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The family of cubic differential systems with two real
and two complex distinct infinite singularities and

invariant straight lines of the type (2,2,2)

Cristina Bujac, Nicolae Vulpe

Abstract. We denote by CSL7 the family of cubic differential systems possessing
invariant straight lines, finite and infinite, of total multiplicity exactly seven. In a
sequence of papers the study of the subfamily of cubic systems belonging to CSL7

with 4 real distinct singular points at infinity was reached.
The goal of this article is to continue the study of the geometric configurations of

invariant lines of CSL7 with two real and two complex distinct infinite singularities
and invariant lines in the configuration of the type (2, 2, 2). We proved that there exists
only one configuration of invariant straight lines belonging to the class mentioned
above. In addition, we construct invariant affine criteria for the realization of the
obtained configuration.

Mathematics subject classification: 34C23, 34A34.
Keywords and phrases: quadratic differential system, invariant line, singularity,
configuration of invariant lines, group action, polynomial invariant.

1 Introduction

We consider here real polynomial differential systems

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1)

where P, Q are polynomials in x, y with real coefficients, i.e. P, Q ∈ R[x, y]. We
call degree of a system (1) the integer n = max(deg(P ),deg(Q)). In particular we
call cubic a differential system (1) with degree n = 3.

We are interested in polynomial systems (1) possessing algebraic invariant curves.
An algebraic curve f(x, y) = 0 with f(x, y) ∈ C[x, y] is an invariant curve of a
system of the form (1) where P (x, y), Q(x, y) ∈ C[x, y] if and only if there exists
K[x, y] ∈ C[x, y] such that

X(f) = P (x, y)
∂f

∂x
+Q(x, y)

∂f

∂y
= f(x, y)K(x, y)

is an identity in C[x, y]. Since R ⊂ C, any system (1) over R generates a system of
differential equations over C. Using the embedding C2 ↪→ P2(C), (x, y) 7→ [x : y :
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1] = [X : Y : Z] (x = X/Z, y = Y/Z and Z ̸= 0), we can compactify the differential
equation Q(x, y)dy − P (x, y)dx = 0 to an associated differential equation over the
complex projective plane.

In this work we consider a particular case of invariant algebraic curves, namely
invariant straight lines of systems (1). A straight line over C is the locus {(x, y) ∈
C2|f(x, y) = 0} of an equation f(x, y) = ux + vy + w = 0 with (u, v) ̸= (0, 0) and
(u, v, w) ∈ C3.

In view of the above definition of an invariant algebraic curve of a system (1), a
line f(x, y) = ux+ vy + w = 0 over C is an invariant line if and only if there exists
K(x, y) ∈ C[x, y] which satisfies the following identity in C[x, y]:

X(f) = uP (x, y) + vQ(x, y) = (ux+ vy + w)K(x, y).

Notation 1. Let us denote:

� CS = { S | S is a system (1) such that gcd(P,Q) = 1 and
max(deg(P,Q)) = 3};

� CSL = { S ∈ CS | S possesses at least one invariant affine line or the line at
infinity with multiplicity at least two }.

The set CS of cubic differential systems depends on 20 parameters and hence
people began by studying particular subclasses of CS. Some of these subclasses
are cubic systems having invariant straight lines. We associate to each system in
CSL its configuration of invariant lines, i.e. the set of its invariant lines together
with the real singular points of the system located on the union of these lines. The
notion of configuration of invariant lines for a polynomial differential system was
first introduced in [23].

Definition 1. [26] Consider a real planar polynomial differential system (1). The
configuration of invariant straight lines of this system is the set of (complex) invari-
ant straight lines (which may have real coefficients), including the line at infinity
of the system, each endowed with its own multiplicity and together with all the
real singular points of this system located on these invariant straight lines, each one
endowed with its own multiplicity.

In analogous manner to as we view the phase portraits of systems on the Poincaré
disc (see e.g. [10]), we can also view the configurations of real lines on the disc. To
help imagining the full configurations, we complete the picture by drawing dashed
lines whenever these are complex. On the class of CS the group of affine transfor-
mations and time rescaling acts. Since cubic systems depend on 20 parameters and
since this group depends on 13 parameters, the class of cubic systems modulo this
group action, actually depends on five parameters. It is clear that the configuration
of invariant lines of a system is an affine invariant.

We mention here some papers on polynomial differential systems in CSL: [2, 3,
5–10,13–16,19–21] and [22].
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The maximum number of invariant straight lines (including the line at infinity)
for cubic systems with a finite number of infinite singularities is 9. In [14] the authors
classified all cubic systems possessing the maximum number of invariant straight
lines taking into account their multiplicities according to their configurations of
invariant lines.

