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Abstract. We study the problem of existence of Poisson stable (in particular, al-
most periodic, almost automorphic, recurrent) solutions to the semi-linear differential
equation

x′ = (A0 +A(t))x+ F (t, x)

with unbounded closed linear operator A0, bounded operators A(t) and Poisson stable
functions A(t) and F (t, x). Under some conditions we prove that there exists a unique
(at least one) solution which possesses the same recurrence property as the coefficients.

Mathematics subject classification: 34D09, 34D10, 35B10, 35B15, 35B20.
Keywords and phrases: Poisson stable motions, linear nonautonomous dynamical
systems, semi-linear differential equations.

Dedicated to the memory of Professor B. A. Shcherbakov
on the 100th birthday

1 Introduction

Let Y be a complete metric space, (Y,R, σ) be a dynamical system on Y , (B, | · |)
be a Banach space and L(B) be the space of all linear bounded operators acting
on the space B. Denote by [B] the linear space L(B) equipped with the operator
norm ∥A∥ := sup

|x|≤1
|Ax| and by [B]s the space L(B) equipped with the topology of

strong convergence. We denote by C(Y,B) (respectively, C(Y ×B,B)) the space of
all continuous mappings φ : Y → B (respectively, f : Y ×B → B) and by Cb(Y,B)
(respectively, Cb(Y ×B,B)) the space of all bounded mappings from C(Y ×B,B)
(respectively, the space of all functions f ∈ C(Y ×B,B) satisfying the conditions:
sup
y∈Y

|f(y, 0)| < +∞ and f(y, u1)− f(y, u2)| ≤ L|u1 − u2| for some positive constant

L and all (y, ui) ∈ Y ×B (i = 1, 2)).
The problem of the existence of Poisson stable (in particular, periodic, quasi-

periodic, Bohr almost periodic, almost automorphic, recurrent in the sense of
Birkhoff, Levitan almost periodic, almost recurrent in the sense of Bebutov, pseudo-
recurrent, pseudo-periodic in the sense of Bohr) solutions of semi-linear differential
equations of the form

x′ = (A0 +A(σ(t, y)))x+ F (σ(t, y), x), (y ∈ Y ) (1)
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18 DAVID CHEBAN

where A0 : D(A0) → B is an infinitesimal generator of C0-semigroup {U(t)}t≥0

acting on the Banach space B, A ∈ C(Y, [B]s) and F ∈ C(Y ×B,B).

Earlier this problem was studied in the works of Shcherbakov B. A. [17, Ch.IV],
Shcherbakov B. A. and Koreneva L. V. [22] and Bronshtein I.U. [1, Ch.IV]. Namely,
Shcherbakov B. A. [17, Ch.IV] and Shcherbakov B. A. and Koreneva L. V. [22] have
studied this problem for the equations of the form (1) in the case when the ”linear
part” of the equation (1) is stationary and bounded, i.e., A0 + A(y) = A0 for any
y ∈ Y and a linear operator A0 ∈ L(B).

Bronshtein I. U. in [1, Ch.IV] studied this problem for the equations (1) with
non-stationary linear part, but in the case when A0 is equal to zero, i.e., for the
equations of the form

x′ = A(σ(t, y))x+ F (σ(t, y), x) (y ∈ Y ) (2)

with compact Y and A ∈ C(Y, [B]) and F ∈ C(Y ×B,B).

This paper is organized as follows. In the second section we collect some known
notions and facts about Poisson stable motions of dynamical systems. Namely we
present the construction of shift dynamical systems, definitions and basic properties
of Poisson stable motions and Shcherbakov’s principle of comparability for Poisson
stable motions by their character of recurrence. The third section is dedicated to
the study of the problem of existence of a unique Poisson stable solution for linear
nonhomogeneous differential equations x′ = (A0 + A(σ(t, y)))x + f(σ(t, y)) with
unbounded linear operators A0 + A(y) (y ∈ Y ). In the fourth section we study the
problem of Poisson stability of solutions for nonlinear equations (2) with Lipschitz
nonlinear perturbations (both global and local Lipschitzian F ). We give also an
example which illustrates our results for infinite-dimensional differential equations
(1) with unbounded and non-stationary ”linear part”.

2 Preliminaries

2.1 Poisson stable motions of dynamical systems

Let R := (−∞,∞), R+ := {t ∈ R| t ≥ 0} (respectively, R− := {t ∈ R| t ≤ 0}),
T ∈ {R,R+} and (X,T, π) be a dynamical system on the space X.

