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The comparability of motions in dynamical systems
and recurrent solutions of (S)PDEs

David Cheban and Zhenxin Liu

Abstract. Shcherbakov’s comparability method is very useful to study recurrent
solutions of differential equations. In this paper, we extend the method from met-
ric spaces to uniform spaces, which applies well to dynamical systems in infinite-
dimensional spaces. This generalized comparability method can be easily used to
study recurrent solutions of (stochastic) partial differential equations under weaker
conditions than in earlier results. We also show that the distribution of solutions of
SDEs naturally generates a semiflow or skew-product semiflow on the space of prob-
ability measures, which is interesting in itself. As illustration, we give an application
to semilinear stochastic partial differential equations.
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1 Introduction

Recurrence is a core topic in the theory of dynamical systems, which describes the
asymptotic behaviors and complexity of a system. By Poincaré recurrence theorem
and Birkhoff recurrence theorem we know that recurrence exists widely in dynamical
systems. The notion of Poisson stability (also called recurrence in the literature) was
first introduced by Poincaré in his famous work [23]; he observed that the orbits of
aperiodic solutions are Poisson stable for all bounded Hamiltonian systems. Poisson
stable motions contain the following different classes: stationary, periodic, quasi-
periodic, almost periodic, almost automorphic, Birkhoff recurrent, Levitan almost
periodic, almost recurrent, pseudo-periodic, pseudo-recurrent, etc. It is well known
that the complex and meantime interesting phenomenon happens on the Poisson
stable set and the dynamics outside of it is simple.

Shcherbakov [25–29] studied systematically the existence of Poisson stable solu-
tions to the equation

x′ = f(t, x), x ∈ B (1.1)

with f being Poisson stable in t ∈ R uniformly with respect to x on every compact
subset of B, where B is a Banach space. To this end, Shcherbakov developed
a method of comparability of functions by character of recurrence. He studied
different classes of equations of the form (1.1), and gave conditions for existence of

©David Cheban and Zhenxin Liu, 2024
DOI: https://doi.org/10.56415/basm.y2024.i1-2.p53

53



54 DAVID CHEBAN AND ZHENXIN LIU

solutions with the same character of recurrence as f . He named this type of solutions
(uniformly) comparable solutions.

The works of Shcherbakov were extended by many authors, see e.g. Bron-
shtein [3, ChIV], Caraballo and Cheban [4–7], Cheban [8], Cheban and Liu [10],
Cheban and Mammana [13], Cheban and Schmalfuss [14], and others. Very recently,
Shcherbakov’s comparability method was employed to study recurrent solutions to
stochastic differential equations: Cheban and Liu [11,12], Cheng and Liu [15], Cheng,
Liu and Röckner [16], Liu and Liu [22], among others.

Shcherbakov’s comparability method was established in metric spaces, which ap-
plies perfectly to study recurrent solutions to (stochastic) ordinary differential equa-
tions, i.e. in finite-dimensional spaces, but it imposes some restrictions for (stochas-
tic) partial ordinary differential equations, i.e. in infinite-dimensional spaces; see [11,
Remark 4.2] for details. In this paper, we aim to develop Shcherbakov’s compa-
rability method to match well equations of infinite dimension. To this end, we
will establish the comparability principle in uniform spaces, which works well for
compact-open topology and infinite-dimensional equations.

The paper is organized as follows. In Section 2, we give some preliminaries on dy-
namical systems, Poisson stable motions, etc. In Section 3, we develop Shcherbakov’s
comparability method in uniform spaces. In Section 4, we establish that stochas-
tic ODEs and stochastic semilinear PDEs generates skew-product semiflows on the
space of probability measures, under rather general conditions. In Section 5, we
study the Poisson stability of solutions to stochastic semilinear PDEs by our theo-
retical results in Sections 3 and 4. In the last Appendix Section, for the convenience
of the reader, we collect some preliminaries on the uniform space.

2 Preliminaries

In this section, we introduce some useful preliminaries, including dynamical sys-
tems, Poisson stable functions/motions, and a fixed point theorem.

Let (M,U) be a Hausdorff uniform space with uniform neighborhood system
(V ;A,≥).

2.1 Dynamical systems and recurrent motions

Firstly, we recall the types of Poisson stable/recurrent functions to be studied in
this paper; we refer the reader to [24,25,27,31] for further details and the relations
among these types of functions.

Definition 2.1 (Recurrent functions). Let f : R → M be a continuous function.

(i) The function f is called stationary if f(t) = f(0) for all t ∈ R.

(ii) For given τ ∈ R, the function f is called periodic or τ -periodic if f(t+τ) = f(t)
for all t ∈ R.
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(iii) The function f is called quasi-periodic (with base frequencies ω1, . . . , ωn) if
ω1, . . . , ωn are rationally independent and f(t) = g(ω1t, . . . , ωnt) for some con-
tinuous function g : Rn → M satisfying g(t1 + 2π, . . . , tn + 2π) = g(t1, . . . , tn)
for all (t1, . . . , tn) ∈ Rn.

(iv) The function f is called Bohr almost periodic if for each a ∈ A, the set

T (f, a) := {τ ∈ R : f(t+ τ) ∈ Va(f(t)) for all t ∈ R}

is relatively dense in R, i.e. there exists l = l(a) > 0 such that (x, x + l) ∩
T (f, a) ̸= ∅ for all x ∈ R. The set T (f, a) is called the set of a-almost periods
of f .

(v) The function f is called positively (respectively, negatively) pseudo-periodic if
for any a ∈ A and l > 0, there exists τ > l (respectively, τ < −l) such that

f(t+ τ) ∈ Va(f(t)), for all t ∈ R.

f is called pseudo-periodic (or uniformly Poisson stable, see [31]) if it is both
positively and negatively pseudo-periodic.

(vi) The function f is called almost automorphic if every sequence {s′n} of real
numbers admits a subsequence {sn} such that there exists a function g : R →
M with the property that for every a ∈ A and every finite interval [a, b] there
exist N satisfying

f(t+ sn) ∈ Va(g(t)) and g(t− sn) ∈ Va(f(t)) for t ∈ [a, b] (2.1)

whenever n ≥ N .

Remark 2.2. (i) It is well known that the function f is Bohr almost periodic if and
only if it is Bochner almost periodic: i.e. for every sequence of real numbers
{s′n}, there exists a subsequence {sn} such that limn→∞ f(t + tn) uniformly
exists on R.

(ii) By the definitions of Bochner almost periodicity and almost automorphy, it is
straightforward to check that the range f(R) of f is precompact in M when f
is Bohr almost periodic or almost automorphic.

(iii) We note that the above definition of almost automorphy is a little stronger than
the Bochner’s original definition [2], which only requires that the convergence
in (2.1) is point-wise. But when we consider almost automorphic solutions
to differential equations, all the almost automorphic solutions in Bochner’s
original sense will automatically satisfy (2.1) uniformly on compact intervals;
see [30] for details.
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Definition 2.3. (i) Let T = R or R+. The triple (M,T, φ) is called a dynamical
system if φ : T×M → M is continuous and satisfies:

φ(0, x) = x, φ(t+ s, x) = φ(t, φ(s, x)) for all x ∈ M and t, s ∈ T. (2.2)

If T = R, φ is called a flow on M ; if T = R+, φ is called a semiflow on M .
(ii) A continuous mapping t 7→ φ(t, x) is called a motion through x. If the motion

π(·, x) through x has property P, we also say that the point x has property P; for
example, the motion π(·, x) being periodic is equivalent to that x is a periodic point.

(iii) We denote

γ(x) := {φ(t, x) : t ∈ T} and H(x) := γ(x)

the orbit through x and hull of x, respectively. A set S ⊂ M is called an invariant
set (respectively, positively invariant set) if φ(t, S) = S (respectively, φ(t, S) ⊂ S)
for all t ∈ R+. A closed invariant set S is called minimal if it contains no proper
nonempty closed invariant sets.

Remark 2.4. (i) Note that, for given x ∈ M , the orbit γ(x) and hull H(x) are
invariant sets when T = R, while positively invariant sets when T = R+.

(ii) Note that when the flow (respectively, semiflow) φ is restricted to an invari-
ant (respectively, positively invariant) set S, φ is also a flow (respectively,
semiflow).

Definition 2.5. For a given flow (M,R, φ) and a point x ∈ M , the motion φ(·, x) or
the point x is called stationary (respectively, periodic, quasi-periodic, Bohr almost
periodic, pseudo-periodic, almost automorphic) if the corresponding motion φ(·, x) :
R → M through x is a function with these properties.

Definition 2.6. Let (M,R, φ) be a flow and x ∈ M .

(i) The motion π(·, x) or the point x is called Lagrange stable if H(x) is compact.

(ii) The motion π(·, x) or the point x is called Birkhoff recurrent if it is Lagrange
stable and for any a ∈ A the set

{τ ∈ R : π(τ, x) ∈ Va(x)}

is relatively dense in R.

(iii) The motion π(·, x) is called Levitan almost periodic if there exists a Bohr almost
periodic point y with respect to another flow (Y,R, σ) such that Ny ⊂ Nx,
where

Nx := {{tα} ⊂ R : {tα} is a net such that lim
α

φ(tα, x) → x}

and similarly for Ny (with x replaced by y).
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Definition 2.7. Let (M,R, φ) be a flow and x ∈ M .

(i) A point x is called positively Poisson stable if x ∈ ω(x); note that x is positively
Poisson stable if and only if for any a ∈ A, t0 ∈ R and z ∈ γ(x), there exists
T = T (a, t0, z) > 0 such that

π(τ, z) ∈ Va(z) for some τ ∈ [t0, t0 + T ].

The point x is negatively Poisson stable if x ∈ α(x) and x is Poisson stable if
it is both positively and negatively Poisson stable.

(ii) A point x is called almost recurrent if it is Poisson stable and the T in (i) is
independent of t0 ∈ R, i.e. T = T (a, z).

(iii) A point x is called pseudo-recurrent if it is Poisson stable and the T in (i) is
independent of z ∈ γ(x), i.e. T = T (a, t0).