The existence of sufficiently many invariant straight lines of planar polynomial
systems could be used for proving the integrability of such systems. During the past
15 years several articles were published on this theme (see for example [24,25]).

Notation 2. We shall denote by CSL2r2c∞
7 the class of cubic systems with

four distinct singularities at infinity: two real and two complex, and invariant lines
of total multiplicity seven.

As we have two real and two complex infinite singularities and the total mul-
tiplicity of invariant lines (including the line at infinity) must be 7, then a cubic
systems in CSL2r2c∞

7 could have only one of the following four possible types of
configurations of invariant lines:

(i) T = (3, 3); (ii) T = (3, 1, 1, 1); (iii) T = (2, 2, 2); (iv) T = (2, 2, 1, 1). (2)

We remark that the cubic systems in CSL2r2c∞
7 possessing the configurations of

invariant lines of the type T = (3, 3) have already been investigated in [4], where
the existence of 14 distinct configurations Config. 7.1a –Config. 7.14a of this type
is determined. In addition the class of cubic systems in CSL2r2c∞

7 possessing the
configurations of invariant lines of the type T = (3, 1, 1, 1) was considered in [11].
For this subfamily of systems the existence of 42 distinct configurations Config. 7.1b
–Config. 7.42b was proved.

Here we will focused on systems CSL2r2c∞
7 possessing the type of configuration

(2, 2, 2) and we denote such class of systems by CSL2r2c∞
(2,2,2) .

The problem which we solve in this article is the following: to construct all
possible configurations of invariant straight lines, including the infinite one, for the
class CSL2r2c∞

(2,2,2) .

Main Theorem. A non-degenerate system (S) from the
family (1) belongs to the class CSL2r2c∞

(2,2,2) if an only if
D1 < 0, D4K4 ̸= 0, V3 = J6 = J7 = 0. Moreover such
a system (S) could be brought via an affine transformation
and time rescaling to the canonical form

ẋ =2x(1− x)(1 + x− sy), s(s2 − 9) ̸= 0

ẏ =− s+ sx− y + sx2 − sy2 − sx3 − 3x2y

+ sxy2 − y3.

(3)

and it possesses the unique configuration Config. 7.1.c.
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2 Some preliminary results

Consider real cubic systems, i.e. systems of the form:

ẋ = p0 + p1(x, y) + p2(x, y) + p3(x, y) ≡ P (a, x, y),

ẏ = q0 + q1(x, y) + q2(x, y) + q3(x, y) ≡ Q(a, x, y)
(4)

with variables x and y and real coefficients. The polynomials pi and qi (i = 0, 1, 2, 3)
are homogeneous polynomials of degree i in x and y:

p0 = a00, p3(x, y) = a30x
3 + 3a21x

2y + 3a12xy
2 + a03y

3,

p1(x, y) = a10x+ a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q3(x, y) = b30x
3 + 3b21x

2y + 3b12xy
2 + b03y

3,

q1(x, y) = b10x+ b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

Let a = (a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03) be the 20-tuple of the coefficients
of systems (4) and denote R[a, x, y] = R[a00, a10, a01, . . . , a03, b00,
b10, b01, . . . , b03, x, y].

It is known that on the set of polynomial systems (1), in particular on the set CS
of all cubic differential systems (4), the group Aff (2,R) of affine transformations of
the plane acts [26]. For every subgroupG ⊆ Aff (2,R) we have an induced action ofG
on CS. We can identify the set CS of systems (4) with a subset of R20 via the map CS
−→ R20 which associates to each system (4) the 20-tuple a = (a00, a10, a01, . . . , a03,
b00, b10, b01, . . . , b03) of its coefficients.

For the definitions of an affine or GL-comitant or invariant as well as for the
definition of a T -comitant and CT -comitant we refer the reader to [23] (see also
[1]). Here we shall only construct the necessary invariant polynomials (T -comitants)
which are needed to detect the existence of invariant lines for the class of cubic
systems with two distinct real and two complex infinite singularities and with exactly
seven invariant straight lines including the line at infinity and counting multiplicities.

Let us consider the polynomials

Ci(a, x, y) = ypi(a, x, y)− xqi(a, x, y) ∈ R[a, x, y], i = 0, 1, 2, 3,

Di(a, x, y) =
∂

∂x
pi(a, x, y) +

∂

∂y
qi(a, x, y) ∈ R[a, x, y], i = 1, 2, 3.

