the pseudo-socle of
X, denoted by soc(X), is the pure subgroup of X generated by all minimal pure
fully invariant subgroups of X. It is to be noted also that if X is a non-zero pure
subgroup of Jp, then every endomorphism f ∈ E(X) extends uniquely to an endo-
morphism f̄ ∈ E(Jp). In the following theorem, E(X) is identified with its image in
E(Jp) under the ring homomorphism f 7→ f̄ .

Theorem 3 (P. Krylov). Let p ∈ P. For a non-zero pure subgroup X of Jp, the
following conditions are equivalent:

(i) X = soc(X).

(ii) soc(X) ̸= {0}.

(iii) E(X) is a strongly homogeneous ring.

(iv) Every element of E(X) that is invertible in E(Jp) is invertible in E(X).

(v) X does not have proper pure subgroups isomorphic with X.

(vi) E(X) is a discrete valuation domain.

(vii) E(X) is a local ring.

(viii) J(E(X)) = pE(X).

We conclude this section by stating the dual of Theorem 3. Before this, however,
two additional definitions must be introduced. A closed subgroup C of a group
X ∈ L is said to be topologically fully invariant in X if f(C) ⊆ C for all f ∈
E(X). The pseudo-radical, rad(X), of a connected group X ∈ L is the connected
component of the intersection of all maximal connected topologically fully invariant
closed subgroups of X. If X has no maximal connected topologically fully invariant
closed subgroups, then rad(X) is taken to be all of X.

Corollary 3. Let p ∈ P, let C be a closed, pure, proper subgroup of J∗p, and let
φ : J∗p → J∗p/C be the canonical projection. For the quotient group X = J∗p/C, the
following conditions are equivalent:

(i) rad(X) = {0}.

(ii) rad(X) ̸= X.

(iii) E(X) is a strongly homogeneous ring.

(iv) For every f ∈ E(X), there exists a unique f̃ ∈ E(J∗p) such that φ ◦ f̃ = f ◦ φ,
and if f̃ is invertible in E(J∗p), then f is invertible in E(X).

(v) X does not have closed, pure, proper subgroups A such that X/A is isomorphic
with X.
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(vi) E(X) is a discrete valuation domain.

(vii) E(X) is a local ring.

(viii) J(E(X)) = pE(X).

Proof. Let G = A(Jp, C). Then G is a non-zero [10, (23.24)(b)] pure [10, Corol-
lary 7.6] subgroup of Jp, and G ∼=

(
J∗p/C

)∗
= X∗ [10, (23.25)]. Now, since E(X)

and E(X∗) are anti-isomorphic, it is clear that E(X∗) is local if and only if E(X) is
local. On the other hand, by [10, (23.17) and (24.25)], J∗p is compact and connected,
so X = J∗p/C is compact and connected as well. It follows from [15, Corollary,
p. 369] and [10, (24.25)] that a closed subgroup of X is pure in X if and only if it is
connected. Let Max(X) be the set of all maximal, connected, topologically fully in-
variant, closed subgroups ofX, and letMin(X∗) be the set of all minimal, pure, fully
invariant subgroups of X∗. It is clear from the preceding that M ∈ Max(X) if and
only if A(X∗,M) ∈ Min(X∗), and L ∈ Min(X∗) if and only if A(X,L) ∈ Max(X).
Consequently, by [7, Proposition 3.3.3],

A(X∗, rad(X)) = A(X∗,∩M∈Max(X)M)

=
∑

M∈Max(X)

A(X∗,M) =
∑

L∈Min(X∗)

L = soc(X∗),

and hence rad(X) = {0} if and only if soc(X∗) = X∗.
Now the result follows easily from Theorem 3 and duality.

4 Residual and non-residual groups

In this section, we reduce the problem of determining the groups X ∈ L with
the property that the ring E(X) is local to the case when X is topologically inde-
composable, residual and admits a prime number p such that p1X is not invertible
in E(X). We begin by mentioning two lemmas, which will be used in the sequel.
The first one is suggested by an observation of A. Orsatti, which he used in [19].
This observation states that if a discrete group X ∈ L has local endomorphism ring,
then X is indecomposable. Recall that a group X ∈ L is said to be topologically
indecomposable if it cannot be written in the form X = A⊕B, where A and B are
non-zero closed subgroups of X. With the same arguments as in [19], we get:

Lemma 2. Let X ∈ L. If E(X) is local, then X is topologically indecomposable.