Remark 2.8. It is known (see, e.g. [31]) that:

(i) A point x is Birkhoff recurrent if and only if x is Poisson stable and the T
in Definition 2.7 is independent of both t0 ∈ R and z ∈ γ(x), i.e. T = T (a).
That is, Birkhoff recurrent = almost recurrent + pseudo-recurrent.

(ii) If x is Poisson stable and the T in Definition 2.7 is independent of a ∈ A, i.e.
T = T (t0, z), then x is indeed a periodic point.

Remark 2.9. It is well known that we have the following increasing inclusion rela-
tions: stationary, periodic, quasi-periodic, Bohr almost periodic. For the inclusion
relations among other recurrent motions, see Figure 1 for details (A ⇒ B means “A
implies B”); a similar figure can be found in [31].

Remark 2.10. (i) Every almost automorphic point x ∈ M is Levitan almost peri-
odic, but the converse is not true in general. A point x is almost automorphic
if and only if it is Levitan almost periodic and H(x) is compact. See [21, 30]
for details.

(ii) By Birkhoff’s recurrence theorem, a set E ⊂ M is a compact minimal set if
and only if E = H(x) for some Birkhoff recurrent point x; see [24] for details.

(iii) A point x ∈ M is Birkhoff recurrent if and only if x is almost recurrent and
H(x) is compact.

Let X and Y be two Hausdorff uniform spaces. Here, for simplicity, we do not
point out explicitly the topology and uniform neighborhood system, which should
not cause confusion. To study recurrent solutions to (stochastic) differential equa-
tions, we need to define recurrent functions with parameters. Consider the space
C(R × X ,Y) of all continuous mappings from R × X to Y which is endowed with
the compact-open topology. Denote f τ (t, x) := f(t+ τ, x) for f ∈ C(R×X ,Y) and
(t, x) ∈ R×X . Then the mapping

θ : R× C(R×X ,Y) → C(R×X ,Y), (t, f) 7→ f t
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Figure 1. The relations among recurrent functions/motions.

defines a flow (called shift flow) on C(R × X ,Y), i.e. θ(0, ·) = Id, θ(t + s, ·) =
θ(t, θ(s, ·)) for t, s ∈ R and the mapping θ is continuous; see [9, 24] for details. For
simplicity, we also denote θ(t, f) by θtf in what follows.

Definition 2.11. Let X and Y be two Hausdorff uniform spaces and θ be the shift
flow on C(R×X ,Y). A function f ∈ C(R×X ,Y) is called stationary (respectively,
periodic, quasi-periodic, Bohr almost periodic, almost automorphic, Birkhoff recur-
rent, Lagrange stable, Levitan almost periodic, almost recurrent, pseudo-periodic,
pseudo-recurrent, Poisson stable) in t uniformly for x on compact sets, provided the
corresponding motion θ(·, f) through the point f possesses these properties.

Definition 2.12. Let T = R or R+, X and Y be two Hausdorff uniform spaces, and
(Y,R, θ) be a flow.

(i) A cocycle Φ over θ is a continuous mapping

Φ : T×X × Y → X , (t, x, y) 7→ Φ(t, x, y)

which satisfies the property:

Φ(0, x, y) = x,Φ(t+s, x, y) = Φ(t,Φ(s, x, y), θsy) for all t, s ∈ T, x ∈ X , y ∈ Y.

The space X is called a fiber space and Y a base space.

(ii) The associated skew-product flow (or semiflow) Π: T×X ×Y → X ×Y is the
flow (or semiflow) (X × Y,T,Π):

Π(t, x, y) := (Φ(t, x, y), θty). (2.3)

Remark 2.13. Note that we always assume that the base flow θ is defined for t ∈ R,
and the cocycle Φ may be defined on R or R+.
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2.2 Recurrence in distribution

Let X be a Polish space, i.e. a separable complete metric space. Denote P(X )
be the space of all Borel probability measures on X endowed with the β metric:

β(µ, ν) := sup

{∣∣∣∣∫ fdµ−
∫

fdν

∣∣∣∣ : ∥f∥BL ≤ 1

}
, µ, ν ∈ P(X ),

where f are Lipschitz continuous real-valued functions on X with the norms

∥f∥BL = ∥f∥L + ∥f∥∞, ∥f∥L = sup
x ̸=y

|f(x)− f(y)|
d(x, y)

, ∥f∥∞ = sup
x∈X

|f(x)|.

Recall that a sequence {µn} ⊂ P(X ) is said to weakly converge to µ if∫
fdµn →

∫
fdµ for all f ∈ Cb(X ),

the space of all bounded continuous real-valued functions on X . It is well-known
that (P(X ), β) is a Polish space and that a sequence {µn} weakly converges to µ if
and only if β(µn, µ) → 0 as n → ∞. See [18, Chapter 11] for the metric β and its
related properties.

Definition 2.14. A sequence of X -valued random variables {Xn} is said to converge
in distribution to the random variable X if the corresponding laws {µn} weakly
converge to the law µ of X, i.e. β(µn, µ) → 0.

Definition 2.15. (i) A set Γ ⊂ P(X ) is called relatively compact if every sequence
of elements of Γ contains a weakly convergent subsequence.

(ii) A set Γ ⊂ P(X ) is called tight if for every ϵ > 0 there exists a compact set
K ⊂ X such that µ(K) > 1− ϵ, for every µ ∈ Γ.

Proposition 2.16. [1, Section 5] The set Γ ⊂ P(X ) is tight if and only if it is
relatively compact.

Definition 2.17. An X -valued stochastic process X(t), t ∈ R, is said to be sta-
tionary (respectively, periodic, quasi-periodic, Bohr almost periodic, almost auto-
morphic, Birkhoff recurrent, Levitan almost periodic, Poisson stable) in distribution
if its law µ(·) : R → P(X ) on X , as a function from C(R,P(X )), possesses the
corresponding property.

2.3 A fixed point theorem depending on a parameter

In what follows, we will need the following basic result:

Theorem 2.18. Let Λ be a topological space and E be a complete metric space. Let
F : Λ× E → E be a mapping such that there exists a constant α ∈ [0, 1) such that

d(F (λ, x), F (λ, y)) ≤ αd(x, y) for all λ ∈ Λ and x, y ∈ E. (2.4)

Then:
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(i) There exists a unique mapping φ : Λ → E such that

F (λ, φ(λ)) = φ(λ) for all λ ∈ Λ.

(ii) If F (·, x) : Λ → Λ is continuous for any x ∈ E, then the mapping φ is
continuous.

(iii) If in addition Λ is a metric space and there exists a constant L ≥ 0 such that

d(F (λ, x), F (µ, x)) ≤ Ld(λ, µ) for all x ∈ E and λ, µ ∈ Λ,

then the mapping φ : Λ → E is Lipschitz continuous and

d(φ(λ), φ(µ)) ≤ L

1− α
d(λ, µ) for all λ, µ ∈ Λ.

(iv) Let Fn, n = 1, 2, . . . , be a sequence of mappings from Λ × E to E such that
(2.4) holds with F replaced by Fn and α independent of n, and Fn → F for all
points of Λ× E. Then

lim
n→∞

φn(λ) = φ(λ) for all λ ∈ Λ,

where φn(λ) is the unique fixed point of the mapping Fn(λ, ·).

Proof. The item (i) follows from Banach fixed point theorem. To see (ii), note that

d(φ(λ), φ(µ)) = d (F (λ, φ(λ)), F (µ, φ(µ)))

≤ d(F (λ, φ(λ)), F (λ, φ(µ))) + d(F (λ, φ(µ)), F (µ, φ(µ)))

≤ αd(φ(λ), φ(µ)) + d(F (λ, φ(µ)), F (µ, φ(µ))),

so

d(φ(λ), φ(µ)) ≤ 1

1− α
d(F (λ, φ(µ)), F (µ, φ(µ))). (2.5)

Hence the continuity of φ follows from that of F with respect to λ ∈ Λ. The item
(iii) follows from (2.5) and the Lipschitz continuity of F with respect to λ ∈ Λ.

For the item (iv) we have

d(φn(λ), φ(λ)) = d(Fn(λ, φn(λ)), F (λ, φ(λ)))

≤ d(Fn(λ, φn(λ)), Fn(λ, φ(λ))) + d(Fn(λ, φ(λ)), F (λ, φ(λ)))

≤ αd(φn(λ), φ(λ)) + d(Fn(λ, φ(λ)), F (λ, φ(λ))),

so

d(φn(λ), φ(λ)) ≤
1

1− α
d(Fn(λ, φ(λ)), F (λ, φ(λ))).

The result now follows by letting n → ∞.
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3 Shcherbakov’s comparability principle for Poisson stable motions
in uniform spaces

For a net {tα}α∈Λ with the index set Λ being a directed set (Λ,≥), we will simply
denote it by {tα}, omitting the index set, if it is not necessary to point explicitly
out the index set and no confusion would arise; we will write out the index set when
it is necessary.

Let (M,T, φ) be a flow or semiflow, and x ∈ M . Denote byNx (respectively, Mx)
the set of all nets {tα} ⊂ T such that φ(tα, x) → x (respectively, φ(tα, x) converges)
in M , and denote Mx1,x2 the set of all the nets {tα} ⊂ T such that φ(tα, x1) → x2.
Clearly we have Nx = Mx,x and Mx = ∪z∈MMx,z.

Let (Mi,Ui) be Hausdorff uniform spaces with uniform neighborhood systems
(V ;Ai,≥), i = 1, 2.

Definition 3.1. Let (Mi,T, φi), i = 1, 2, be two flows or semiflows.
(i) A point x ∈ M1 is said to be comparable (respectively, strongly comparable) with
y ∈ M2 by character of recurrence if Ny ⊂ Nx (respectively, My ⊂ Mx).
(ii) A point x ∈ M1 is said to be uniformly comparable with y ∈ M2 by character of
recurrence if for arbitrary a1 ∈ A1 there exists a2 ∈ A2 such that

φ2(t+ τ, y) ∈ Va2(φ2(t, y)) implies φ1(t+ τ, x) ∈ Va1(φ1(t, x))

for all t ∈ T, or equivalently

φ1(t2, x) ∈ Va1(φ1(t1, x)) whenever φ2(t2, y) ∈ Va2(φ2(t1, y)) (3.1)

for t1, t2 ∈ T.
For brevity, we also simply say that x is (strongly or uniformly) comparable with

y if no confusion arises.