As it was shown in [27] the polynomials{
Ci(a, x, y), D1(a), D2(a, x, y), D3(a, x, y), i = 1, 2, 3

}
(5)

of degree one in the coefficients of systems (4) are GL-comitants of these systems.
Notation 3. Let f, g ∈ R[a, x, y] and

(f, g)(k) =

k∑
h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
.
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(f, g)(k) ∈ R[a, x, y] is called the transvectant of index k of (f, g) (cf.[12, 17]).
Let us apply a translation x = x′ + x0, y = y′ + y0 to the polynomials

P (a, x, y) and Q(a, x, y). We obtain P̃ (ã(a, x0, y0), x
′, y′) = P (a, x′ + x0, y

′ + y0),
Q̃(ã(a, x0, y0), x

′, y′) = Q(a, x′+x0, y
′+y0). We construct the following polynomials

Ωi(a, x0, y0) ≡ Res x′

(
Ci

(
ã(a, x0, y0), x

′, y′
)
, C0

(
ã(a, x0, y0), x

′, y′
))

/(y′)i+1,

Ωi(a, x0, y0) ∈ R[a, x0, y0], (i = 1, 2, 3)

and we denote

G̃i(a, x, y) = Ωi(a, x0, y0)|{x0=x, y0=y} ∈ R[a, x, y] (i = 1, 2, 3).

Remark 1. We note that the constructed polynomials G̃1(a, x, y), G̃2(a, x, y) and
G̃3(a, x, y) are affine comitants of systems (4) and are homogeneous polynomials in
the coefficients a00, . . . , b03 and non-homogeneous in x, y and

dega G̃1 = 3, dega G̃2 = 4, dega G̃3 = 5,

deg(x,y) G̃1 = 8, deg(x,y) G̃2 = 10, deg(x,y) G̃3 = 12.

Notation 4. Let Gi(a,X, Y, Z) (i = 1, 2, 3) be the homogenization of G̃i(a, x, y),
i.e.

G1(a,X, Y, Z) = Z8G̃1(a,X/Z, Y/Z),

G2(a,X, Y, Z) = Z10G̃2(a,X/Z, Y/Z),

G3(a,X, Y, Z) = Z12G̃3(a,X/Z, Y/Z),

and H(a,X, Y, Z) = gcd
(
G1(a,X, Y, Z), G2(a,X, Y, Z), G3(a,X, Y, Z)

)
in

R[a,X, Y, Z].
The geometrical meaning of these affine comitants is given by the two following

lemmas (see [14]):

Lemma 1. The straight line L(x, y) ≡ ux+ vy + w = 0, u, v, w ∈ C, (u, v) ̸= (0, 0)
is an invariant line for a cubic system (4) if and only if the polynomial L(x, y) is a
common factor of the polynomials G̃1(x, y), G̃2(x, y) and G̃3(x, y) over C, i.e.

G̃i(x, y) = (ux+ vy + w)W̃i(x, y) (i = 1, 2, 3),

where W̃i(x, y) ∈ C[x, y].

Lemma 2. Consider a cubic system (4) and let a ∈ R20 be its 20-tuple of coefficients.
1) If L(x, y) ≡ ux+vy+w = 0, u, v, w ∈ C, (u, v) ̸= (0, 0) is an invariant straight

line of multiplicity k for this system then [L(x, y)]k | gcd(G̃1, G̃2, G̃3) in C[x, y], i.e.
there exist Wi(a, x, y) ∈ C[x, y] (i = 1, 2, 3) such that

G̃i(a, x, y) = (ux+ vy + w)kWi(a, x, y), i = 1, 2, 3.

2) If the line l∞ : Z = 0 is of multiplicity k > 1, then Zk−1 | gcd(G1,G2,G3), i.e.
we have Zk−1 | H(a,X, Y, Z).
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In order to define the invariant polynomials we need, we first construct the follow-
ing comitants of second degree with respect to the coefficients of the initial systems
(4):

S1 = (C0, C1)
(1) , S10 = (C1, C3)

(1) , S19 = (C2, D3)
(1) ,

S2 = (C0, C2)
(1) , S11 = (C1, C3)

(2) , S20 = (C2, D3)
(2) ,

S3 = (C0, D2)
(1) , S12 = (C1, D3)

(1) , S21 = (D2, C3)
(1) ,

S4 = (C0, C3)
(1) , S13 = (C1, D3)

(2) , S22 = (D2, D3)
(1) ,

S5 = (C0, D3)
(1) , S14 = (C2, C2)

(2) , S23 = (C3, C3)
(2) ,

S6 = (C1, C1)
(2) , S15 = (C2, D2)

(1) , S24 = (C3, C3)
(4) ,

S7 = (C1, C2)
(1) , S16 = (C2, C3)

(1) , S25 = (C3, D3)
(1) ,

S8 = (C1, C2)
(2) , S17 = (C2, C3)

(2) , S26 = (C3, D3)
(2) ,

S9 = (C1, D2)
(1) , S18 = (C2, C3)

(3) , S27 = (D3, D3)
(2) .