The second lemma of which we will make use is from [16, Lemma 3.8].

Lemma 3. Let X ∈ L be a group of finite exponent pn, where p is a prime and
n is a positive integer. If a ∈ X is an element of order pn, then ⟨a⟩ splits topolo-
gically from X. Moreover, the complement of ⟨a⟩ can be chosen so as to contain
a preassigned open subgroup V of X satisfying ⟨a⟩ ∩ V = {0}.

Recall that a group X ∈ L is residual if d(X) ⊆ k(X) and c(X) ⊆ m(X).
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Theorem 4. Let X ∈ L. If E(X) is local, then either X is topologically isomorphic
with one of the groups R, Q, or Q∗, or else X is residual.

Proof. Assume X is non-residual. We can write X = V ⊕ Y, where V and Y are
closed subgroups of X and V is topologically isomorphic with one of the groups R,
Q, or Q∗ [1, Theorem 9.3]. Consequently, if E(X) is local, we must have X = V by
Lemma 2.

In particular, we have the following

Corollary 4. Let X be a non-residual group in L. The following conditions are
equivalent:

(i) E(X) is a field.

(ii) E(X) is local.

(iii) X is topologically isomorphic with one of the groups R, Q, or Q∗.

Proof. It is clear that (i) ⇒ (ii) ⇒ (iii) ⇒ (i).

The following lemma is inspired by an observation in [13, p. 155].

Lemma 4. Let X ∈ L. If E(X) is local, then there is at most one p ∈ P such
that p1X is non-invertible in E(X). If this is the case, i.e. if E(X) is local and
p1X is non-invertible for some p ∈ P, then X is q-divisible for all q ∈ P \ {p} and
t(X) = tp(X).

Proof. Assume there is p ∈ P such that p1X is non-invertible in E(X). Given any
q ∈ P\{p}, we can find s, t ∈ Z such that sp+tq = 1, whence sp1X+tq1X = 1X . Since
p1X is non-invertible, sp1X is non-invertible as well. It follows that tq1X = 1X−sp1X
is invertible because E(X) is local, and hence q1X is also invertible. We then have

qX = im(q1X) = X and X[q] = ker(q1X) = {0},

so X is q-divisible for all q ∈ P \ {p} and t(X) = tp(X).

Now, we can determine the groups X ∈ L with the property that the ring E(X)
is local and p1X is invertible in E(X) for all p ∈ P.

Theorem 5. Let X be a residual group in L. The following conditions are equivalent:

(i) E(X) is a field.

(ii) E(X) is local and p1X is invertible in E(X) for all p ∈ P.

(iii) E(X) is local and X is densely divisible and torsion-free.

(iv) X is topologically isomorphic with Qp for some p ∈ P.
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Proof. Clearly, (i) implies (ii). Assume (ii), and pick an arbitrary p ∈ P. Since p1X
is invertible in E(X), we have

pX = im(p1X) = X and X[p] = ker(p1X) = {0}.

As p ∈ P was chosen arbitrarily, it follows thatX is divisible and torsion-free [9, p. 98,
A) and Theorem 8.4].

Assume (iii). Since X is residual, we have d(X) ⊆ k(X) and c(X) ⊆ m(X). It
follows that

X = k(X) and c(X) = {0},

because X is densely divisible and torsion-free. Since X is also indecomposable by
Lemma 2, we conclude from [1, Proposition 6.25] that X is topologically isomorphic
with Qp for some p ∈ P.

The fact that (iv) implies (i) is immediate.

As an application of the preceding, we obtain the description of groups X ∈ L
for which the ring E(X) is completely primary, i.e. all of its non-invertible elements
are nilpotent.

Theorem 6. Let X ∈ L. The following conditions are equivalent:

(i) E(X) is completely primary and commutative.

(ii) E(X) is completely primary.

(iii) X is topologically isomorphic with one of the groups R, Q, Q∗, Qp, or Z(pn),
where p ∈ P and n ∈ N.