Remark 3.2. It is immediate to see that the point x is comparable with y if and
only if for any a1 ∈ A1 there exists a2 ∈ A2 such that φ2(τ, y) ∈ Va2(y) for some
τ ∈ T implies φ1(τ, x) ∈ Va1(x). By this characterization, it is clear that uniform
comparability implies comparability. Indeed, it can also be checked that strong
comparability implies comparability as stated in the following result:

Proposition 3.3. Let (Mi,T, φi), i = 1, 2, be two flows or semiflows. If the point
x ∈ M1 is strongly comparable with y ∈ M2, then x is comparable with y.

Proof. Let {tα} ∈ Ny. Note that by the definition of Ny and My we have Ny ⊂ My,
so {tα} ∈ My ⊂ Mx by the strong comparability assumption. That is, φ1(tα, x) → x̄
for some x̄ ∈ M1. We only need to show that x̄ = x. We divide the proof into two
steps.

Step 1. Take any member tα0 from the net {tα}, then by the definition of nets
there exists an index α′

0 > α0. Take another index β0 such that β0 > α′
0, then there

exists an index β′
0 > β0. We continue in this way and obtain a collection of pairs

{(tαµ , tα′
µ
)} with the properties:
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(i) α′
µ > αµ for any µ;

(ii) for any pair (tαµ , tα′
µ
) from this collection, there is another pair (tαν , tα′

ν
) from

this collection such that αν > α′
µ.

By the axiom of choice, there exists a function f from the index set of this collection
to one member of each pair, i.e. f : µ 7→ f(µ) with f(µ) ∈ {αµ, α

′
µ} for each µ. So

we obtain a subnet {tf(µ)} of the net {tα}. Furthermore, by the construction of this
subnet it is immediate to see that the remaining set {tα} \ {tf(µ)} is also a subnet.

Step 2. Let tf(µ) = 0 for each member from the subnet {tf(µ)} and other members
from the subnet {tα} \ {tf(µ)} remain unchanged; we denote by {t̃α} the new net
obtained from the net {tα} in this way. Since φ2(tα, y) converges to y when tα varies
on the original net {tα}, φ2(tα, y) also converges to y when tα varies on the subnet
{tα}\{tf(µ)}. But φ2(t̃α, y) remains y for all t̃α from the subnet {tf(µ)}, so it follows
that φ2(t̃α, y) is eventually in each neighborhood of y when t̃α varies on the new net
{t̃α}. That is, φ2(t̃α, y) converges to y when t̃α varies on the new net {t̃α}.

By the uniform comparability assumption we have {t̃α} ∈ Ny ⊂ Mx, so φ1(t̃α, x)
converges. But φ1(t̃α, x) remains x when t̃α varies on the subnet {tf(µ)}, so this
enforces that φ1(t̃α, x) converges to x for the new net {t̃α}. This implies that
φ1(tα, x) converges to x as tα varies on the subnet {tα} \ {tf(µ)} of new net {t̃α}.
But {tα} \ {tf(µ)} is also a subnet of the original net {tα}, so by the assumption
φ1(tα, x) → x̄ for the original net {tα} we get x = x̄. The proof is complete.

If the space (M1,U1) is complete, then uniform comparability implies strong
comparability as the following result indicates:

Proposition 3.4. Let (Mi,T, φi), i = 1, 2, be two flows or semiflows. If (M1,U1)
is complete and x ∈ M1 is uniformly comparable with y ∈ M2, then x is strongly
comparable with y.

Proof. Let x be uniformly comparable with y and take {tα} ∈ My. For given
a1 ∈ A1, by the uniform comparability there exists a2 ∈ A2 such that φ2(t2, y) ∈
Va2(φ2(t1, y)) implies φ1(t2, x) ∈ Va1(φ1(t1, x)) for all t1, t2 ∈ T. Since φ2(tα, y)
converges, there exists α0 such that φ2(tβ, y) ∈ Va2(φ2(tα, y)) whenever α, β ≥
α0, which further implies that φ1(tβ, x) ∈ Va1(φ1(tα, x)). By the completeness of
(M1,U1), φ1(tα, x) converges and hence {tα} ∈ Mx.

Lemma 3.5. Let (Mi,T, φi), i = 1, 2, be two flows or semiflows. If the point φ1(t, x)
is comparable with point φ2(t, y) for all t ∈ T, then My,φ2(t,y) ⊂ Mx,φ1(t,x) for t ∈ T.

Proof. Fix t ∈ T and let {tα} ∈ My,φ2(t,y). We divide the proof into three cases.

Case 1. When α is large enough we have tα ≥ t. In this case, we may assume
that tα = t+ τα with τα ≥ 0. Then we have

φ2(τα, φ2(t, y)) = φ2(tα, y) → φ2(t, y),
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i.e. {τα} ∈ Nφ2(t,y). Since φ1(t, x) is comparable with φ2(t, y), it follows that
{τα} ∈ Nφ1(t,x) and so

φ1(tα, x) = φ1(τα, φ1(t, x)) → φ1(t, x).

That is, {tα} ∈ Mx,φ1(t,x).

Case 2. When α is large enough we have tα ∈ [0, t]. If the subnet {tβ} of {tα}
satisfies tβ → t0 for some t0 ∈ [0, t], then t can be written as t = t0 + τ for some
τ ∈ [0, t]. Since {tβ} ∈ My,φ2(t,y), it follows that

φ2(t0, y) = lim
β

φ2(tβ, y) = φ2(t, y) = φ2(τ, φ2(t0, y)),

i.e. the point φ2(t0, y) is τ -periodic. By the comparability of φ1(t0, x) with φ2(t0, y),
we can see that {tα̃} ∈ Nφ1(t0,x) for arbitrary net {tα̃} with tα̃ → τ , so τ is also a
period of φ1(t0, x). Thus, we have

lim
β

φ1(tβ, x) = φ1(t0, x) = φ1(τ, φ1(t0, x)) = φ1(t, x).

Since the subnet {tβ} of net {tα} is arbitrary, we have limα φ1(tα, x) = φ1(t, x)
(see [20, p. 74 (c)]); that is, {tα} ∈ Mx,φ1(x,t).

Case 3. If the net {tα} contains two subnets {tβ} and {tγ} such that tβ ≥ t and
tγ ≤ t when β, γ are large enough, then we have the same conclusion by combining
the above two cases.

We now give a characterization for comparability:

Theorem 3.6. Let (Mi,T, φi), i = 1, 2, be two flows or semiflows. Then φ1(t, x) is
comparable with φ2(t, y) for all t ∈ T if and only if there exists a continuous mapping
h : γ(y) → γ(x) such that h(φ2(t, y)) = φ1(t, x) for all t ∈ T.

Proof. Assume that the continuous mapping h : γ(y) → γ(x) satisfies h(φ2(t, y)) =
φ1(t, x) for all t ∈ T. For given t ∈ T, take {tα} ∈ Nφ2(t,y). Then we have

lim
α

φ1(tα, φ1(t, x)) = lim
α

h(φ2(tα, φ2(t, y))) = h(lim
α

φ2(tα, φ2(t, y)))

= h(φ2(t, y)) = φ1(t, x).

That is, {tα} ∈ Nφ1(t,x) and hence Nφ2(t,y) ⊂ Nφ1(t,x).

Conversely, assume that φ1(t, x) is comparable with φ2(t, y) for all t ∈ T. We
choose a connected subset T0 ⊂ T such that 0 ∈ T0 and for any ỹ ∈ γ(y) there exists
a unique tỹ ∈ T0 satisfying ỹ = φ2(tỹ, y). Define the synchronization mapping

h : γ(y) → γ(x), ỹ 7→ φ1(tỹ, x) =: h(ỹ).

In particular, we have h(y) = x. For any given t ∈ T, there exists a unique ỹ ∈ γ(y)
such that ỹ = φ2(t, y), and in this case we have φ2(t, y) = φ2(tỹ, y) with tỹ ∈ T0.
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By Lemma 3.5 we have Mφ2(tỹ ,y),φ2(t,y) ⊂ Mφ1(tỹ ,x),φ1(t,x); in particular, taking
{tα} ∈ Mφ2(tỹ ,y),φ2(t,y) with tα ≡ 0 we get φ1(t, x) = φ1(tỹ, x). So we have

h(φ2(t, y)) = h(φ2(tỹ, y)) = φ1(tỹ, x) = φ1(t, x),

as required. Finally let us show that h is continuous. For a net {yα} ⊂ γ(y)
which converges to y0 ∈ γ(y), there exists corresponding {tα} ⊂ T0 and t0 ∈ T0

such that yα = φ2(tα, y) and y0 = φ2(t0, y). Note that by Lemma 3.5 we have
{tα} ∈ My,φ2(t0,y) ⊂ Mx,φ1(t0,x), so φ1(tα, x) → φ1(t0, x). That is, h(yα) → h(y0).
The proof is complete.

We can also have similar characterizations for uniform comparability which are
stated in the following Theorem 3.7 and Corollaries 3.8, 3.9.

Theorem 3.7. Let (Mi,T, φi), i = 1, 2, be two flows or semiflows. Then x ∈ M1 is
uniformly comparable with y ∈ M2 if and only if there exists a uniformly continuous
function h : γ(y) → γ(x) such that h(φ2(t, y)) = φ1(t, x) for all t ∈ T.

Proof. Let the uniform continuous function h : γ(y) → γ(x) be given. So for any
a1 ∈ A1 there exists a2 ∈ A2 such that φ1(t2, x) ∈ Va1(φ1(t1, x)) whenever φ2(t2, y) ∈
Va2(φ2(t1, y)). But this is exactly the definition of uniform comparability.

