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Asymptotic behaviour of non-autonomous Caputo
fractional differential equations with a one-sided

dissipative vector field

T.S. Doan, P.E. Kloeden

Abstract. A non-autonomous Caputo fractional differential equation of order α ∈
(0, 1) in Rd with a driving system {ϑt}t∈R on a compact base space P generates a
skew-product flow on Cα × P , where Cα is the space of continuous functions f : R+

→ Rd with a weighted norm giving uniform convergence on compact time subsets.
It was shown by Cui & Kloeden [3] to have an attractor when the vector field of
the Caputo FDE satisfies a uniform dissipative vector field. This attractor is closed,
bounded and invariant in Cα × P and attracts bounded subsets of Cα consisting of
constant initial functions. The structure of this attractor is investigated here in
detail for an example with a vector field satisfying a stronger one-sided dissipative
Lipschitz condition. In particular, the component sets of the attractor are shown to
be singleton sets corresponding to a unique entire solution of the skew-product flow.
Its evaluation on Rd is a unique entire solution of the Caputo FDE, which is both
pullback and forward attracting.

Mathematics subject classification: 34A08, 34K20, 37B99, 45J05, 45E99.
Keywords and phrases: Non-autonomous Caputo fractional differential equations,
skew-product flows, attractor, entire solution,Volterra integral equations.

Dedicated to the memory of Professor B.A. Shcherbakov on the occasion of his 100th
anniversary.

1 Introduction

Consider a non-autonomous Caputo fractional differential equation (FDE) of
order α ∈ (0, 1) in Rd with a driving system of the form

CDα
0+x(t) = g(x(t), ϑt(p)) for t ∈ [0, T ]. (1)

with a driving system in the vector field, specifically g(x, p), where ϑt : P → P ,
t ∈ R, is a group of operators, i.e., an autonomous dynamical system, and P is a
suitable metric space.

The solution of the Caputo FDE (1) with initial condition x(0) = x0 and p0 ∈ P
satisfies the integral equation

x(t) = x0 +

∫ t

0
a(t, s)g(x(s), ϑs(p0))ds, (2)
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where

a(t, s) :=
1

Γ(α)
(t− s)α−1, 0 ≤ s < t,

is a singular but integrable kernel and Γ(α) :=
∫∞
0 tα−1e−tdt is the Gamma function.

As a motivational example consider the scalar Caputo FDE

CDα
0+x(t) = −x(t) + cos t, (3)

for which P is the hull [11, 13] of the functions cos(·), i.e.,

P =
⋃

0≤τ≤2π

cos(τ + ·),

which is a compact metric space with the metric induced by the supremum norm

dP (p1, p2) = sup
t∈R

|p1(t)− p2(t)| .

In addition, let ϑt : P → P be the left shift operator ϑt(cos(·)) = cos(t + ·). This
shift operator is continuous in the above metric. Indeed, it is an isometry with

dP (ϑt(p1), ϑt(p2)) = dP (p1, p2) , p1, p2 ∈ P.

The existence and uniqueness of solutions and continuity in initial data holds
under the following Assumptions; the second one can be weakened. The proof is
similar to that in the autonomous case, i.e., without the driving system, see [5, 7].

Assumption 1. Let (P, dP ) be a compact metric space and let {ϑt}t∈R be a group
of continuous mappings ϑt : P → P , t ∈ R.

Assumption 2. There exists L > 0 such that for all x, y ∈ Rd, p, q ∈ P

∥g(x, p)− g(y, q)∥ ≤ L∥x− y∥+ LdP (p, q).

Unlike for ODEs, these local solutions cannot be patched together to provide a
global solution for Caputo FDE. The proof follows by a fixed point argument on
the space of continuous functions C([0, T ],Rd) with a Bielecki weighted norm of the
form

∥x∥γ := sup
t∈[0,T ]

∥x(t)∥
Eα(γtα)

for all x ∈ C([0, T ],Rd),

where γ > 0 is a suitable constant and the weight function is the Mittag-Leffler
function Eα(·) defined as follows:

Eα(t) :=
∞∑
k=0

tk

Γ(αk + 1)
for all t ∈ R.
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More general Mittag-Leffler functions with parameters α, β > 0 are defined by

Eα,β(t) :=

∞∑
k=0

tk

Γ(kα+ β)
for all t ∈ R.

The Caputo FDE (1) is nonlocal, specifically its solutions depends on their history

and not just at the current time. This means, in particular, they cannot generate
a semi-group (when g depends only on x, i.e., autonomous case) or two-parameter
semi-group (non-autonomous case) on Rd. This issue is of some interest since at-
tractors are usually defined mathematically in terms of some form of dynamical
system [10,11].