Proof. Clearly, (i) implies (ii). Assume (ii). If X is non-residual, it follows from
Corollary 4 that X is topologically isomorphic with one of the groups R, Q, or Q∗.
Assume X is residual. If all of the endomorphisms p1X with p ∈ P are invertible in
E(X), we deduce from Theorem 5 that X is topologically isomorphic with Qp for
some p ∈ P. Next suppose that there is p ∈ P such that p1X is non-invertible. Then
p1X is nilpotent, so there is n ∈ N such that pn1X = 0, and hence pnX = 0.Assuming
X ̸= {0} and letting n be the least natural number satisfying pnX = 0, we must
have X ∼= Z(pn). For, otherwise it would follow from Lemma 3 that X = A ⊕ B,
where A ∼= Z(pn) and B ̸= {0}, which contradicts Lemma 2. The fact that (iii)
implies (i) is clear.

5 Purely topologically indecomposable groups

J. Armstrong showed in [2, Proposition 1] that a discrete torsion-free group
X ∈ L is isomorphic to a pure subgroup of Jp for some p ∈ P if and only if X
is homogeneous with the type of Jp and is purely indecomposable, i.e., every pure
subgroup of X is indecomposable. Consequently, the above mentioned result of
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P. Krylov describes the discrete, torsion-free, homogeneous with the type of Jp,
purely indecomposable groups in L having local endomorphism ring.

The objective of this section is to extend P. Krylov’s result to a more general
class of LCA groups. We begin by introducing the topological analogue of purely
indecomposable groups.

Definition 1. A group X ∈ L is said to be purely topologically indecomposable
if every closed, pure subgroup of X is topologically indecomposable.

We will require the following theorem from [18, Theorem 3].

Theorem 7. Let X ∈ L and let D be a closed subgroup of X such that D ∼= Qp for
some p ∈ P. The following conditions are equivalent:

(i) D splits topologically from X.

(ii) D ̸⊆
(
c(X) ∩ k(X)

)
+m(X).

For the convenience of the reader, we also note for future use a lemma of
G. Grätzer (see [9, Lemma 9.9]).

Lemma 5. Let A be an abelian group, let B be a subgroup of A, and let C be
a B-high subgroup of A. The following conditions are equivalent:

(i) A = B ⊕ C.

(ii) For any p ∈ P and a ∈ A, if pa = b + c with b ∈ B and c ∈ C, then there is
b′ ∈ B such that b = pb′.

We continue by establishing a lemma of independent interest.

Lemma 6. Every non-zero, residual, topologically indecomposable group X ∈ L
having closed torsion subgroup is totally disconnected.

Proof. LetX be as in the statement of the lemma. SinceX is residual, it follows that
c(X) ⊆ k(X), because c(X) is divisible [1, P. 27(e)]. Thus, if we had c(X) = X, it
would follow that X is compact. Then, by a result of G. Itzkowitz (see [11, Theorem
2] or [1, Proposition 6.12]), we could write X = U ⊕ V, where U and V are closed
subgroups of X such that U = t(U) and V ∼= (Q∗)µ for some cardinal number µ.
Now, in this decomposition of X we must have V = {0} because

X = c(X) ⊆ m(X)

by residuality. Since t(X) is closed in X, it follows that

X = U = t(U) ⊆ t(X),

whence we get X = {0} because t(X) is totally disconnected [1, Theorem 3.5]. This
contradicts the hypothesis that X ̸= {0}. Hence c(X) ̸= X.

Now, we cannot have c(X) ̸= {0}, because otherwise it would follow that
X = c(X)⊕ Y for some non-trivial closed subgroup Y of X [1, Proposition 6.13], in
contradiction with the hypothesis that X is topologically indecomposable. Conse-
quently, X must be totally disconnected.
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We go on with the main theorem of this section, which may be viewed as a genera-
lization of Theorem 3.

Theorem 8. Let X be a residual, purely topologically indecomposable group in L
with the following properties:

1) t(X) is closed in X.

2) If k(X) ̸= {0} and d(X) = {0}, then t(X) ̸= {0}.

The following conditions are equivalent:

(i) E(X) is a discrete valuation domain.

(ii) E(X) is local.

(iii) X is topologically isomorphic either with a pure subgroup G of Jp such that
soc(G) = G, or with one of the groups Qp, Z(p∞), or Z(pn), where p ∈ P and
n ∈ N.

Proof. Clearly, (i) implies (ii). It is also clear that (iii) implies (i) (see Theorem 1(i),
Theorem 3, and Theorem 5.) Consequently, it only remains to prove that (ii) implies
(iii). So, assume (ii). Since X is then topologically indecomposable by Lemma 2,
it follows from Lemma 6 that X is also totally disconnected. In particular, k(X) is
open in X.