Conversely, if x is uniformly comparable with y, then by Theorem 3.6 there exists
a continuous function h which sends the orbit of y to that of x. We only need to
show that this function h is uniformly continuous. But as shown in the first part
of the proof, the uniform comparability of x with y is equivalent to the uniform
continuity of h.

Corollary 3.8. Let (M1,U1) be complete and x ∈ M1 be uniformly comparable with
y ∈ M2. Then there exists a uniform continuous function h̃ : H(y) → H(x) which
is a homomorphism, i.e.

h̃(φ2(t, ỹ)) = φ1(t, h̃(ỹ)), for all ỹ ∈ H(y) and t ∈ T.

Proof. By [20, Theorem 6.26] we know that the function h admits a unique uniform
continuous extension h̃ : H(y) → H(x). We now show that h̃ is a homomorphism.
For any given ỹ ∈ H(y) there exists a net {tα} ⊂ T such that limα φ2(tα, y) = ỹ.
Since {tα} ∈ My, it follows from Proposition 3.4 that {tα} ∈ Mx and we denote by
x̃ the limit of φ1(tα, x). Then for given t ∈ T, by the continuity of h̃ and φ1, φ2 we
have

h̃(φ2(t, ỹ)) = h̃(φ2(t, lim
α

φ2(tα, y))) = lim
α

h̃(φ2(t, φ2(tα, y)))

= lim
α

φ1(t, φ1(tα, x)) = φ1(t, x̃).

On the other hand,

x̃ = lim
α

φ1(tα, x) = lim
α

h(φ2(tα, y)) = lim
α

h̃(φ2(tα, y)) = h̃(ỹ).

Therefore, we get h̃(φ2(t, ỹ)) = φ1(t, h̃(ỹ)). The proof is complete.
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Corollary 3.9. Let (Mi,T, φi), i = 1, 2, be two flows or semiflows, and (M1,U1) be
complete. Then x ∈ M1 is uniformly comparable with y ∈ M2 if and only if there
exists a uniformly continuous function h̃ : H(y) → H(x) which is a homomorphism,
i.e.

h̃(φ2(t, ỹ)) = φ1(t, h̃(ỹ)), for all ỹ ∈ H(y) and t ∈ T.

We now characterize strong comparability by homomorphism.

Theorem 3.10. Let (Mi,T, φi), i = 1, 2, be two flows or semiflows. Then x ∈ M1

is strongly comparable with y ∈ M2 if and only if there exists a continuous mapping
h : H(y) → H(x) such that h(y) = x and h(φ2(t, ỹ)) = φ1(t, h(ỹ)) for all ỹ ∈ H(y)
and t ∈ T.

Proof. Sufficiency. Let h : H(y) → H(x) be the function stated in the theorem.
Take {tα} ∈ My with φ2(tα, y) → ỹ. Then by the properties of h we have

φ1(tα, x) = φ1(tα, h(y)) = h(φ2(tα, y)) → h(ỹ) ∈ H(x),

i.e. {tα} ∈ Mx. So x is strongly comparable with y.

Necessity. We firstly define the function h. For any ỹ ∈ H(y), there exists a net
{tα}α∈Σ1 such that φ2(tα, y) → ỹ. Then by the strong comparability assumption,
the limit limα φ1(tα, x) exists and we denote it by x̃. Then we define h(ỹ) := x̃. We
need to show that the definition is well-defined, i.e. h(ỹ) does not depend on the
choice of the net {tα}α∈Σ1 . Indeed, if there exists another net {tβ}β∈Σ2 such that
we also have φ2(tβ, y) → ỹ, then the limit limβ φ1(tβ, x) exists. We consider the
sequence of nets {tnµ}µ∈Σn , for n = 1, 2, . . ., with:

{tnµ}µ∈Σn = {tα}α∈Σ1 for n = 2k − 1 and {tnα}µ∈Σn = {tβ}β∈Σ2 for n = 2k.

Then clearly we have limn limµ φ2(t
n
µ, y) = ỹ by the construction. Denote by N the

set of natural numbers. Consider the product directed set

Σ := N×
∏

{Σn : n ∈ N}

and define the product order on Σ by (n, g) ≥ (m, f) if and only if n ≥ m and g(k) ≥
f(k) for all k ∈ N. Then by [20, Theorem 2.4] we have lim(n,f)∈Σ φ2(t

n
f(n), y) = ỹ

and hence {tnf(n)}(n,f)∈Σ ∈ My ⊂ Mx; that is, φ1(t
n
f(n), x) converges. But we note

that {t2k−1
f(2k−1)} is a subnet of {tα}α∈Σ1 and {t2kf(2k)} is a subnet of {tβ}β∈Σ2 , so this

enforces that limα φ1(tα, x) = limβ φ1(tβ, x), i.e. the mapping h is well-defined.

We now check that h satisfies the homomorphism property: h(φ2(t, ỹ)) =
φ1(t, h(ỹ)) for all ỹ ∈ H(y) and t ∈ T. Take {tα} ∈ My,ỹ ⊂ My, then by the
group property (2.2) we have {tα + t} ∈ My,φ2(t,ỹ). By above definition for h we
have {tα} ∈ Mx,h(ỹ) and hence {tα + t} ∈ Mx,φ1(t,h(ỹ)), so h(φ2(t, ỹ)) = φ1(t, h(ỹ)).

Lastly, let us show that h is continuous. Let {yµ}µ∈Λ ⊂ H(y) be a net which
converges to ỹ ∈ H(y). We need to show h(yµ) → h(ỹ). Indeed, for each yµ there
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exists a net {tµα}α∈Σµ such that φ2(t
µ
α, y) → yµ. So {tµα}α∈Σµ ∈ My ⊂ Mx and we

denote

lim
α

φ1(t
µ
α, x) =: xµ; (3.2)

by the definition of h we have h(yµ) = xµ. Let

Σ := Λ×
∏

{Σµ : µ ∈ Λ}.

Define the product order on Σ by

(ν, g) ≥ (µ, f) if and only if ν ≥ µ and g(µ) ≥ f(µ) for µ ∈ Λ.

Then by [20, Theorem 2.4] we have

φ2(t
µ
f(µ), y) → ỹ, for (µ, f) ∈ Σ.

So it follows that {tµf(µ)}(µ,f)∈Σ ∈ My ⊂ Mx and we denote

lim
(µ,f)∈Σ

φ1(t
µ
f(µ), x) =: x̃; (3.3)

by the definition of h we have h(ỹ) = x̃. On the other hand, since (M1,U1) is a
uniform space, for any a1 ∈ A1 there exists b1 ∈ A1 such that x1 ∈ Va1(x3) whenever
x1 ∈ Vb1(x2) and x2 ∈ Vb1(x3). By (3.2) and (3.3), we have φ1(t

µ
f(µ), x) ∈ Vb1(x

µ)

and φ1(t
µ
f(µ), x) ∈ Vb1(x̃) when (µ, f) is large enough in Σ. This implies xµ ∈ Va1(x̃),

i.e. h(yµ) ∈ Va1(h(ỹ)). The proof is complete.

We have the following relation between strong comparability and uniform com-
parability:

Corollary 3.11. Let (Mi,T, φi), i = 1, 2, be two flows or semiflows. Let (M1,U1)
be complete and H(y) be compact. Then x ∈ M1 is strongly comparable with y ∈ M2

if and only if x is uniformly comparable with y.

Proof. The necessity follows immediately from Theorems 3.7 and 3.10. The suffi-
ciency follows from Corollary 3.8 and Theorem 3.10.

Remark 3.12. By Corollary 3.11, to verify the uniform comparability in applications
we only need to verify strong comparability (i.e. My ⊂ Mx) if y is Lagrange stable
and the state space of x is complete, which is more realistic in practice.

The following result provides another criterion for uniform comparability and
comparability.

Theorem 3.13. Let T = R or R+. Let Φ be a cocycle over θ with fiber space
X and base space Y, and ν : Y → X be a continuous mapping satisfying that
ν(θty) = Φ(t, ν(y), y) for all (t, y) ∈ T× Y. Then:
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(i) The continuous mapping ζ := (ν, IdY) from (Y,R, θ) to (E ,T,Π) is a homo-
morphism, i.e. ζ(θty) = Π(t, ζ(y)) for all (t, y) ∈ T × Y, where E := X × Y
and Π is the skew-product flow (or semiflow) corresponding to the cocycle Φ,
i.e. Π(t, ζ(y)) = (Φ(t, ν(y), y), θty).

(ii) The point ζ(y) = (ν(y), y) ∈ E is comparable with the point y by character of
recurrence.

(iii) If H(y) is compact, then the point ζ(y) = (ν(y), y) ∈ E is uniformly comparable
with the point y by character of recurrence.

Proof. The statement (i) follows immediately from the property ν(θty) = Φ(t, ν(y), y)
and the definition of skew-product flows/semiflows. The statements (ii) and (iii) fol-
low from Theorems 3.6, 3.7 and the fact that ζ is a homomorphism.

For the relations between (uniform) comparability and Poisson stable motions,
we have the following important results:

Theorem 3.14. Let (Mi,R, φi), i = 1, 2, be two flows. The following statements
hold:

(i) Let x ∈ M1 be comparable with y ∈ M2 by character of recurrence. If y is
stationary (respectively, τ -periodic, Levitan almost periodic, almost recurrent,
Poisson stable), then so is x.

(ii) Let x ∈ M1 be uniformly comparable with y ∈ M2 by character of recurrence.
If y is quasi-periodic (respectively, Bohr almost periodic, almost automorphic,
Birkhoff recurrent, Lagrange stable, pseudo-periodic, pseudo-recurrent), then
so is x.

Proof. Let us prove the conclusion for each class of recurrent motions.
Stationary. If y is stationary then any net {tα} belongs to Ny and hence belongs

to Nx by the comparability assumption. This enforces that x is stationary.
Periodic. Take any net {tα} with tα → τ . If y is τ -periodic and x is comparable

with y, then we have {tα} ∈ Ny ⊂ Nx, which implies that x is τ -periodic.
Levitan almost periodic. If y is Levitan almost periodic, then there exists a Bohr

almost periodic point z with respect to another flow such that Nz ⊂ Ny. But by
assumption x is comparable with y, i.e. Ny ⊂ Nx, so we have Nz ⊂ Nx. That is, x
is Levitan almost periodic.