Recall the classes of Poisson stable motions we study in this paper, see [14, 17,
21,23] for details.

Definition 1. A point x ∈ X is called stationary (respectively, τ -periodic) if
π(t, x) = x (respectively, π(t+ τ, x) = π(t, x)) for all t ∈ T.

Definition 2. A point x ∈ X is called quasi-periodic with the base of frequency
ν = (ν1, ν2, . . . , νk) if the associated function f(·) := π(·, x) : R → X satisfies the
following conditions:

1. the numbers ν1, ν2, . . . , νk are rationally independent;
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2. there exists a continuous function Φ : Rk → X such that

Φ(t1 + 2π, t2 + 2π, . . . , tk + 2π) = Φ(t1, t2, . . . , tk)

for all (t1, t2, . . . , tk) ∈ Rk;

3. f(t) = Φ(ν1t, ν2t, . . . , νkt) for t ∈ R.

Definition 3. For given ε > 0, a number τ ∈ T is called an ε-shift of x (respectively,
ε-almost period of x) if ρ(π(τ, x), x) < ε (respectively, ρ(π(τ + t, x), π(t, x)) < ε for
all t ∈ T).

Definition 4. A point x ∈ X is called almost recurrent (respectively, Bohr almost
periodic) if for any ε > 0 there exists a positive number l such that any segment of
length l contains an ε-shift (respectively, ε-almost period) of x.

Definition 5. A point x ∈ X is called Lagrange stable if its trajectory Σx :=
{π(tx)| t ∈ T} is precompact.

Definition 6. If a point x ∈ X is almost recurrent and Lagrange stable, then x is
called (Birkhoff) recurrent.

Let x ∈ X and denote Nx := {{tn} ⊂ T| such that π(tn, x) → x as n→ ∞}.

Definition 7. A point x ∈ X is called Levitan almost periodic [11] (see also [1,3,10])
if there exists a dynamical system (Y,T, σ) and a Bohr almost periodic point y ∈ Y
such that Ny ⊆ Nx.

Definition 8. A point x ∈ X is called almost automorphic if it is st. L and Levitan
almost periodic.

Definition 9. A point x ∈ X is said to be uniformly Poisson stable or pseudo-
periodic in the positive (respectively, negative) direction if for arbitrary ε > 0 and
l > 0 there exists an ε-almost period τ > l (respectively, τ < −l) of x. The point x
is said to be uniformly Poisson stable or pseudo-periodic if it is so in both directions.

Definition 10. [15, 16] A point x ∈ X is said to be pseudo-recurrent if for any
ε > 0, p ∈ Σx and t0 ∈ T there exists L = L(ε, t0) > 0 such that

B(p, ε)
⋂
π([t0, t0 + L], p) ̸= ∅,

where B(p, ε) := {x ∈ X : ρ(p, x) < ε} and π([t0, t0 + L], p) := {π(t, p) : t ∈
[t0, t0 + L]}.



20 DAVID CHEBAN

2.2 Shcherbakov’s comparability principle of motions by their char-
acter of recurrence

In this subsection we present some notions and results stated and proved by
Shcherbakov B. A. [17–21] (see also [6, Ch.I]).

Let (X,T, π) and (Y,T, σ) be two dynamical systems.

Definition 11. A point x ∈ X is said to be comparable with y ∈ Y by character of
recurrence if for any ε > 0 there exists a δ = δ(ε) > 0 such that every δ-shift of y is
an ε-shift for x, i.e., ρ(σ(τ, y), y) < δ implies ρ(π(τ, x), x) < ε.

Theorem 1. [19],[21, Ch.II] Let x ∈ X be comparable with y ∈ Y . If the point
y is stationary (respectively, τ -periodic, Levitan almost periodic, almost recurrent,
Poisson stable), then so is the point x.

Definition 12. A point x ∈ X is called uniformly comparable with y ∈ Y by
character of recurrence if for any ε > 0 there exists a δ = δ(ε) > 0 such that every
δ-shift of σ(t, y) is an ε-shift of π(t, x) for all t ∈ T, i.e., ρ(σ(t + τ, y), σ(t, y)) < δ
implies ρ(π(t + τ, x), x) < ε for any t ∈ T (or equivalently: ρ(σ(t1, y), σ(t2, y)) < δ
implies ρ(π(t1, x), π(t2, x)) < ε for any t1, t2 ∈ T).

Denote Mx := {{tn} ⊂ T : {π(tn, x)} converges}.