We first consider the case when k(X) = {0}. Clearly, X is then discrete, reduced,
and torsion-free. It follows from Theorem 5 that the endomorphisms p1X with p ∈ P
cannot be all invertible in E(X). Hence, by Lemma 4, there is p ∈ P such that p1X is
non-invertible and all the q1X ’s with q ∈ P\{p} are invertible in E(X). In particular,
X is q-divisible for all q ∈ P \ {p} and X ̸= pX because

ker(p1X) = X[p] = {0}.

Thus, considering any non-zero m ∈ N and writing m = plm′, where l,m′ ∈ N and
(m′, p) = 1, we get mX = plm′X = plX. It follows that⋂

k∈N
pkX =

⋂
n∈N

nX = {0},

because X is reduced and torsion-free [9, §21, Exercise 2]. We then conclude that
any non-zero x ∈ X has finite p-height, and hence X is homogeneous with the type
of Jp, i.e., with the type represented by the height sequence (∞, . . . ,∞, 0,∞, . . .),
where 0 is on the place corresponding to p in the ascending sequence (pn)n≥1 of
prime numbers. It follows from [2, Proposition 1] that X is isomorphic to a pure
subgroup G of Jp, and hence soc(G) = G by Theorem 3.

In the following, we deal with the remaining case when k(X) ̸= {0}. Since the
topological p-primary components of a topological torsion group in L split topologi-
cally from that group [1, Theorem 3.13] and since k(X) is topologically torsion [10,
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(24.18)] and pure in X [1, (7.1)(c)], we conclude that there exists p ∈ P such that
k(X) coincides with its topological p-primary component kp(X). It particular, t(X)
is a p-group.

We first handle the case when d(X) ̸= {0}. If d(X) ̸⊆ t(X), then d(X) contains
a copy D of Qp [1, Proposition 4.23]. Observe that

t(X) =
(
c(X) ∩ k(X)

)
+m(X).

Indeed,
(
c(X) ∩ k(X)

)
= {0} because X is totally disconnected, and t(X) = m(X)

because t(X) is closed in X. Now, since

D ̸⊆ t(X) =
(
c(X) ∩ k(X)

)
+m(X),

it follows from Theorem 7 that D splits topologically from X, so X = D because
X is topologically indecomposable. Further, suppose d(X) ⊆ t(X). As we know
from [1, Proposition 4.23], d(X) contains then a copy ∆ of Z(p∞). Since Z(p∞) is
splitting in the class of totally disconnected LCA groups [1, Proposition 6.21], we
conclude that ∆ splits topologically from k(X). But k(X) is open in X, so ∆ splits
topologically from X [1, Corollary 6.9], and hence X = ∆ because X is topologically
indecomposable.

Next we consider the remaining case when d(X) = {0}. By our hypotheses,
then t(X) ̸= {0}. We first show that t(X) ∼= Z(pn) for some n ∈ N0. Let (xi)i∈I
be an arbitrary maximal p-independent system of elements of t(X). We must have
card(I) = 1. For, if there existed two distinct elements i1, i2 ∈ I, we could write

⟨xi1 , xi2⟩ = ⟨xi1⟩∔ ⟨xi2⟩.

Since ⟨xi1 , xi2⟩ is finite, it would follow that ⟨xi1 , xi2⟩ is topologically decomposable
and closed in X. Since ⟨xi1 , xi2⟩ is also p-pure in t(X) [9, Lemma 32.1] and hence
pure in X [9, Lemma 26.1], this would contradict our hypothesis that X is purely
topologically indecomposable. Consequently, the system (xi)i∈I must consist of
a single element, say x. As ⟨x⟩ is pure and finite, we can write t(X) = ⟨x⟩ ∔ T
for some subgroup T of t(X) [9, Theorem 27.5]. Further, since ⟨x⟩ is a p-basic
subgroup of t(X) [9, Lemma 32.2], t(X)/⟨a⟩ is p-divisible, so divisible because t(X)
is a p-group. As T is algebraically isomorphic with t(X)/⟨x⟩ and X is reduced, we
conclude that T = {0}, and hence t(X) = ⟨x⟩. This proves that t(X) ∼= Z(pn) for
some n ∈ N0.