Almost recurrent. If x is comparable with y, then for any a1 ∈ A1 there exists
a2 ∈ A2 such that φ1(τ, x) ∈ Va1(x) whenever φ2(τ, y) ∈ Va2(y). When y is almost
recurrent, by definition, for this chosen a2 ∈ A2 there exists l = l(a2) such that
for any interval [t0, t0 + l] we can find a τ ∈ [t0, t0 + l] satisfying φ2(τ, y) ∈ Va2(y).
Therefore, x is almost recurrent.

Poisson stable. Since y is Poisson stable, there exists a net {tα} with tα →
+∞ (−∞) such that {tα} ∈ Ny. But x is comparable with y, i.e. Ny ⊂ Nx. So we
have {tα} ∈ Nx. That is, x is Poisson stable.
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Quasi-periodic. Note that quasi-periodicity can be characterized as follows: y is
quasi-periodic (with base frequencies ω1, . . . , ωm) if for all t ∈ T we have φ2(t, y) =
Φ(σ(t, z)) for some continuous function Φ : Tm → M2 and z ∈ Tm, where σ(t, z) is a
rotation on the m-torus Tm, i.e. σ(t, z) = (z1+ω1t, . . . , zm+ωmt), and Φ(σ(0, z)) =
Φ(z) = y. Now x is uniformly comparable with y, so there exists a uniformly
continuous function h : H(y) → H(x) such that φ1(t, x) = h(φ2(t, y)) for any t ∈ T.
So we get φ1(t, x) = h ◦Φ(σ(t, z)) with h ◦Φ : Tm → M1 being continuous. That is,
x is quasi-periodic.

Lagrange stable. If y is Lagrange, then H(y) is compact. It then follows from
Theorem 3.7 and Corollary 3.8 that H(x) is compact and hence x is Lagrange stable.

Almost automorphic and Birkhoff recurrent. Note that y is almost automorphic
(respectively, Birkhoff recurrent) if and only if y is Levitan almost periodic (respec-
tively, almost recurrent) and is Lagrange stable. But as shown above the uniform
comparability of x with y implies that x is Levitan almost periodic (respectively,
almost recurrent, Lagrange stable) when so is y. Thus the result follows.

Bohr almost periodic and pseudo-periodic. Since x is uniformly comparable with
y, for any a1 ∈ A1 there exists a2 ∈ A2 such that φ1(t2, x) ∈ Va1(φ1(t1, x)) whenever
φ2(t2, y) ∈ Va2(φ2(t1, y)). For this a2, if τ ∈ T (y, a2), i.e. is an a2-almost period of
y, then τ is an a1-almost period of x, i.e. we have φ1(t+ τ, x) ∈ Va1(φ1(t, x)) for all
t ∈ R.

When y is Bohr almost periodic (respectively, pseudo-periodic), T (y, a2) is rela-
tively dense (respectively, unbounded). But we have shown above that T (y, a2) ⊂
T (x, a1), so T (x, a1) is relatively dense (respectively, unbounded). That is, x is Bohr
almost periodic (respectively, pseudo-periodic).

Pseudo-recurrent. By the definition x is pseudo-recurrent if for arbitrary a1 ∈ A1

and t0 ∈ R there exists T = T (a1, t0) such that φ1([t0, t0 + T ], z) ∩ Va1(z) ̸= ∅ for
any z ∈ γ(x), that is:

φ1([t0, t0 + T ], φ1(t, x)) ∩ Va1(φ1(t, x)) ̸= ∅, for all t ∈ T. (3.4)

Since x is uniformly comparable with y, for the above a1 there exists a2 ∈ A2 such
that φ1(t2, x) ∈ Va1(φ1(t1, x)) whenever φ2(t2, y) ∈ Va2(φ2(t1, y)). On the other
hand, by the pseudo recurrence of y it follows that for the above a2 and t0 there
exists T̃ = T̃ (a2, t0) such that

φ2([t0, t0 + T̃ ], φ2(t, y)) ∩ Va2(φ2(t, y)) ̸= ∅, for all t ∈ T.

This implies that (3.4) holds with T = T̃ (a2(a1), t0). That is, x is pseudo-recurrent.

Remark 3.15. Since uniform comparability implies comparability, the classes of re-
current motions appearing in Theorem 3.14 (i) are trivially included in (ii).

4 Continuous skew-product semiflow associated to SDEs

In this section, we prove that the distribution of solutions of SDEs naturally
generates a semiflow or skew-product semiflow on the space of probability measures,
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which is interesting in itself.

4.1 The stochastic ODE case

Consider the stochastic differential equation on Rd

dX = f(t,X)dt+ g(t,X)dW. (4.1)

where f(t, x) : R×Rd → Rd, g(t, x) : R×Rd → Md×m are continuous and W is an
m-dimensional Brownian motion. Here Md×m denotes the set of all d×m-matrices,
equipped with norm of Rdm.

We equip the spaces C(R×Rd,Rd) and C(R×Rd,Md×m) with the compact-open
topology, which are metric spaces with the metric given by

ρ(f, g) :=
∞∑
n=1

1

2n
min

{
1, sup

(t,x)∈In×Bn

d(f(t, x), g(t, x))

}

for f, g ∈ C(R× Rd,Rd) or f, g ∈ C(R× Rd,Md×m), where In = [−n, n] and Bn is
the closed ball in Rd centered at the origin with radius n. We consider the shift flow
on their product space C(R × Rd,Rd) × C(R × Rd,Md×m), i.e. θt(f, g) = (f t, gt).
Also the hull H(f, g) of the point (f, g) is given by

H(f, g) := {(f̄ , ḡ) : there exists a sequence {sn} ⊂ R such that fsn → f̄ and gsn → ḡ},

where the convergence is with respect to the compact-open topology.
Define the mapping

Φ : R+ × P(Rd)×H(f, g) → P(Rd), (4.2)

with Φ(t, µ0, (f̄ , ḡ)) being the law (or distribution) L(X(t)) on Rd of the solution
X(·) at time t of the equation

dX = f̄(t,X)dt+ ḡ(t,X)dW, X(0) = X0, (4.3)

where L(X0) = µ0 and Φ(0, µ0, (f̄ , ḡ)) = µ0.
We need the following assumption:

(H1) Let {(fn, gn)}∞n=1 ⊂ H(f, g) be a sequence such that fn → f̄ and gn → ḡ
as n → ∞. Denote by Xn(·) the solutions of the following equations

dXn = fn(t,Xn)dt+ gn(t,Xn)dW, Xn(0) = Xn,0, (4.4)

where the initial value satisfies L(Xn,0) → L(X0). Then for any compact interval
[s, T ]

sup
t∈[s,T ]

β(µn(t), µ(t)) → 0,

where µn(t) = L(Xn(t)), µ(t) = L(X(t)) with X(·) being the solution of (4.3).

We have the following basic result on Φ:
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Theorem 4.1. Assume that (H1) holds. Then the mapping Φ given by (4.2) is a
continuous cocycle with base space H(f, g) and fiber space P(Rd), i.e. the mapping
Φ : R+ × P(Rd)×H(f, g) → P(Rd) is continuous and satisfies

Φ(0, µ, (f̄ , ḡ)) = µ, Φ(t+ τ, µ, (f̄ , ḡ)) = Φ(t,Φ(τ, µ, (f̄ , ḡ)), (f̄ τ , ḡτ )) (4.5)

for any t, τ ≥ 0, (f̄ , ḡ) ∈ H(f, g) and µ ∈ P(Rd).

Proof. The mapping Φ satisfies the cocycle property (4.5). Indeed, if X(·) satisfies
the equation (4.3), then it is immediate to check that the process X(·+ τ) satisfies
the equation

dY = f̄ τ (t, Y )dt+ ḡτ (t, Y )dW̃ τ , Y (0) = X(τ)

with W̃ τ (t) := W (t + τ) − W (τ) for t ∈ R. Note that W̃ is a Brownian motion
with the same distribution as W . Then by the uniqueness of law on Rd for solutions
of (4.3) (note that (H1) implies uniqueness of law on Rd holds for (4.3)) and the
Kolmogorov-Chapman equality we have

Φ(t+ τ, µ, (f̄ , ḡ)) = Φ(t,Φ(τ, µ, (f̄ , ḡ)), (f̄ τ , ḡτ )),

i.e. the cocycle property holds, and Φ(0, µ, (f̄ , ḡ)) = µ is obvious by the meaning of
the notation Φ.

Next we show that Φ is a continuous mapping. Take sequences {tn} ⊂ R+,
{(fn, gn)} ⊂ H(f, g), and {µn} ⊂ P(Rd) such that tn → t0, fn → f̄ , gn → ḡ and
µn → µ0 as n → ∞. For any given ϵ > 0, when n is large enough we have

β(Φ(tn, µn, (fn, gn)),Φ(tn, µ0, (f̄ , ḡ))) <
ϵ

2
, β(Φ(tn, µ0, (f̄ , ḡ)),Φ(t0, µ0, (f̄ , ḡ))) <

ϵ

2

by (H1) and the continuity of the law µ(·) = L(X(·)) in t. So it follows that

β(Φ(tn, µn, (fn, gn)),Φ(t0, µ0, (f̄ , ḡ))) ≤ β(Φ(tn, µn, (fn, gn)),Φ(tn, µ0, (f̄ , ḡ)))

+ β(Φ(tn, µ0, (f̄ , ḡ)),Φ(t0, µ0, (f̄ , ḡ)))

< ϵ

when n is large. The proof is complete.

Corollary 4.2. The mapping given by

Π : R+×P(Rd)×H(f, g) → P(Rd)×H(f, g), Π(t, (f̄ , ḡ), µ) := (Φ(t, µ, (f̄ , ḡ)), (f̄ t, ḡt))

is a continuous skew-product semiflow.