Interestingly, Cong & Tuan [1] did show that the solutions of an autonomous
Caputo FDE generate a “nonlocal” dynamical system on Rd for scalar and multi-
dimensional triangular vector fields. This follows from the fact [2, Theorem 3.5] that
the solutions of such FDE do not intersect in finite time and the solution mappings
x0 7→ St(x0) form a bijection on Rd for each t ≥ 0.

Later Doan & Kloeden [5] used ideas of Sell [13] for Volterra integral equations to
show that an autonomous Caputo FDE generates a semi-group, hence autonomous
semi-dynamical system, on the space C of continuous functions f : R+ → Rd is
endowed with the topology of uniform convergence on compact subsets. This was
extended to a skew-product flow on the space C × P by Cui & Kloeden [3] to the
non-autonomous Caputo FDE with a driving system (1).

2 Volterra integral equations

The integral equation (2) is a special case of the (singular) Volterra integral
equation [12,13]

x(t) = f(t) +

∫ t

0
a(t, s)g(x(s), ϑs(p0))ds, (4)

where f : R+ → Rd is a continuous function. The topology of uniform convergence
on compact subsets of the space C of such continuous functions is induced by the
metric

ρ(f, h) :=

∞∑
n=1

1

2n
ρn(f, h),

where

ρn(f, h) :=
supt∈[0,n] ∥f(t)− h(t)∥

1 + supt∈[0,n] ∥f(t)− h(t)∥
.

Following Sell [13], define operators Tt : C× P → C by

(Tτ (f, p0))(θ) = f(τ + θ) +

∫ τ

0
a(t+ θ, s)g(xf (s), ϑs(p0))) ds, θ ∈ R+, (5)
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where xf is the solution of (4), i.e.,

xf (τ) = (Tτ (f, p0))(0) := f(τ) +

∫ τ

0
a(τ, s)g(xf (s), ϑs(p0)) ds.

Essentially, as in Sell [13, pages 178-179], the operators Tτ : C × P → C, τ ≥ 0,
satisfy a cocycle property with respect to the driving system {ϑτ}τ≥0 on P . This
means that

Π : R+ × C× P → C× P

with
Π(τ, f, p0) := (Tτ (f, p0), ϑτ (p0))

defines a semi-group on C × P , which is a skew-product flow due to its structure.
These results can be used for the Caputo integral equation (2) restricting to constant
functions f = idx0 , i.e., f(t) ≡ x0, corresponding to initial values x0 ∈ Rd.

Theorem 1. [3, Theorem 1] Suppose that the vector field g satisfies Assumptions
1 and 2. Then the integral equation (2) version of the Caputo FDE (1) generates a
semi-group of continuous operators {(Tτ , ϑτ )}τ∈R+ on the space C × P , which has
the structure of a skew-product flow.

The proof is given in Cui & Kloeden [3], see also [5,7] for the simpler autonomous
case. Later in discussing attractors, the space C will be replaced by a Banach
subspace Cα.

3 Dissipative vector fields

Tuan & Trinh [2, Theorem 2] showed that solutions of Caputo FDEs (1), hence
also those of (2), satisfy

CDα
0+∥x(t)∥2 ≤ 2

〈
x(t), CDα

0+x(t)
〉
.

Hence, if the vector field g of (1) satisfies the uniform dissipativity condition

⟨x, g(x, p)⟩ ≤ a− b∥x∥2, (6)

where a, b > 0 are independent of p ∈ P , then along the solutions of (1)

CDα
0+∥x(t)∥2 ≤ 2 ⟨x(t), g(x(t), ϑt(p))⟩ ≤ 2a− 2b∥x(t)∥2.

It was shown in [9] that these solutions x(t) = x(t, x0, p0) satisfy the inequality

∥x(t, x0, p0)∥2 ≤ ∥x0∥2Eα(−2btα) +
a

b
(1− Eα(−2btα)) . (7)

It follows from this inequality that ∥x(t, x0, p0)∥ ≤ R for all t ≥ 0 and p0 ∈ P , when
∥x0∥ ≤ R and R2 ≥ 1 + a

b . Moreover, the set

B∗ :=
{
x ∈ Rd : ∥x∥2 ≥ 1 +

a

b
=: R2

∗

}
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is a positive invariant absorbing set for the solutions of the Caputo FDE (1). In
particular, there exists TR ≥ 0 independent of p0 ∈ P . such that ∥x(t, x0, p0)∥ ∈ B∗,
i.e., ∥x(t, x0, p0)∥ ≤ R∗ for all t ≥ TR, p0 ∈ P .