Now, having established the preceding isomorphism, we shall show that k(X) =
t(X). We will achieve this by showing that the relation k(X) ̸= t(X) leads to a con-
tradiction. Precisely, we shall show that if k(X) ̸= t(X), then X has a closed pure
subgroup K, which can be written as a topological direct sum of two non-trivial
closed subgroups. So, assume k(X) ̸= t(X), and fix a compact open subgroup U of
k(X) such that t(X) ∩ U = {0}. Since U is torsion-free, we have U ∼= ZJ

p for some
non-empty set J [10, (25.8)]. We first consider the case when card(J) > 1. Then we

can write U = A ⊕ B, where A ∼= Zp and B ∼= ZJ\{j0}
p for some j0 ∈ J. It follows

that
t(X) + U = t(X)⊕A⊕B.
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Letting πB : t(X)⊕A⊕B → B denote the canonical projection and ηB : B → D(B)
the canonical injection, we define f : t(X) ⊕ A ⊕ B → D(B) by setting
f = ηB ◦ πB. Clearly, f is continuous. Since D(B) is divisible and t(X)⊕ A⊕ B is
open in k(X), f extends to a continuous group homomorphism f̃ : k(X) → D(B).
Then ker(f̃) is closed in k(X) and

t(X)⊕A ⊆ ker(f̃).

Further, since X/ ker(f̃) is algebraically isomorphic to a subgroup of D(B) and
D(B) is torsion-free, we conclude that ker(f̃) is pure in k(X). In the considered case
when card(J) > 1, we set K = ker(f̃). On the other hand, in case card(J) = 1, we
take K = k(X). So, in both cases t(X) is a non-trivial subgroup of K. Now, to get
a contradiction, we shall show that t(X) splits topologically from K. First notice
that K ∩

(
t(X)⊕ U

)
is open in K and

K ∩
(
t(X)⊕ U

)
= t(X)⊕ V,

where V = A in case K = ker(f̃) and V = U in case K = k(X). Consequently, V is
open in K because t(X) is finite. Since t(X) is pure in K, we also have

pnK ∩ t(X) = pnt(X) = {0},

where as above pn is the order of x. Now, in order to show that t(X) splits from K,
pick a t(X)-high subgroup C ofK which contains pnK.We assert thatK = t(X)⊕C.
To prove this, we first show that t(X) splits algebraically from K, i.e. K = t(X)∔C.
We will make use of Lemma 5. Fix arbitrary q ∈ P and a ∈ K such that

qa = b+ c (1)

for some b ∈ t(X) and c ∈ C. If q ̸= p, then q · t(X) = t(X), so b = qb′ for some
b′ ∈ t(X). Assume q = p. We see from (1) that

pna = pn−1b+ pn−1c,

so pn−1b = 0 because pna ∈ pnK ⊆ C. Since t(X) ∼= Z(pn), it follows that there
exists b′′ ∈ t(X) such that b = pb′′. Consequently, Lemma 5 applies and we may
conclude that K = t(X)∔C. To show that in fact K = t(X)⊕C, it suffices to show
that C is open in K. It is clear from the preceding that

pnK ⊇ pn
(
t(X)⊕ V

)
.

But V is open in K, so pnV is open in K because V ∼= Zp, and hence the subgroup

pn
(
t(X)⊕ V

)
= pnV

is open in K. Since pnK ⊆ C, it follows that K = t(X) ⊕ C, which contradicts the
assumption that X is purely topologically indecomposable. From this contradiction,
we conclude that the equality k(X) = t(X) is true.
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To finish, it remains to observe that in fact X = t(X). Indeed, since k(X) is
open in X and t(X) is finite, it follows from the above equality that X is discrete.
Now, being a cyclic group of order pn, t(X) splits from X [9, Proposition 27.1], and
hence we must have X = t(X) by the indecomposability of X.

To state the dual of Theorem 8, we introduce the following

Definition 2. A group X ∈ L is said to be purely topologically co-indecomposable
if for any closed, pure subgroup C of X, the quotient group X/C is topologically
indecomposable.

Corollary 5. Let X be a residual, purely topologically co-indecomposable group in
L with the following properties:

1) rX/ ∩n∈N0 nX is compact for some r ∈ N0.

2) If c(X) ̸= X and m(X) = X, then ∩n∈N0nX ̸= X.