Remark 4.3. Now a natural question arises: when does the assumption (H1) hold?
Indeed, this assumption is satisfied in normal situations. Consider the stochastic
differential equation (4.1). If we assume that f : R×Rd → Rd, g : R×Rd → Md×m

are continuous and satisfy Lipschitz and linear growth conditions in x ∈ Rd uniformly
with respect to t ∈ R, then it is well known that (H1) holds; see, e.g. [19, p.54,
Theorem 3] for details. Indeed, this last theorem states a more stronger fact: the
law of Xn converges to that of X in the path space C(R,Rd).
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Indeed, the assumption (H1) holds under very general conditions, see the follow-
ing Theorem 4.4 for details.

Theorem 4.4. Let {(fn, gn)}∞n=1 be a sequence such that fn → f̄ and gn → ḡ
pointwise as n → ∞. Assume that fn, gn, f̄ , ḡ are locally Lipschitz in x ∈ Rd with
local Lipschitz constants uniformly bounded by a positive constant independent of
t ∈ R, i.e. for any r > 0 there exists L(r) > 0 such that

|fn(t, x)− fn(t, y)| ≤ L(r)|x− y| and |f̄(t, x)− f̄(t, y)| ≤ L(r)|x− y|

whenever |x|, |y| ≤ r, the similar holding for gn and ḡ. Assume further that the
solutions of (4.4) and (4.3) exist globally in t. Then if the initial value satisfies
L(Xn,0) → L(X0), the solution Xn(·) of (4.4) converges to the solution X(·) of
(4.3) in distribution on the path space C(R+,Rd). In particular, we have for any
compact interval [0, T ]

sup
t∈[0,T ]

β(µn(t), µ(t)) → 0,

where µn(t) = L(Xn(t)), µ(t) = L(X(t)) for t ∈ [0, T ].

Proof. By the Skorohod representation theorem and the uniqueness of laws of the
solutions to (4.4) and (4.3), we may assume that Xn,0 → X0 almost surely by
possibly extending the underlying probability space (Ω,F ,P). Note that for any
ϵ > 0 we may take a constant C1 > 0 such that

P{|X0| ≤ C1, |Xn,0| ≤ C1 for all n} ≥ 1− ϵ/4.

Since the solution of (4.3) has continuous path, there exists a constant C2 > C1

such that
P{ sup

t∈[0,T ]
|X(t)| ≤ C2} ≥ 1− ϵ/2. (4.6)

We take globally Lipschitz functions f̃n, g̃n, f̃ , g̃ such that

f̃n = fn, g̃n = gn, f̃ = f̄ , g̃ = ḡ

on BC2+1, i.e. the ball centered at the origin with radius C2 + 1, and let

X̃n,0 = Xn,0 · I|x|≤C1
, X̃0 = X0 · I|x|≤C1

,

where IA means the indicator function of the set A. Denote by X̃(·) the solution
of equation (4.3) with f̄ , ḡ, X0 replaced by f̃ , g̃, X̃0 respectively and by X̃n(·) the
solution of equation (4.4) with f̄n, ḡn, Xn,0 replaced by f̃n, g̃n, X̃n,0 respectively. Then
it is known (see e.g. [19, p.52, Theorem 2]) that

lim
n→∞

E sup
t∈[0,T ]

|X̃n(t)− X̃(t)|2 = 0. (4.7)

On the other hand, we know (see e.g. [19, p.44, Theorem 2]) that

X̃n(t, ω) = Xn(t, ω), X̃(t, ω) = X(t, ω) for t ∈ [0, T ]
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on the set Ω1 := {ω : supt∈[0,T ] |X(t, ω)| ≤ C2}; by (4.6) we have P(Ω1) ≥ 1 − ϵ/2.
This together with (4.7) implies that there exists N = N(ϵ) such that

P{ sup
t∈[0,T ]

|Xn(t)−X(t)| > ϵ} < ϵ whenever n ≥ N,

i.e. Xn(·) converges toX(·) uniformly in probability on [0, T ]. The proof is complete.

4.2 The stochastic PDE case

Let V and H be separable Hilbert spaces, and L(V,H) be the space of bounded
linear operators from V to H. We consider the following semilinear stochastic dif-
ferential equation for H-valued stochastic process X

dX = AXdt+ f(t,X)dt+ g(t,X)dW, (4.8)

where A is an infinitesimal generator which generates a C0-semigroup {U(t)}t≥0 on
H, f ∈ C(R × H,H), g ∈ C(R × H,L(V,H)), W is a V -valued Q-Wiener process
with covariance operator Q being of trace class, i.e. TrQ < ∞. As for the detailed
definition of Q-Wiener processes and their basic properties as well as stochastic
integrals based on them, we refer the reader to the monograph [17] for details.

Like in ODE case, we consider the compact-open topology on the spaces C(R×
H,H) and C(R×H,L(V,H)), and we may define the shift flow on them and consider
the hull H(f, g). But the difference is that the spaces C(R × H,H) and C(R ×
H,L(V,H)) are not metrizable because H is of infinite dimension. The compact-
open topology on C(R × H,H) is generated by the family D := {dK : K ⊂ R ×
H compact} of pseudo-metrics on C(R×H,H):

dK(f1, f2) := sup
(t,x)∈K

∥f1(t, x)− f2(t, x)∥H for f1, f2 ∈ C(R×H,H).

The compact-open topology generated by the above family of pseudo-metrics is
actually a uniform topology which makes C(R × H,H) a uniform space; see the
appendix for details. Completely in the same way, the space C(R ×H,L(V,H)) is
also a uniform space with the topology being the compact-open topology generated
by a family of pseudo-metrics on C(R×H,L(V,H)). As in Section 2, we can define
the shift flow on C(R×H,H)× C(R×H,L(V,H)).

Similar to stochastic ODE case, we define the mapping

Φ : R+ × P(H)×H(f, g) → P(H), (4.9)

with Φ(t, µ0, (f̄ , ḡ)) being the law (or distribution) L(X(t)) on H of the solution
X(·) at time t of the equation

dX = AXdt+ f̄(t,X)dt+ ḡ(t,X)dW, X(0) = ξ0, (4.10)

where L(ξ0) = µ0 and Φ(0, µ0, (f̄ , ḡ)) = µ0.
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Similar to (H1), we formulate the following assumption for (4.8):

(H2) Let {(fα, gα)} ⊂ H(f, g) be a net such that fα → f̄ and gα → ḡ as α → ∞.
Denote by Xα(·) the solutions of the following equations

dXα = AXαdt+ fα(t,Xα)dt+ gα(t,Xα)dW, Xα(0) = ξα, (4.11)

where the initial value satisfies L(ξα) → L(ξ0). Then for any compact interval [s, T ]

sup
t∈[s,T ]

β(µα(t), µ(t)) → 0 as α → ∞,

where µα(t) = L(Xα(t)), µ(t) = L(X(t)) with X(·) being the solution of (4.10).

Then we have the following result on Φ:

Theorem 4.5. Assume that (H2) holds. Then the mapping Φ given by (4.9) is a
continuous cocycle with base space H(f, g) and fiber space P(H), i.e. the mapping
Φ : R+ × P(H)×H(f, g) → P(H) is continuous and satisfies

Φ(0, µ, (f̄ , ḡ)) = µ, Φ(t+ τ, µ, (f̄ , ḡ)) = Φ(t,Φ(τ, µ, (f̄ , ḡ)), (f̄ τ , ḡτ ))

for any t, τ ≥ 0, (f̄ , ḡ) ∈ H(f, g) and µ ∈ P(H).

Proof. The proof is completely similar to Theorem 4.1 if we notice that X(· + τ)
satisfies the equation

dY = AY dt+ f̄ τ (t, Y )dt+ ḡτ (t, Y )dW̃ τ , Y (0) = X(τ)

with W̃ τ being a Q-Wiener process with the same distribution as W , provided X(·)
satisfies equation (4.10).

Like Corollary 4.2, the similar result holds for SPDE case:

Corollary 4.6. The mapping given by

Π : R+×P(H)×H(f, g) → P(H)×H(f, g), Π(t, (f̄ , ḡ), µ) := (Φ(t, µ, (f̄ , ḡ)), (f̄ t, ḡt))

is a continuous skew-product semiflow.

The condition (H2) holds under fairly general conditions, see the following The-
orem 4.7 for details.

Theorem 4.7. Let supt∈R |f(t, 0)| ∨ |g(t, 0)| ≤ C for some constant C > 0 and f, g
be Lipschitz in x ∈ H with Lipschitz constants independent of t. Then the solution
Xα(·) of (4.11) converges to the solution X(·) of (4.10) in distribution on the path
space C(R+, H). In particular, (H2) holds.
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Proof. Note that if supt∈R |f(t, 0)| ∨ |g(t, 0)| ≤ C and f, g are Lipschitz, then each
pair (fα, gα) from the hullH(f, g) satisfies the same condition with the same constant
C and Lipschitz constants.