In order to determine the necessary conditions for the existence and the numbers
of couples of parallel invariant straight lines which a cubic system could have (see
Theorem 1) we use here the following invariant polynomials constructed in [14]
and [5]:

V1(a, x, y) =S23 + 2D2
3, V2(a, x, y) = S26, V3(a, x, y) = 6S25 − 3S23 − 2D2

3,

V4(a, x, y) =C3

[
(C3, S23)

(4) + 36 (D3, S26)
(2)

]
, V5(a, x, y) = 6C3(9A5 − 7A6)+

2D3(4T16 − T17)− 3T3(3A1 + 5A2) + 3A2T4 + 36T 2
5 − 3T44,

U1(a, x, y) =S24 − 4S27,

U2(a, x, y) =6(S23 − 3S25, S26)
(2) − 3S23(S24 − 8S27)− 24S2

26 + 2C3(C3, S23)
(4)+

24D3(D3, S26)
(1) + 24D2

3S27.

In this article we shall use the following new polynomials :

J6 = T8;

J7 = 24A3T
2
1 T11 + 6T5T136 + 3T5T137 + 16T2T11T25 − 48T19T47 + 3T16T74.

Here the polynomials
A1 = S24/288, A2 = S27/72, A3 = (72D1A2 + (S22, D2)

(1))/24 are affine
invariants and

T1 =C3, T2 = D3, T3 = S23/18, T4 = S25/6, T5 = S26/72,

T6 =(3C1D
2
3 − 27C1T3 + 54C1T4 + 4C3D

2
2 − 2C3S14+

+ 16C3S14 − 4C2D2D3 + 2C2S17 + 12C2S21 − 4C2S19)/2
4/32,

T11 =(D2
3, C2)

(2) − 9(T3, C2)
(2) + 18(T4, C2)

(2) − 6(D2
3, D2)

(1)+

+ 54(T3, D2)
(1) − 108(T4, D2)

(1) + 12D2S26 − 12(S26, C2)
(1)+

+ 432C2A1 − 2160C2A2)/2
7/34,
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T16 =(S23, D3)
(2)/2633, T17 = (S26, D3)

(1)/25/33,

T25 =(15552A2C1C3 +D2
3D

2
2 − 81D2

2T3 − 54D2
2T4 + 12D3D2S17 + 8D3D2S19+

+ 16[(C2, D3)
(1)]2 − 5184C1D3T5 + 2592C2D2T5 − 72C3D2S20)/2

6/34,

T74 =(2187T 2
3C0 + 8748T 2

4C0 + 20736T11C
2
2 − 62208T11C1C3+

+ 108C3D1D2D
2
3 − 8C2D

2
2D

2
3 − 54C2D1D

3
3 + 6C1D2D

3
3+

+ 27C0D
4
3 − 54C3D

2
3S8 + 108C3D

2
3S9 + 27C2D

2
3S11 − 27C2D

2
3S12+

+ 4C2D
2
3S14 − 32C2D

2
3S15 + 54D1D

2
3S16 − 3C1D

2
3S17 + 6C1D

2
3S19−

− 9T3(54C0(18T4 +D2
3) + 54C3(2D1D2 − S8 + 2S9)− C2(8D

2
2+

+ 54D1D3 − 27S11 + 27S12 − 4S14 + 32S15) + 54D1S16 + 3C1(2D2D3−
−S17+2S19−6S21))−576T6(2D2D3−S17+2S19−6S21)−18C1D

2
3S21+

+ 18T4(6C1D2D3 + 54C0D
2
3 + 54C3(2D1D2 − S8 + 2S9)− C2(8D

2
2+

+ 54D1D3 − 27S11 + 27S12 − 4S14 + 32S15) + 54D1S16 − 3C1S17+

+ 6C1S19 − 18C1S21))/2
8/34, T19 = (T6, C3)

(1)/2,

T44 =((S23, C3)
(1), D3)

(2), T47 = (T11, C3)
(2),

T136 =
(
T74, C3

)(2)
/24, T137 =

(
T74,D3

)(1)
/6.

are T -comitants of cubic systems (4) (see [23] for the definition of a T -comitant).
We note that in the above invariant polynomials we keep the notations introduced
in [5].