The following conditions are equivalent:

(i) E(X) is a discrete valuation domain.

(ii) E(X) is local.

(iii) X is topologically isomorphic either with a quotient group of J∗p by a closed
pure subgroup A with rad(A) = {0}, or with one of the groups Qp, Zp, or
Z(pn), where p ∈ P and n ∈ N.

Proof. We first show that X satisfies the stated hypotheses if and only if X∗ satisfies
the hypotheses of Theorem 8. Let X be as in the enounce of our corollary. Then,
clearly, X∗ is residual and purely topologically indecomposable. Moreover, since

t(X∗)/X∗[r] ∼=
(
rX/ ∩n∈N0 nX

)∗
[7, Ex. 3.8.7(b)], we deduce that t(X)/X[r] is discrete, and hence X∗[r] is open
in t(X∗). As X∗[r] ⊆ t(X∗), it follows that t(X∗) is open in t(X∗), whence we
deduce that t(X∗) is closed in t(X∗), and hence in X∗. Further, if k(X∗) ̸= {0} and
d(X∗) = {0}, then c(X) ̸= X and m(X) = X. It follows from 2) that ∩n∈N0nX ̸= X,
and hence

t(X∗) = t(X∗) = A(X∗,∩n∈N0nX
)
̸= A(X∗, X) = {0}.

Conversely, assume X∗ satisfies the hypotheses of Theorem 8. Then, clearly,
X must be residual and purely topologically co-indecomposable. Moreover, since
t(X∗) = ∪n∈NX

∗[n] is locally compact, it follows from [10, (5.28)] that X∗[r] is
open in t(X∗) for some r ∈ N0, so rX/ ∩n∈N0 nX is compact. Further, by taking
annihilators, it is easy to see that if c(X) ̸= X and m(X) = X, then ∩n∈N0nX ̸= X.

To finish, it remains to observe that a subgroup G of Jp is pure in Jp if and only
if its annihilator A(J∗p, G) is pure in J∗p [1, Corollary 7.6], and that G∗ ∼= J∗p/A(J∗p, G)
[10, (24.5)].
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6 Topologically indecomposable groups with the finite exchange
property

This last section is concerned with extending the result of R.B. Warfield [22,
Proposition 1] to the case of groups in L. We first note that the so-called ex-
change property for modules, which appears in [22, Proposition 1], was introduced
by P. Crawley and B. Jónsson in [6]. Later this notion was considered in some more
general categories (see see for example [20],[14] and [5]). We begin by specializing
the corresponding definition to our situation.

Definition 3. Let S be a subclass of L closed under taking finitary topological
direct products, closed subgroups, and topological isomorphisms. A group X in S is
said to have the finite exchange property in S if X satisfies the following condition:

For any group Y in S and any its pair of topological direct sum decompositions

Y = X ′ ⊕G = Y1 ⊕ · · · ⊕ Yn,

where G, Y1, . . . , Yn ∈ S, n ∈ N+, and X
′ ∼= X, there exist closed subgroups Y ′

i and
Zi of Yi such that Yi = Y ′

i ⊕ Zi for all i ∈ {1, . . . , n}, and Y = X ′ ⊕ Y ′
1 ⊕ · · · ⊕ Y ′

n.

It is easy to see by use of duality that X has the finite exchange property in S
if and only if X∗ has the finite exchange property in the subclass S∗ of L consisting
of those groups W ∈ L for which W ∗ is in S.

Theorem 9 (R.B. Warfield, Jr). Let D be the subclass of L consisting of discrete
groups. An indecomposable group X ∈ D has local endomorphism ring if and only
if X has the finite exchange property in D.

By use of duality, we obtain:

Corollary 6. Let K be the subclass of L consisting of compact groups. A topo-
logically indecomposable group X ∈ K has local endomorphism ring of continuous
endomorphisms if and only if X has the finite exchange property in K.

To continue, we require the following lemma which is a topological version of
Lemma 1 in [20], see also [8, Lemma 2.6].

Lemma 7. Let A be a group in L, let M1 and M2 be closed subgroups of A such
that A = M1 ⊕M2, and let π2 : A → M2 be the canonical projection onto M2. For
any closed subgroup M of A, the decomposition A =M1⊕M holds if and only if the
restricted map π2|M : M →M2 is a topological isomorphism. Moreover, if these two
equivalent conditions are satisfied, then the canonical projection πM : A → M with
respect to decomposition A =M1 ⊕M is

(
π2|M

)−1 ◦ π2.