(1) Let H be the Banach space of all the H-valued progressively measurable
processes Y (·) defined on the interval [0, T ] with the norm

∥Y ∥c :=

(
E sup

t∈[0,T ]
|Y (t)|2

)1/2

< +∞,

by identifying the indistinguishable processes. Denote L2 := L2(Ω,F0,P). Let the
mapping S : L2 ×H → H be given by

S(ξ, Y )(t) := U(t)ξ +

∫ t

0
U(t− s)f̄(s, Y (s))ds+

∫ t

0
U(t− s)ḡ(s, Y (s))dW (s)

for (ξ, Y ) ∈ L2 ×H and t ∈ [0, T ]. Similarly the mapping Sα : L2 ×H → H is given
by

Sα(ξ, Y )(t) := U(t)ξ +

∫ t

0
U(t− s)fα(s, Y (s))ds+

∫ t

0
U(t− s)gα(s, Y (s))dW (s)

for (ξ, Y ) ∈ L2 ×H and t ∈ [0, T ].
Clearly the mapping S is Lipschitz in ξ ∈ L2. The mapping S is also Lipshitz in

X ∈ H; indeed, by Cauchy-Schwarz inequality and martingale inequality we have:

∥S(ξ,X)− S(ξ, Y )∥2c
= E sup

t∈[0,T ]
|S(ξ,X)(t)− S(ξ, Y )(t)|2

≤ 2E sup
t∈[0,T ]

∣∣∣∣∫ t

0
U(t− s)(f̄(s,X(s))− f̄(s, Y (s))ds

∣∣∣∣2
+ 2E sup

t∈[0,T ]

∣∣∣∣∫ t

0
U(t− s)(ḡ(s,X(s))− ḡ(s, Y (s))dW (s)

∣∣∣∣2
≤ 2K2L2

(
T · E

∫ T

0
|X(s)− Y (s)|2ds+ 4E

∫ T

0
|X(s)− Y (s)|2ds

)
≤ 2K2L2(T + 4)T · E sup

t∈[0,T ]
|X(s)− Y (s)|2

= 2K2L2(T + 4)T · ∥X − Y ∥c, (4.12)

where K := supt∈[0,T ] ∥U(t)∥. When T is appropriately small such that

2K2L2(T + 4)T < 1, (4.13)

the mapping S admits a unique fixed pointX(ξ) which is the solution of the equation
(4.10) with initial value ξ and X is Lipschitz in ξ ∈ L2 (when ξ varies) by Theorem
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2.18. Since fα and gα admit the same Lipschitz constants as f and g, the same
estimate as (4.12) holds for the mappings Sα and that the solution Xα of (4.11) is
Lipschitz in ξ ∈ L2 with the same Lipschitz constant as the solution X of (4.10).

(2) By the weak uniqueness of mild solutions to equations (4.10) and (4.11) and
the Skorohod representation theorem, we may assume that ξα → ξ0 almost surely
by possibly extending the probability space (Ω,F ,P). As in the first step, denote
by X(ξ0) and Xα(ξα) the solutions of (4.10) and (4.11) respectively.

Denote for each α and all t, x

ξ̃α = ξαe
−|ξα|, f̃α(t, x) = e−|ξα|fα(t, e

|ξα|x), g̃α(t, x) = e−|ξα|gα(t, e
|ξα|x),

ξ̃0 = ξ0e
−|ξ0|, f̃(t, x) = e−|ξ0|f̄(t, e|ξ0|x), g̃(t, x) = e−|ξ0|ḡ(t, e|ξ0|x),

and
X̃α(ξ̃α) = e−|ξα|Xα(ξα), X̃(ξ̃0) = e−|ξ0|X(ξ0).

Then it is immediate to see that Lf̃α
= Lfα , Lg̃α = Lgα , Lf̃ = Lf̄ , Lg̃ = Lḡ, and

that X̃α(ξ̃α) and X̃(ξ̃0) satisfy the equations

X̃α(ξ̃α)(t) = U(t− s)ξ̃α +

∫ t

0
U(t− r)f̃α(r, X̃α(ξ̃α)(r))dr

+

∫ t

0
U(t− r)g̃α(r, X̃α(ξ̃α)(r))dW (r) (4.14)

and

X̃(ξ̃0)(t) = U(t−s)ξ̃0+

∫ t

0
U(t−r)f̃(r, X̃(ξ̃0)(r))dr+

∫ t

0
U(t−r)g̃(r, X̃(ξ̃0)(r))dW (r),

(4.15)
respectively. Note that all ξ̃α and ξ̃0 are bounded by a common constant and that
|f̃(t, 0)| ≤ |f̄(t, 0)| and |g̃(t, 0)| ≤ |ḡ(t, 0)| for all t; the similar holds for f̃α and fα,
and g̃α and gα.

Denote the mappings from L2 ×H to H by

S̃α(ξ,X)(t) := U(t− s)ξ +

∫ t

0
U(t− r)f̃α(r,X(r))dr +

∫ t

0
U(t− r)g̃α(r,X(r))dW (r),

S̃(ξ,X)(t) := U(t− s)ξ +

∫ t

0
U(t− r)f̃(r,X(r))dr +

∫ t

0
U(t− r)g̃(r,X(r))dW (r)

for (ξ,X) ∈ L2 ×H and t ∈ [0, T ]. Then for any fixed (ξ,X) ∈ L2 ×H we have by
Cauchy-Schwarz inequality and martingale inequality:

∥S̃α(ξ,X)− S̃(ξ,X)∥2c
= E sup

t∈[0,T ]
|S̃α(ξ,X)− S̃(ξ,X)|2

≤ 2E sup
t∈[0,T ]

(∫ t

0
U(t− s)(f̃α(s,X(s))− f̃(s,X(s)))ds

)2



76 DAVID CHEBAN AND ZHENXIN LIU

+ 2E sup
t∈[0,T ]

(∫ t

0
U(t− s)(g̃α(s,X(s))− g̃(s,X(s)))dW (s)

)2

≤ 2K2T · E
∫ T

0
|f̃α(s,X(s))− f̃(s,X(s))|2ds

+ 8K2 · E
∫ T

0
|g̃α(s,X(s))− g̃(s,X(s))|2ds.

So by the dominated convergence theorem1, we have

∥S̃α(ξ,X)− S̃(ξ,X)∥c → 0 as α → ∞. (4.16)

Note that the solutions X̃α(ξ̃α) and X̃(ξ̃0) of (4.14) and (4.15) are the unique
fixed points of the mappings S̃α(ξ̃α, ·) and S̃(ξ̃0, ·) respectively. Since Lf̃α

= Lf̄ and
Lg̃α = Lḡ, it follows from step (1) that there exists a constant λ (independent of α)
such that

∥X̃α(ξ̃α)− X̃α(ξ̃0)∥c ≤ λ|ξ̃α − ξ̃0| for all α,

where the meaning of X̃α(ξ̃0) is obvious. Furthermore, by Theorem 2.18 and (4.16)
we have

∥X̃α(ξ̃0)− X̃(ξ̃0)∥c → 0 as α → ∞.

Therefore,

∥X̃α(ξ̃α)− X̃(ξ̃0)∥c ≤ ∥X̃α(ξ̃α)− X̃α(ξ̃0)∥c + ∥X̃α(ξ̃0)− X̃(ξ̃0)∥c → 0

as α goes to infinity. So we have X̃α(ξ̃α) → X̃(ξ̃0) in probability on the path space
C(R+, H). Since ξα → ξ0 almost surely, X = e|ξ0|X̃(ξ̃0) and Xα = e|ξα|X̃α(ξ̃α), we
have Xα → X in probability as α → ∞ on the path space C(R+, H). This implies
that Xα → X in distribution on the path space C(R+, H).

Finally, we have assumed T to satisfy the condition (4.13) in above arguments; for
general T > 0, we only need to consider the corresponding equations on the intervals
[0, T̃ ], [T̃ , 2T̃ ], [2T̃ , 3T̃ ], . . . with T̃ satisfying (4.13). The proof is now complete.

5 Applications

Theorem 5.1. Consider the equation (4.8). Assume that A generates an exponen-
tially stable C0-semigroup {U(t)}t≥0 on H, i.e. there are positive constants N, ν
such that ∥U(t)∥ ≤ Ne−νt for t ≥ 0, that supt∈R |f(t, 0)| ∨ |g(t, 0)| ≤ C for some
constant C > 0 and that f, g are Lipschitz in x ∈ H with max{Lf , Lg} ≤ L for some
positive constant L. Assume further that

θ := 2N2L2

(
1

ν2
+

1

2ν

)
< 1.

1Note that the dominated convergence theorem remains valid for the net case.
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Then equation (4.8) admits a unique L2-bounded solution ϕ on R and there is a
continuous mapping T : H(f, g) → P(H) satisfying

T (f̄ t, ḡt) = Φ(t,T (f̄ , ḡ), (f̄ , ḡ)) (5.1)

for all (t, (f̄ , ḡ)) ∈ R×H(f, g), where Φ is the cocycle generated by (4.8).

Proof. (1) Since the semigroup U(t) is exponentially stable, it is immediate to check
that X0 ∈ Cb(R, L2(P, H)) is a mild solution of (4.8) if and only if it satisfies the
following integral equation:

X0(t) =

∫ t

−∞
U(t− s)f(s,X0(s))ds+

∫ t

−∞
U(t− s)g(s,X0(s))dW (s).

Define an operator T on Cb(R, L2(P, H)) by

(T X)(t) :=

∫ t

−∞
U(t− s)f(s,X(s))ds+

∫ t

−∞
U(t− s)g(s,X(s))dW (s). (5.2)

Since f , g satisfy supt∈R |f(t, 0)| ∨ |g(t, 0)| ≤ C and the Lipschitz condition, it is not
hard to check that T maps Cb(R, L2(P, H)) into itself.

Then by Cauchy-Schwarz inequality and Itô’s isometry we have for X,Y ∈
Cb(R, L2(P, H)) and t ∈ R

E|(T X)(t)− (T Y )(t)|2

≤ 2

[
E
∣∣∣∣∫ t

−∞
U(t− s)(f(s,X(s))− f(s, Y (s)))ds

∣∣∣∣2
+ E

∣∣∣∣∫ t

−∞
U(t− s)(g(s,X(s))− g(s, Y (s)))dW (s)

∣∣∣∣2 ]
≤ 2

[
E
(∫ t

−∞
Ne−ν(t−s)L|X(s)− Y (s)|ds

)2

+ E
∫ t

−∞
N2e−2ν(t−s)L2|X(s)− Y (s)|2ds

]
≤ 2N2L2

[(∫ t

−∞
e−ν(t−s)ds

)
· E
∫ t

−∞
e−ν(t−s)|X(s)− Y (s)|2ds

+ E
∫ t

−∞
e−2ν(t−s)|X(s)− Y (s)|2ds

]
≤ 2N2L2

(
1

ν2
+

1

2ν

)
· sup
s∈R

E|X(s)− Y (s)|2.

Therefore,

sup
t∈R

E|(T X)(t)− (T Y )(t)|2 ≤ θ · sup
t∈R

E|X(t)− Y (t)|2.