Since the absorbing set B∗ is compact in Rd, the corresponding omega limit set

Ω∗
p0 = {y ∈ Rd : ∃ {x0,n}n∈N bnd’d, tn → ∞ such that ϕ(tn, x0,n, p0) → y},

is a nonempty compact subset of B∗ for each fixed p0 ∈ P . Moreover, it attracts
all of the future dynamics of the Caputo FDE (1). But it is not an attractor of the
Caputo FDE (1) in Rd since the corresponding semi-dynamical system is defined
on the product space Cα × P and not on Rd × P . Nevertheless, Ω∗

p0 represents the

observable part (in Rd) of the corresponding sector of an attracting set in Cα of this
Caputo skew-product semi-dynamical system on Cα×P and, essentially, determines
it.

4 Caputo skew-product flow attractor

The operators Tt have a double skew-product structure with the solution of the
Caputo FDE

(Tt(idx0 , p0)(0) := x(t, x0, p0) = x0+
1

Γ(α)

∫ t

0
(t−s)α−1g(x(s, x0, p0), ϑs(p0)) ds (8)

being fed into

(Ttidx0 , p0)(θ) = x0 +
1

Γ(α)

∫ t

0
(t+ θ − s)α−1g(x(s, x0, p0), ϑs(p0)) ds (9)

when θ > 0, in addition to the driving system ϑ.

A major difficulty in extending such results to the Caputo semi-group {(Tt, ϑt)}t∈R+

is to apply the dissipativity condition (6) to the vector field g inside the integral equa-
tions (5) to establish the existence of an absorbing set in the space C. Restricting
to constant initial functions f(t) ≡ idx0 corresponding to initial values x0 ∈ Rd this
can be done for the case θ = 0, which corresponds to the Caputo FDE (1) with the
initial condition x(0) = x0, p0 ∈ P , using the inequality (7). It leads to x(t, x0, p0)
∈ B∗ for t ≥ TR, ∥x0∥ ≤ R for all R ≥ R2

∗ and p0 ∈ P . Importantly, this and other
bounds are uniform in p0 ∈ P . These bounds can then be used to estimate the
integrals for the integral equations (9) with θ > 0.

Due to some technical issues in the compactness part of the proof, the existence
of an attractor in the space C of uniform convergence on bounded intervals needs to
be modified here to a weighted norm on a subspace of C. It is defined by

∥f∥α := ∥f(0)∥+
∞∑

N=1

1

2NNα
∥f∥N ,
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where
∥f∥N := sup

t∈[N−1,N ]

∥f(t)∥, N = 1, 2, · · · .

Let Cα be the subspace of C consisting of functions f with ∥f∥α <∞. Then (Cα, ∥·∥α)
is a Banach space and {(Tt, ϑt)}t∈R+ forms a semi-group on Cα × P .

The attractor obtained is somewhat unusual in that it attracts only a restricted
class of initial values in Cα, which is not invariant under the dynamics. This results
in some unconventional properties.

Theorem 2. [3, Theorem 2] Suppose also that Assumption 1 holds and that the vec-
tor field g is locally Lipschitz in both variables and satisfies the uniform dissipativity
condition (6). Then semi-group {(Tt, ϑt)}t∈R+ on the space Cα × P corresponding
to the integral equations (4) has an attractor A ⊂ Cα × P , which attracts bounded
subsets of Cα×P consisting of constant initial functions in Cα and has the structure

A =
⋃
p∈P

A(p)× {p},

where the A(p) are closed and bounded subsets of Cα. Moreover, the sets A(p) are
positively invariant in the sense that

Tt(A(p), p) = A(ϑt(p)), t ≥ 0, p ∈ P,

and pullback attracting in the sense that

lim
t→∞

distCα (Tt(D, ϑ−t(p)),A(p)) = 0, p ∈ P,

for all bounded subsets D of Cα consisting of constant initial functions.

The proof of the existence of the attractor in Theorem 2 is given in [3, Theorem
4]. In particular, it is shown that the closed and bounded subset B∗ of Cα defined
by

B∗ :=

{
χ ∈ Cα : ∥χ∥α ≤ 2R∗ +

Bg
R∗

αΓ(α)
=: R̂∗

}
absorbs under the operators Tt bounded sets of constant initial data functions
∥idx0∥α ≤ 2∥x0∥ ≤ 2R in the time t ≥ TR. It follows that B

∗ × P is an absorbing
set for the Caputo semi-group {(Tt, ϑt)}t∈R+ in the space Cα × P .