Proof. Assume A = M1 ⊕M. Then A = M1 ∔M. It follows from [8, Lemma 2.6]
that π2|M : M →M2 is an algebraic group isomorphism. Since π2|M is clearly conti-
nuous, it only remains to show that π2|M is open. To this end, pick an arbitrary
open neighbourhood U of zero in M. Then M1 + U is open in A = M1 ⊕M. Since
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π2 : A → M2 is an open mapping, it follows that
(
π2|M

)
(U) = π2(M1 + U) is open

in M2. As the neighbourhood U was chosen arbitrarily, we conclude that π2|M is
open [10, (5.40)(b)].

Conversely, assume π2|M : M → M2 is a topological group isomorphism. By [8,

Lemma 2.6] we have A = M1 ∔M and πM =
(
π2|M

)−1 ◦ π2. Let ε1 and εM be the
idempotents associated with this decomposition of A. If iM : M → A is the canonical
injection, then εM = iM ◦ πM = iM ◦

(
π2|M

)−1 ◦ π2, so εM is continuous, and hence
A =M1 ⊕M by [4, Ch. III, §6, Proposition 2].

We now come to the main result of this section concerning the considered prob-
lem of determining the groups X ∈ L with local ring E(X), which extends the
R.B. Warfield’s result in Theorem 9 to the case of groups in L. It should be noted
that the mentioned result of R.B. Warfield was generalized by C.I. Walker and
R.B. Warfield [20, Proposition 3] to additive categories with kernels, and was in-
cluded in different books (see [14],[8] and [5]).

Using a similar technique to that in ([20],[14],[8] and [5]), we obtain the following

Theorem 10. For a group X ∈ L, the following conditions are equivalent:

(i) E(X) is local.

(ii) X is topologically indecomposable and has the finite exchange property in L.

Proof. Clearly, we may consider X ̸= {0}. Assume (i). Then X is topologically
indecomposable by Lemma 2. To see that X has the finite exchange property in L,
suppose there is Y ∈ L such that

Y = X ′ ⊕G and Y = Y1 ⊕ · · · ⊕ Yn,

where X ′, G, Y1, . . . , Yn (n ∈ N+) are closed subgroups of Y and X ′ ∼= X. In con-
nection with these two decompositions, let e : X ′ → Y and ei : Yi → Y denote the
corresponding injections, and let p : Y → X ′ and pi : Y → Yi denote the correspond-
ing projections. It follows that

1X′ =
n∑

i=1

p ◦ ei ◦ pi ◦ e.

Since E(X ′) is local, one of the summands, say α = p ◦ e1 ◦ p1 ◦ e, is invertible in
E(X ′). Consider the endomorphism ε ∈ E(Y ) defined by ε = e1 ◦ p1 ◦ e ◦ α−1 ◦ p.
Then ε2 = ε, so

Y = ker(1Y − ε)∔ ker(ε)

[3, Proposirion 11.2], and hence

Y = ker(1Y − ε)⊕ ker(ε) (2)
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because ε is continuous [4, Ch. III, §6, Proposition 2]. Let η : ker(1Y −ε) → Y be the
canonical injection. Since (1Y −ε)◦η = 0, we get η = ε◦η, whence pi◦η = pi◦ε◦η = 0
for all i > 1, and hence (p2 + · · ·+ pn) ◦ η = 0. It follows that

ker(1Y − ε) = im(η) ⊆ ker(p2 + · · ·+ pn) = Y1,

so

Y1 = ker(1Y − ε)∔
(
Y1 ∩ ker(ε)

)
.