78 DAVID CHEBAN AND ZHENXIN LIU

That is, the operator T is a contraction mapping on Cb(R, L2(P, H)). Thus there
is a unique ϕ ∈ Cb(R, L2(P, H)) satisfying T ϕ = ϕ, which is the unique L2-bounded
solution of (4.8).

(2) We now show that for fixed X0 ∈ Cb(R, L2(P, H)), the mapping T depends
continuously on the coefficients from H(f, g). Take a net {(fα, gα)} ⊂ H(f, g) with
(fα, gα) → (f̄ , ḡ) as α → ∞. If (f, g) in (5.2) is replaced by (fα, gα), we denote the
corresponding operator by Tα; similarly we denote it by T̄ for (f̄ , ḡ). Then we have
for any given t ∈ R

E|(TαX0)(t)− (T̄ X0)(t)|2

≤ 2

[
E
∣∣∣∣∫ t

−∞
U(t− s)(fα(s,X0(s))− f̄(s,X0(s)))ds

∣∣∣∣2
+ E

∣∣∣∣∫ t

−∞
U(t− s)(gα(s,X0(s))− ḡ(s,X0(s)))dW (s)

∣∣∣∣2 ]
≤ 2N2

[
1

ν
E
∫ t

−∞
e−ν(t−s)|fα(s,X0(s))− f̄(s,X0(s))|2ds

+ E
∫ t

−∞
e−2ν(t−s)|gα(s,X0(s))− ḡ(s,X0(s))|2ds

]
.

By the condition supt∈R |f(t, 0)| ∨ |g(t, 0)| ≤ C, the Lipschitz condition and domi-
nated convergence theorem, we get

lim
α→∞

E|(TαX0)(t)− (T̄ X0)(t)|2 = 0 for any t ∈ R. (5.3)

(3) Denote by ϕ(f̄ ,ḡ) the unique L2-bounded solution of the equation

dX = AXdt+ f̄(t,X)dt+ ḡ(t,X)dW.

Define the mapping

T : H(f, g) → P(H), (f̄ , ḡ) 7→ L(ϕ(f̄ ,ḡ)(0)),

the law of the bounded solution ϕ(f̄ ,ḡ) at the “time” 0. It follows from (5.3) and The-

orem 2.18 that the unique L2-bounded ϕ depends continuously on (f̄ , ḡ) ∈ H(f, g)
and hence the mapping T is continuous. We now show that

T (θtf̄ , θtḡ) = L(ϕ(f̄ ,ḡ)(t)) for t ∈ R, (5.4)

i.e. (5.1) holds.
Fix t ∈ R. Note that

ϕ(f̄ ,ḡ)(t)

=

∫ t

−∞
U(t− s)f̄(s, ϕ(f̄ ,ḡ)(s))ds+

∫ t

−∞
U(t− s)ḡ(s, ϕ(f̄ ,ḡ)(s))dW (s)
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=

∫ 0

−∞
U(−s̃)f̄(s̃+ t, ϕ(f̄ ,ḡ)(s̃+ t))ds̃+

∫ 0

−∞
U(−s̃)ḡ(s̃+ t, ϕ(f̄ ,ḡ)(s̃+ t))dW̃ (s̃)

=

∫ 0

−∞
U(−s)f̄t(s, ϕ(f̄ ,ḡ)(s+ t))ds+

∫ 0

−∞
U(−s)ḡt(s, ϕ(f̄ ,ḡ)(s+ t))dW̃ (s), (5.5)

where in the 2nd equality we let s̃ = s− t and in the 3rd equality we let s = s̃ and
W̃ (s) = W (s+ t)−W (t) for s ∈ R. Note that W̃ (·) is a Brownian motion which has
the same law as W (·). On the other hand, denote by ϕ̃ be the unique L2-bounded
solution of the equation

dX = AXds+ f̄t(s,X)ds+ ḡt(s,X)dW,

then we have

ϕ̃(0) =

∫ 0

−∞
U(−s)f̄t(s, ϕ̃(s))ds+

∫ 0

−∞
U(−s)ḡt(s, ϕ̃(s))dW (s).

This together with (5.5) and the uniqueness of the L2-bounded solutions yields that

L(ϕ̃(0)) = L(ϕ(f̄ ,ḡ)(t)).

That is, (5.4) holds. The proof is complete.

Theorem 5.2. Consider the equation (4.8). Assume that the conditions of Theorem
5.1 hold.

(i) If f and g are jointly stationary (respectively, τ–periodic, quasi-periodic with
the spectrum of frequencies ν1, ν2, . . . , νk, Bohr almost periodic, Bohr almost
automorphic, Birkhoff recurrent, Lagrange stable, Levitan almost periodic, al-
most recurrent, Poisson stable) in t ∈ R uniformly with respect to x ∈ H on
every compact subset, then so is the unique bounded solution ϕ of equation
(4.8) in distribution.

(ii) If f and g are jointly pseudo-periodic (respectively, pseudo-recurrent) and f
and g are jointly Lagrange stable, in t ∈ R uniformly with respect to x ∈ H on
every compact subset, then the unique bounded solution ϕ of (4.8) is pseudo-
periodic (respectively, pseudo-recurrent) in distribution.

Proof. The result follows immediately from Theorems 5.1, 3.13 and 3.14.

Remark 5.3. Note that the conditions of Theorems 5.1 and 5.2 are much weaker
than that in our earlier work [11, 15]; in particular, we do not need the condition
(C3) in [11], which is crucial there and sometimes not easy to verify or even not
satisfied at all.
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6 Appendix

In this section, we review some notions and facts about uniform spaces; the
reader can refer to [20] for details.

Definition 6.1 (Uniform neighborhood system). Let M be a set, (A,≥) a directed
set, and Va(x) a subset of M for each a ∈ A and x ∈ M . Then the triple (V ;A,≥)
is called uniform neighborhood system (UNS) for M if the following conditions are
satisfied:

(i) x ∈ Va(x);

(ii) Va(x) ⊂ Vb(x) whenever a ≥ b for all x ∈ M ;

(iii) [symmetric condition] y ∈ Va(x) if and only if x ∈ Va(y);

(iv) [uniform condition] for each a ∈ A there exists b ∈ A such that z ∈ Va(x)
whenever z ∈ Vb(y) and y ∈ Vb(x).

Definition 6.2 (Uniform space). For given UNS (V ;A,≥) for M , a set U ⊂ M is
called an open set if for each x ∈ U there exists a Va(x) ⊂ U . A set U ⊂ M is
called a closed set if its complement U c is open. The topology U generated by these
open sets (or equivalently by V and A) is called a uniform topology and the resulting
topological space (M,U) is called a uniform space.

Remark 6.3. (i) We may assume without loss of generality that each Va(x) is open
(in the uniform topology). Indeed, if this is not true, we can use the largest open set
V 0
a (x) in Va(x) to replace Va(x), then it can be shown that (V 0;A,≥) is a UNS and

that V 0 and A generate the same topology as V and A. So we will always assume
that Va(x) is open in this paper.

(ii) We will also assume that the uniform space (M,U) is Hausdorff, i.e. every
net in M converges to at most one limit point.

(iii) A net {xα} (with range in M) is Cauchy if for any a ∈ A there is an index α0

such that xα′ ∈ Va(xα′′) whenever α′, α′′ ≥ α0. A uniform space (M,U) is complete
if each Cauchy net in M is convergent. We note that each (Hausdorff) uniform space
has a (Hausdorff) completion.

Definition 6.4. A function d : M ×M → R+ is called pseudo-metric on M if the
following conditions are fulfilled:

(i) d(x, y) = d(y, x);
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(ii) d(x, z) ≤ d(x, y) + d(y, z);

(iii) x = y implies d(x, y) = 0.

If the converse implication in (iii) is also true, then d becomes a metric.

A family of pseudo-metrics can naturally generate a uniform topology. Indeed,
for a given family D of pseudo-metrics on M , define a directed set (A,≥) as follows:
(d1, r1) ≥ (d2, r2) if and only if r1 ≤ r2 and d1(x, y) ≥ d2(x, y) for all x, y ∈ M ,
where di ∈ D and ri are positive numbers. For simplicity, we denote d1 ≥ d2 if
d1(x, y) ≥ d2(x, y) for all x, y ∈ M . Denote Vd,r(x) := {y ∈ M : d(x, y) < r}. Then
it can be shown that (V ;A,≥) is a UNS for M . A set U ⊂ M is an open set if for
each x ∈ U there exist finite number of di, ri, i = 1, . . . , n, such that

n⋂
i=1

Vdi,ri(x) ⊂ U.

These open sets then generate a uniform topology on M . Therefore, the family D of
pseudo-metrics generates a uniform space (M,U). It can be shown that this uniform
space (M,U) is Hausdorff if and only if for any two distinct points x, y ∈ M there is
a d ∈ D such that d(x, y) > 0. In particular, when D is a singleton set, the resulting
topology is called a pseudo-metric topology and the space M is pseudo-metrizable.

Note that if ρ and σ are two pseudo-metrics on M , then ρ ∨ σ := max{ρ, σ} is
also a pseudo-metric on M and we have ρ ∨ σ ≥ ρ and ρ ∨ σ ≥ σ. For given family
D of pseudo-metrics on M , let D ′ denote the smallest family of pseudo-metrics on
M such that: (i) D ⊂ D ′; (ii) for any ρ and σ in D ′ we have ρ ∨ σ ∈ D ′. It is
immediate to show that both D and D ′ generate the same uniform topology on M ,
so we may assume without loss of generality that the family D of pseudo-metrics is
closed under the operation “∨”. In particular, if D is closed under ∨ then for any σ
and σ in D there is λ ∈ D such that λ ≥ ρ and λ ≥ σ.

Conversely, for a given uniform space (M,U), it is known that (cf. [20, Theorem
6.15]) the uniform topology U is generated by the family of all pseudo-metrics which
are uniformly continuous on M ×M ; it is also known that a uniform space (M,U)
is pseudo-metrizable if and only if U has a countable base.

Therefore, it is equivalent to describe uniform spaces in the framework of UNS
or in the framework of (family of) pseudo-metrics.
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