In [14] all the possible configurations of invariant lines are determined in the case,
when the total multiplicity of these lines (including the line at infinity) equals nine.
All possible configurations of invariant lines of total multiplicity eight (including the
line at infinity) are determined in [3, 5–7,9].

In the above mentioned articles several lemmas concerning the number of triplets
and/or couples of parallel invariant straight lines which a cubic system could have
are proved. Using these lemmas the following theorem is obtained:

Theorem 1. If a cubic system (4) possesses a given number of triplets or/and
couples of invariant parallel lines real or/and complex, then the following conditions
are satisfied, respectively:

(i) two triplets ⇒ V1 = V2 = U 1 = 0;
(ii) one triplet and one couple ⇒ V4 = V5 = U2 = 0;
(iii) one triplet ⇒ V4 = U 2 = 0;
(iv) 3 couples ⇒ V3 = 0;
(v) 2 couples ⇒ V5 = 0.

Remark 2. The above conditions depend only on the coefficients of the cubic homo-
geneous parts of systems (4).

We rewrite systems (4) using different notations:

ẋ = a+ cx+ dy + gx2 + 2hxy + ky2 + px3 + 3qx2y + 3rxy2 + sy3 ≡ P (x, y),

ẏ = b+ ex+ fy + lx2 + 2mxy + ny2 + tx3 + 3ux2y + 3vxy2 + wy3 ≡ Q(x, y).
(6)
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Let L(x, y) = Ux + V y + W = 0 be an invariant straight line of this family of
cubic systems. Then, we have

Up(x, y) + V q(x, y) = (Ux+ V y +W )(Ax2 + 2Bxy + Cy2 +Dx+ Ey + F ),

and this identity provides the following 10 equations:

Eq1 = (p−A)U + tV = 0, Eq6 = (2h−E)U+(2m−D)V −2BW =0,
Eq2 = (3q − 2B)U + (3u−A)V = 0, Eq7 = kU + (n− E)V − CW = 0,
Eq3 = (3r − C)U + (3v − 2B)V = 0, Eq8 = (c− F )U + eV −DW = 0
Eq4 = (s− C)U + V w = 0, Eq9 = dU + (f − F )V − EW = 0,
Eq5 = (g −D)U + lV −AW = 0, Eq10 = aU + bV − FW = 0.

(7)

It is well known that the infinite singularities (real or complex) of systems (6)
are determined by the linear factors of the polynomial

C3 = yp3(x, y)− xq3(x, y).

Remark 3. Let C3 =
∏4

i=1(αix + βiy), i = 1, 2, 3, 4. Then [βi : −αi : 0] are
singular points at infinity. Hence invariant affine lines must be of the form Ux +
V y + W = 0 with (U, V ) among (αi, βi). In this case, for any fixed (αi, βi), for
a specific value of W , six equations among (7) become linear with respect to the
parameters {A,B,C,D,E, F} (with the corresponding non-zero determinant) and
we can determine their values, which annihilate some of the equations (7). So in
what follows, for each direction given by (αi, βi), we will examine only non-zero
equations containing the last parameter W .

For the proof of the Main Theorem we will consider the following homogeneous
cubic systems associated to systems (6):

ẋ = p3(x, y), ẏ = q3(x, y). (8)

Clearly in the case of two real and two complex distinct infinite singularities the
polynomial C3(x, y) has four distinct linear factors over C: two of them being real
and two complex.

According to [14] (see also [18]) we have the following result.

Lemma 3. If a cubic system (6) has 2 real and 2 complex distinct infinite singu-
larities, then its associated homogeneous cubic systems could be brought via a linear
transformation to the canonical form{

x′ = (u+ 1)x3 + (s+ v)x2y + rxy2, C3 = x(sx− y)(x2 + y2),

y′ = −sx3 + ux2y + vxy2 + (r − 1)y3, rs(r + s) ̸= 0
(9)

for which the necessary invariant condition D1 < 0 is satisfied.
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3 The proof of the Main Theorem

Assuming that cubic systems in the family (6) possess four distinct infinite singu-
larities, two real and two complex, according to Lemma 3 via a linear transformation
they could be brought to the family of systems

ẋ =a+ cx+ dy + gx2 + 2hxy + ky2 + (u+ 1)x3 + (s+ v)x2y + rxy2,

ẏ =b+ ex+ fy + lx2 + 2mxy + ny2 − sx3 + ux2y + vxy2 + (r − 1)y3
(10)

with C3 = x(sx+ y)(x2 + y2) and the condition D1 < 0 holds.