Now since the idempotents induced by this sum are restrictions of continuous idem-
potents induced by decomposition (2), we deduce from [4, Ch. III, §6, Proposition 2]
that

Y1 = ker(1Y − ε)⊕
(
Y1 ∩ ker(ε)

)
, (3)

and hence

Y = ker(1Y − ε)⊕
(
Y1 ∩ ker(ε)

)
⊕ Y2 ⊕ · · · ⊕ Yn. (4)

Let φ : Y → ker(1Y − ε) and ψ : Y → ker(1Y − ε) be the projections on ker(1Y − ε)
induced by decompositions (2) and (4) respectively, and let ξ : Y1 → ker(1Y − ε)
be the projection on ker(1Y − ε) induced by decomposition (3). Then ε = η ◦ φ,
ψ = φ ◦ e1 ◦ p1 and ξ = φ ◦ e1. It follows that

(φ ◦ e1 ◦ p1 ◦ e) ◦ (α−1 ◦ p ◦ η) = φ ◦ ε ◦ η = φ ◦ η = 1ker(1Y −ε)

and

(α−1 ◦ p ◦ η) ◦ (φ ◦ e1 ◦ p1 ◦ e) = α−1 ◦ p ◦ ε ◦ e1 ◦ p1 ◦ e
= (α−1 ◦ p ◦ e1 ◦ p1 ◦ e)(α−1 ◦ p ◦ e1 ◦ p1 ◦ e) = 1X′ ,

proving that φ ◦ e1 ◦ p1 ◦ e : X ′ → ker(1Y − ε) and α−1 ◦ p ◦ η : ker(1Y − ε) → X ′ are
mutually inverse isomorphisms. As

ψ|X′ = ψ ◦ e = φ ◦ e1 ◦ p1 ◦ e,

we deduce from Lemma 7 that

Y = X ′ ⊕
(
Y1 ∩ ker(ε)

)
⊕ Y2 ⊕ · · · ⊕ Yn.

Consequently, X has the finite exchange property in L.
Now assume (ii). We shall show that if E(X) is not a local ring, then X cannot

have the finite exchange property in L. So, suppose E(X) is not local. Then there
exist two non-invertible endomorphisms f, g ∈ E(X) such that 1X = f−g. Consider
the group Y = Y1 ⊕ Y2, where Y1 ∼= Y2 ∼= X, and for i ∈ {1, 2} let πi : Y →
Yi denote the corresponding projections. Further, let (f, g) : X → Y1 ⊕ Y2 and
(1X , 1X) : X → Y1 ⊕ Y2 be the homomorphisms satisfying

π1 ◦ (f, g) = f, π2 ◦ (f, g) = g, and π1 ◦ (1X , 1X) = 1X = π2 ◦ (1X , 1X).
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Clearly, (1X , 1X) is injective. Since f −g = 1X , it is also clear that (f, g) is injective
as well, and that f ◦ g = g+ g ◦ g = g ◦ f. Put p1 = π1 − π2 and p2 = f ◦ π2 − g ◦ π1.
Then we have

p1 ◦ (f, g) = 1X , p2 ◦ (f, g) = 0,

p1 ◦ (1X , 1X) = 0, p2 ◦ (1X , 1X) = 1X ,

and (f, g) ◦ p1 + (1X , 1X) ◦ p2 = 1Y .

(5)

Hence we can write Y = X ′ ∔X ′′, where X ′ = (f, g)(X) = ker
(
(1X , 1X) ◦ p2

)
and

X ′′ = (1X , 1X)(X) = ker
(
(f, g) ◦ p1

)
[3, Proposition 11.2]. Since the idempotents

(f, g) ◦ p1 and (1X , 1X) ◦ p2 are continuous, we conclude that X ′, X ′′ ∈ L and that
Y = X ′ ⊕X ′′ [4, Ch. III, §6, Proposition 2]. It also follows from (5) that

(p1|X′) ◦ (f, g) = 1X and (f, g) ◦ (p1|X′) = 1X′ ,

so (f, g) induces a topological isomorphism from X onto X ′. Analogously, (1X , 1X)
induces a topological isomorphism from X onto X ′′.

Now, if the finite exchange property were to hold for X (and hence for X ′), it
would follow that there exist topological direct summands A1 of Y1 and A2 of Y2
such that

Y = X ′ ⊕X ′′ = X ′ ⊕A1 ⊕A2.

Since Y1, Y2, X
′, and X ′′ are topologically indecomposable, we would have either

Y = X ′⊕Y1 or Y = X ′⊕Y2. In the former case, it would follow from Lemma 7 that
π2|X′ : X ′ → Y2 is a topological isomorphism, and hence g = π2 ◦ (f, g) : X → Y2
is a topological isomorphism as well. Similarly, in the second case we would get
that f = π1 ◦ (f, g) is a topological isomorphism. In either case, the conclusion is
in contradiction with the assumption that f and g are non-invertible. This proves
that X does not have the finite exchange property in L.
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