Definition 13. [2, 4] A point x ∈ X is said to be strongly comparable with y ∈ Y
by character of recurrence if My ⊆ Mx.

Theorem 2. [19],[21, Ch.II] Let X and Y be two complete metric spaces. Let a
point x ∈ X be uniformly comparable with y ∈ Y by character of recurrence. If y
is quasi-periodic (respectively, Bohr almost periodic, almost automorphic, Birkhoff
recurrent, Lagrange stable, pseudo-periodic, pseudo-recurrent), then so is x.

Theorem 3. [19],[21, Ch.II] Let a point y ∈ Y be Lagrange stable, then a point
x ∈ X is uniformly comparable with y ∈ Y if and only if My ⊆ Mx.

Let (Y,R, σ) be an autonomous two-sided dynamical system on Y and B be a
real or complex Banach space with the norm | · |.

Definition 14. (Cocycle on the state space B with the base (Y,R, σ)). The triplet
⟨B, ϕ, (Y,R, σ)⟩(or briefly ϕ) is said to be a cocycle (see, for example, [5] and [14])
on the state space B with the base (Y,R, σ) if the mapping ϕ : R+ ×B × Y → B
satisfies the following conditions:

1. ϕ(0, u, y) = u for all u ∈ B and y ∈ Y ;

2. ϕ(t+ τ, u, y) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for any t, τ ∈ R+, u ∈ B and y ∈ Y ;

3. the mapping ϕ is continuous.
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Definition 15. (Skew-product dynamical system). Let ⟨B, ϕ, (Y,R, σ)⟩ be a cocycle
on B, X := B × Y and π be a mapping from R+ × X to X defined by equality
π = (ϕ, σ), i.e., π(t, (u, y)) = (ϕ(t, u, y), σ(t, y)) for all t ∈ R+ and (u, y) ∈ B × Y .
The triplet (X,R+, π) is an autonomous dynamical system and it is called [14] a
skew-product dynamical system.

Definition 16. (Nonautonomous dynamical system.) Let T1 ⊆ T2 (Ti ∈ {R+,R}
(i = 1, 2)) be two subsemigroups of the group T, (X,T1, π) and (Y,T2, σ) be two
dynamical systems and h : X → Y be a homomorphism from (X,T1, π) to (Y,T2, σ)
(i.e., h(π(t, x)) = σ(t, h(x)) for any t ∈ T1, x ∈ X and h is continuous), then
the triplet ⟨(X,T1, π), (Y, T2, σ), h⟩ is called (see [1] and [5]) a nonautonomous
dynamical system.

Example 1. (The nonautonomous dynamical system generated by a cocycle ϕ.)
Let ⟨B, ϕ, (Y,R, σ)⟩ be a cocycle, (X,R+, π) be a skew-product dynamical system
(X = B × Y, π = (ϕ, σ)) and h = pr2 : X → Y, then the triplet ⟨(X,R+, π),
(Y,R, σ), h⟩ is a nonautonomous dynamical system.

Definition 17. A continuous mapping γ : Y → X (respectively, ξ : Y → B) is
said to be an invariant section of nonautonomous dynamical system ⟨(X,R+, π), (Y,
R, σ), h⟩ (respectively, a cocycle ⟨B, ϕ, (Y,R, σ)⟩) if h(π(t, γ(y))) = σ(t, γ(y)) and
h(γ(y)) = y (respectively, ϕ(t, ξ(y), y) = ξ(σ(t, y))) for any (t, y) ∈ R+ × Y .

Remark 1. If γ : Y → X (respectively, ξ : Y → B) is an invariant section of
nonautonomous dynamical system ⟨(X,R+, π), (Y,R, σ), h⟩ (respectively, a cocycle
⟨B, ϕ, (Y,R, σ)⟩), then the motion π(t, γ(y), y) of the dynamical system (X,R+, π)
(respectively, ϕ(t, ξ(y), y) of the cocycle ⟨B, ϕ, (Y,R, σ)⟩) can be extended on the
real axis R as follows: π(−t, γ(y)) := γ(σ(−t, y)) (respectively, ϕ(−t, ξ(y), y) :=
ξ(σ(−t, y)) for any (t, y) ∈ R+ × Y .

Denote by C(R, X) the space of all continuous functions f : R → X equipped
with the compact-open topology. This topology can be defined by the following
distance:

d(f, g) := sup
L>0

min{max
|t|≤L

ρ(f(t), g(t)), L−1}.

Remark 2. The following statements are equivalent:

1. d(fn, f) → 0 as n→ ∞;

2.

lim
n→∞

max
|t|≤L

ρ(fn(t), f(t)) = 0

for every L > 0.