Since systems with the configuration of the type T = (2, 2, 2) could only possess
three couples of parallel invariant lines, according to Theorem 1 the condition V3 = 0
is necessary for systems (10). Taking the corresponding associated homogeneous
systems (9) we force the condition V3 = 0 to be satisfied.

On the other hand in paper [5] the canonical form of (9) subject to the condition
V3 = 0 was constructed . This canonical form is the following ([5, systems (77)]):

ẋ =− 2x3 + 2sx2y,

ẏ =− sx3 − 3x2y + sxy2 − y3.
(11)

Taking into consideration (11) and systems (6), applying an affine transformation
and a time rescaling, these systems can be brought to systems belonging to the
following family (g = n = 0):

ẋ =a+ cx+ dy + 2hxy + ky2 − 2x3 + 2sx2y,

ẏ =b+ ex+ fy + lx2 + 2mxy − sx3 − 3x2y + sxy2 − y3.
(12)

According to [10, Remark 2.13] we have the following

Remark 4. If the perturbed systems have a couple (respectively a triplet) of parallel
lines in the direction Ux+ V y = 0, then the respective cubic homogeneous systems
(8) associated to systems (6) necessarily have the invariant line Ux+ V y = 0 of the
multiplicity two (respectively three).

3.1 Construction of the cubic systems possessing configuration or
potential configuration (2,2,2)

For homogeneous cubic systems (11) we have

H(ã, X, Y, Z) = gcd(G1, G2, G3) = 2X2(sX + Y )(X2 + Y 2)2. (13)

So the above systems possess three couples of invariant straight lines and by Remark
4 systems (12) could possesses three couples of invariant lines only in the directions
x = 0 and y = ±ix, and namely: two real lines in the direction x = 0 and two
complex invariant lines in the directions y = ±ix. In what follows we will examine
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each one of the above mentioned directions.
(a) The direction x = 0. In this case, according to (7) and Remark 3, we

obtain:

U = 1, V = 0, A = −2, B = s, C = 0, D = 2W,E = 2(h− sW ), F = c− 2W 2,

Eq7 = k, Eq9 = d− 2hW + 2sW 2, Eq10 = a− cW + 2W 3.

So, to have exactly two parallel invariant affine lines in this direction (i.e. to have
exactly two solutions of W) it is necessary and sufficient that Eq7 = 0, s ̸= 0 and

R
(0)
W (Eq9, Eq10) = R

(1)
W (Eq9, Eq10) = 0.

So k = 0 and we calculate R
(1)
W (Eq9, Eq10) = 4(2h2 − ds − cs2) = 0. This yields

d =
2h2 − cs2

s
and we get R

(0)
W (Eq9, Eq10) = 8(chs2 − 2h3 + as3)2/s3 = 0 which

implies a =
h(2h2 − cs2)

s3
. In this case we obtain

Eq9 = −1

s
(cs2 − 2h2 + 2hsW − 2s2W 2), Eq10 =

h+ sW

s2
Eq9

and since s ̸= 0 we conclude that the equations Eq9 = 0 and Eq10 = 0 have two
common solutions. These solutions could be either real or complex or coinciding
depending on the value of the expression 2cs2 − 3h2 because we have

Discrim[cs2 − 2h2 + 2hsW − 2s2W 2,W ] = 4s2(2cs2 − 3h2).

Thus we conclude that if for systems (9) the following conditions

s ̸= 0, k = 0, d =
2h2 − cs2

s
, a =

h(2h2 − cs2)

s3
(14)

hold, then these systems possess in the direction x = 0 two invariant lines which
could be either real or complex or coinciding.

(b) The directions x ± iy = 0. Considering the equations (7), Remark 3 and
the conditions (14), for U = 1 and V = ±i we obtain:

U = 1, V = ±i, A = −2∓ is, B = (s∓ i)/2, C = −1, D = 2W ± i(sW + l),

E = l + 2h± i(2m−W ), F = c− 2W 2 ± i(e− lW − sW 2),

Eq7 = 2m∓ i(l + 2h),

Eq9 =
2h2

s
− cs+ e± i(f − c)− 2(l + h± im)W + (±3i− s)W 2,

Eq10 = (2h3 − chs2)/s3 ± ib− (c± ie)W ± ilW 2 + (2± is)W 3.

As the parameters of cubic systems are real, clearly Eq7 = 0 implies m = 0, l = −2h.
Considering the relations (determined at this moment)

s ̸= 0, k = 0, d =
2h2 − cs2

s
, a =

h(2h2 − cs2)

s3
, m = 0, l = −2h (15)
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we calculate R
(0)
W (Eq9, Eq10) and R

(1)
W (Eq9, Eq10). So we have R

(1)
W = (U1 + iU2)/s,

where
U1 = 3cs+ 6fs+ 6h2s− es2 − 5cs3 − fs3,

U2 = −12h2 + 3es+ 7cs2 + 5fs2 + 2h2s2 − cs4.