Another important property of attractors in general is that they consist of entire
solutions. In the context of the Caputo skew-product flow considered here, this
means that there are continuous functions χ∗ : R → Cα and p∗ : R → P such that
χ∗(t + s) = Tt(χ

∗(s), p∗(s))) for all s ∈ R and t ≥ 0. (Here p∗(t)) = ϑt(p̂) for an
appropriate p̂ ∈ P .) Moreover, χ∗(t) ∈ A(p∗(t)) for all t ∈ R . Thus the subsets

A(p∗(t)) :=
{
f(0) ∈ Rd : f ∈ A(p∗(t))

}
, t ∈ R,

give the observed asymptotic behaviour in Rd.
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5 A strictly contractive example

Consider again the motivational example above, but now writing the scalar Ca-
puto FDE as

CDα
0+x(t) = −x(t) + p(t, p0) (10)

where p(t, p0) is given by an autonomous dynamical system, i.e., a group, on a
compact interval P in R. Denote the unique solution with the initial value x(0) =
x0 by x(t, x0, p0) for each p0 ∈ P .

Firstly, note that this system is strictly contracting. Let x(t) = x(t, x0, p0) and
y(t) = y(t, y0, p0). Then

CDα
0+z(t) = −z(t), z(t) := x(t)− y(t).

Then z(t) = Eα(−tα)z(0), which gives the strictly contracting property

|z(t)| = Eα(−tα)|z(0)|. (11)

In particular, z(t) → 0 as t → ∞ at the non-exponential rate t−α, see [8]. This issue
then is: to what do the individual solutions x(t) and y(t) converge?

Secondly, this linear Caputo equation (10) has an explicit solution given by the
variation of constants formula [8, Lemma 1.4]

x(t, x0, p0) = Eα(−tα)x0 +

∫ t

0
(t− s)α−1Eα,α(−(t− s)α)p(s, p0)ds. (12)

Let τ > 0 and let q−τ = p(−τ, p0), so p0 = p(τ, q−τ ). Then replace t by τ and p0 by
q−τ in (12) to obtain

x(τ, x0, q−τ ) = Eα(−τα)x0 +

∫ τ

0
(τ − s)α−1Eα,α(−(τ − s)α)p(s, q−τ )ds.

Finally, substituting ν = s− τ for the integration variable s gives

x(τ, x0, q−τ ) = Eα(−τα)x0 +

∫ 0

−τ
(−ν)α−1Eα,α(−(−ν)α)p(ν, p0)dν, (13)

since p(ν + τ, q−τ ) = p(ν, p0). Note that the limit (which is, in fact, the pullback
limit)

lim
τ→∞

x(τ, x0, q−τ ) = a(p0) :=

∫ 0

−∞
(−ν)α−1Eα,α(−(−ν)α)p(ν, p0)dν

exists since Eα(−τα) → 0 as τ → ∞ and the improper integral converges. The latter
follows since∣∣∣∣∫ 0

−τ
(−ν)α−1Eα,α(−(−ν)α)p(ν, p0)dν

∣∣∣∣ ≤ KP

∣∣∣∣∫ 0

−τ
(−ν)α−1Eα,α(−(−ν)α))dν

∣∣∣∣ ,
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where KP := maxp∈P |p| < ∞ and the integral on the right side converges as τ <
∞ because (see, e.g., [9])∫ 0

−τ
(−ν)α−1Eα,α(−(−ν)α))dν = τα−1Eα,α+1(−τα)

= 1− Eα(−τα) → 1, τ → ∞.

The strictly contractive condition (11) gives

|x(τ, x0, q−τ )− y(τ, y0, q−τ )| = Eα(−τα)|x0 − y0|,

which means that all such solutions converge in the pullback sense to the same limit,
i.e., a(p0).

As mentioned earlier, the Caputo attractor consists of entire solutions. Here this
means there are continuous functions χ∗ : R → Cα and p∗ : R → P such that χ∗(t)
∈ A(p∗(t)) for all t ∈ R.

Now, if χ ∈ A(p0) in Cα , then χ(0) = a(p0) ∈ R. Thus χ∗(t)(0) = a(p∗(t)) ∈ R
for all t ∈ R for an entire solution χ∗(t) ∈ A(p∗(t)) for all t ∈ R. This corresponds
to an entire solution of the Caputo FDE, i.e., x∗(t) := a(p∗(t)) in R for all t ∈ R,
which is both pullback and forwards attracting by the strictly contracting inequality
(11).

Since the pullback limit a(p0) is unique in this example, the entire solution x∗(t)
= a(p∗(t)) is unique. Hence the (Tt(ida(p0), p0))(θ) is uniquely determined for all θ >
0, which means that the entire solution χ∗

t ∈ A(p∗(t)) for all t ∈ R is unique. Hence
the sets A(p0) are singleton sets in Cα with A(p0)(0) = {χ∗

a(p0)
} in R with χ∗

a(p0)
(0)

= a(p0).

Finally, note that when the driving system of the Caputo FDE is T -periodic,
then p∗(t) and hence a(p∗(t)) are T -periodic. In particular, the Caputo FDE (3) has
a 2π-periodic solution x∗(t) := a(p∗(t)).
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