As it was mentioned earlier, in order to have exactly two parallel lines in

the directions y = ±ix it is necessary and sufficient that R
(0)
W (Eq9, Eq10) =

R
(1)
W (Eq9, Eq10) = 0. Therefore R

(1)
W = 0 ⇔ U1 = U2 = 0 and we obtain:

e = −−72h2 + 27cs2 − 6h2s2 + 12cs4 − 2h2s4 + cs6

2s(9 + s2)
,

f =
−9c− 6h2 + 8cs2 − 2h2s2 + cs4)

2(9 + s2)
.

Taking into consideration the above conditions we calculate:

R
(0)
W = (U3 + iU4)/(−s6(s− 3i)3(s+ 3i)2),

where

U3 =− 162h3 + 81chs2 − 108h3s2 + 54bs4 + 45chs4 − 8h3s4 + 6bs6+

13chs6 − 2h3s6 + chs8,

U4 =− 108h3s− 81bs3 + 81chs3 − 6h3s3 + 2h3s5 + bs7 − chs7.

So R
(0)
W = 0 ⇔ U3 = U4 = 0 and we calculate

Resb(U3, U4) =− h(s2 − 9)s3(1 + s2)(9 + s2)Ψ, where

Ψ = cs2(9 + s2)2 − 2h2(81 + 9s2 + s4).

We claim that for h = 0 or s2 − 9 = 0 we arrive at the systems possessing invariant
lines of total multiplicity 8. Indeed, assuming h = 0 we obtain

U3 = 6bs4(9 + s2), U4 = b(s2 − 9)s3(9 + s2)

and clearly the condition U3 = U4 = 0 implies b = 0. Then considering the above
determined conditions we arrive at the following systems

ẋ =(c− 2x2)(x− sy),

ẏ =− cs(3 + s2)x/2 + c(s2 − 1)y/2− sx3 − 3x2y + sxy2 − y3

which possess the following 7 invariant affine lines:

c− 2x2 = 0, sx+ y = 0, c(s+ i)2 + 2(x+ iy)2 = 0, c(s− i)2 + 2(x− iy)2 = 0.

So considering the line at infinity we get 8 invariant lines and our claim is proved in
the case h = 0.
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Next we consider the case s = ±3. Since we may assume s > 0 (due to the
rescaling y → −y) we examine the case s = 3. Then we obtain U4 = 0 and
U3 = 324(27b + 63ch − 10h3) and therefore the condition U4 = 0 implies b =
−h(63c− 10h2)/27. Then we arrive at the following systems

ẋ =(2h2 − 9c+ 6hx+ 18x2)(h− 3x+ 9y)/27,

ẏ =− h(63c− 10h2)/27 + (27c− 4h2)x/3+

(6c− h2)y/3− 2hx2 + 3x3 − 3x2y − 3xy2 − y3

which besides the invariant line at infinity, possess the following 7 invariant affine
lines:

2h− 9x+ 3y = 0, 9c− 2h2 + 6hx− 18x2 = 0,

(36− 27i)c− (6− 4i)h2 + (3− 3i)h(x− iy) + 9(x− iy)2 = 0,

(36 + 27i)c− (6 + 4i)h2 + (3 + 3i)h(x+ iy) + 9(x+ iy)2.

Therefore our claim is completely proved.
So it remains to examine the case Ψ = 0 which gives us

c =
2h2(81 + 9s2 + s4)

s2(9 + s2)2

and then we have

U3 =
bs2(9 + s2)2 + 6h3(2s2 − 9)

9 + s2
, U4 =

s(s2 − 9)

6s2
U3.

Evidently the condition U3 = U4 = 0 yields b = −6h3(2s2 − 9)

s2(9 + s2)2
and as a result we

arrive at the 2-parameter family of systems

ẋ =2
(
x+

hs

9 + s2

)(
x+

9h

s(9 + s2)

)(h
s
− x+ sy

)
,

ẏ =− 6h3(2s2 − 9)

s2(9 + s2)2
− 9h2(5s2 − 9)

s(9 + s2)2
x+

h2(s2 − 9)(4s2 − 9)

s2(9 + s2)2
y − 2hx2−

sx3 − 3x2y + sxy2 − y3.

(16)

We observe that for these systems the condition h(s2 − 9) ̸= 0 must hold, otherwise
we get either homogeneous cubic systems (for h = 0) or systems possessing invariant
lines of total multiplicity 8 (for s = ±3).

Therefore we can apply to systems (16) the following transformation

x1 = αx+
s2

s2 − 9
, y1 = αy +

3s

s2 − 9
, t1 =

1

α2
, α =

s(9 + s2)

h(s2 − 9)

and we arrive at the one-parameter family of systems

ẋ =2x(1− x)(1 + x− sy),

ẏ =− s+ sx− y + sx2 − sy2 − sx3 − 3x2y + sxy2 − y3,
(17)
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which coincide with systems (3) given in the Main Theorem.

So we proved the following lemma.

Lemma 4. A system (12) possesses invariant lines in the configuration (2, 2, 2) if
and only if the following conditions are satisfied:

sh(s2 − 9) ̸= 0, k = m = 0, d =
18h2s

(9 + s2)2
, l = −2h, e =

9h2(9− 5s2)

s(9 + s2)2
,

f = −h2(81− 45s2 + 4s4)

s2(9 + s2)2
, c =

2h2(81 + 9s2 + s4))

s2(9 + s2)2
,

b =
6h3(9− 2s2)

s2(9 + s2)2
, a =

18h3

s(9 + s2)2
.

(18)

Next we construct the invariant conditions corresponding to (18).

First of all providing that for systems (12) the conditions (18) are satisfied we
calculate

D4 = 2304s(9 + s2), K4 =
2

9
h(s2 − 9)x(x2 + y2)

and we deduce that the condition sh(s2 − 9) ̸= 0 is equivalent to D4K4 ̸= 0.

Next we evaluate the invariant polynomial J6:

J6 =
1

3

[
(3 + s2)x− 2sy

][
2mx4 − 2(l + 2h)x3y − (3k + 2m)x2y2 − ky4

]
.

We observe that the condition J6 = 0 forces the second factor to vanish and evidently
this is equivalent to k = m = 0 and l = −2h, i.e. we get the conditions provided in
(18) for these three parameters.

Taking into consideration the conditions D4K4 ̸= 0 and J6 = 0 for system (12)
we calculate

J7 =
7∑

k=0

C̃k(a, b, c, d, e, f, h, s)x
7−kyk.

The condition J7 = 0 implies the system C̃k(a, b, c, d, e, f, h, s) = 0 (k = 0, . . . , 7)
of eight polynomial equations. It is not too difficult to determine that this system
of equations gives us the unique solution (a, b, c, d, e, f) for these parameters and
the obtained expressions coincide with the corresponding expressions provided by
Lemma 4.

Thus we arrive at the invariant conditions provided by Main Theorem.

Next we prove that systems (17) possess a single configuration given in Figure 1.
Indeed, we observe that systems (17) possess the following six invariant affine lines:

L1 : x = 0, L2 : x = 1, L3,4 : −1 + x∓ iy = 0, L5,6 : 1 + x∓ iy = 0.
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Moreover, these systems have 9 singular points:

M1,2=(∓1, 0), M3,4=(0,∓i), M5=(0,−s), M6,7=(1,∓2i), M8,9=

(
s∓ i

s± i
,

2

s± i

)
.

We observe that systems (17) have only three real finite singular points: M1 (re-
spectively M2) at the intersection of L3 and L4 (respectively L2, L5 and L6) and
M5 is located on the invariant line L1.

In the article [11, page 8] the Convention concerning three invariant lines inter-
secting at the same singular point is given: two complex conjugate lines (L and L̄)
and one real (L′). We have the next remark.

Remark 5. Considering the examination of the position of L′ with respect to L and
L̄ given in [11, Convention] it is not too difficult to show that this Convention is true
independently whether L′ is an invariant line or not of the corresponding system.
Only the fact that L′ passes through the point of intersection of L and L̄ is essential.

Next we observe that the singular point M5 is located on the non-invariant line
y = s(x−1) passing through M2 which is the intersection point of the invariant lines
y = ±i(x − 1). According to [11, Convention] the common projection of these two
complex lines is y = 0. Since s ̸= 0 we conclude that the line y = s(x− 1) could not
coincide with the projection y = 0. Therefore assuming s < 0 (due to the rescaling
y → −y) we arrive at the configuration Config. 7.1c. This completes the proof of
the Main Theorem. □
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No. 2, 102–105.

[3] C. Bujac. One subfamily of cubic systems with invariant lines of total multiplicity eight and
with two distinct real infinite singularities. In: Bul. Acad. Ştiinţe Repub. Mold., Mat. 77(2015),
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