Denote by (C(R,X),R, σ) the shift dynamical system [6, Ch.I] on the space
C(R, X) (Bebutov’s dynamical system), where σ : R×C(R, X) → C(R, X) is defined
by σ(h, f) := fh for any (h, f) ∈ R× C(R, X) and fh(t) := f(t+ h) for any t ∈ R.
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Lemma 1. Let ⟨B, ϕ, (Y,R, σ)⟩ (shortly ϕ) be a cocycle and ξ : Y → B be a con-
tinuous invariant section of ϕ.

Then the following statements hold:

1. the mapping γ : Y → X := B × Y defined by γ(y) := (ξ(y), y) for any y ∈ Y
satisfies the condition γ(σ(t, y)) = π(t, γ(y)) for any (t, y) ∈ R+ × Y ;

2. for any y ∈ Y the motion π(t, x) (respectively, the motion ϕ(t, ξ(y), y) of the
cocycle ϕ), where x := (ξ(y), y), is extendable on the real axis;

3. My ⊆ Mα, where α ∈ C(R, X) is defined by α(t) := γ(σ(t, y)) for any t ∈ R.

Proof. To prove the first statement it suffices to define π(·, x) for any t ∈ R− as
follows: π(t, γ(y)) := γ(σ(t, y)) for any (t, y) ∈ R− × Y (respectively, ϕ(t, ξ(y), y) :=
ξ(σ(t, y)) for any (t, y) ∈ R− × Y ).

Let now {tn} ∈ My, then there exists a point q ∈ H(y) := {σ(t, y)| t ∈ R} such
that σ(tn, y) → q as n→ ∞. Let α ∈ C(R, X) be defined by

α(t) := γ(σ(t, y))

for any t ∈ R. We will show that {tn} ∈ Mα := {{τk}| such that ατk converges
in C(R, X)}. To this end denote by α̃(t) := γ(σ(t, q)) for any t ∈ R and we will
establish the relation

sup
|t|≤l

ρ(α(t+ tn), α̃(t)) = sup
|t|≤l

ρ(γ(σ(t, σ(tn, y)), γ(σ(t, q)))) → 0

as n → ∞. If we suppose that it is not true, then there are ε0 > 0, l0 > 0 and
{sn} ⊂ [−l0, l0] such that

ρ(α(sn + tn), α̃(sn)) = ρ(γ(σ(sn, σ(tn, y)), γ(σ(sn, q)))) ≥ ε0 (3)

for any n ∈ N. Since {sn} ⊂ [−l0, l0] then without loss of generality we can suppose
that this sequence is convergent. Denote by s0 = lim

n→∞
sn. It is clear that

σ(sn, q) → σ(s0, q), σ(tn, y) → q and σ(sn, σ(tn, y)) → σ(s0, q) (4)

as n → ∞. Passing to the limit in (3) as n → ∞ and taking into account (4)
we obtain 0 ≥ ε0. The last inequality contradicts the choice of ε0. The obtained
contradiction proves our statement.

Corollary 1. Let ⟨B, ϕ, (Y,R, σ)⟩ (shortly ϕ) be a cocycle and ξ : Y → B be a
continuous invariant section of ϕ. If a point y ∈ Y is stationary (respectively, τ -
periodic, quasi-periodic with the frequency base {ν1, . . . , νm}, Bohr almost periodic,
almost automorphic, recurrent, almost recurrent, Levitan almost periodic, pseudo-
recurrent and Lagrange stable, pseudo-periodic and Lagrange stable, Poisson stable),
then the motion π(t, x) with x = γ(y) = (ξ(y), y) (or equivalently, the function
α(t) = ξ(σ(t, y)) for any t ∈ R) is also so.

Proof. This statement follows directly from Theorems 1, 2, 3 and Lemma 1.
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3 Linear Systems

3.1 Linear nonautonomous dynamical systems

Let (B, | · |) be a Banach space with the norm | · | and ⟨B, φ, (Y,R, σ)⟩ (or shortly
φ) be a linear cocycle over dynamical system (Y,R, σ) with the fibre B, i.e., φ is a
continuous mapping from R+ ×B× Y into B satisfying the following conditions:

1. φ(0, u, y) = u for any u ∈ B and y ∈ Y ;

2. φ(t+ τ, u, y) = φ(t, φ(τ, u, y), σ(τ, y)) for any t, τ ∈ R+, u ∈ B and y ∈ Y ;

3. for any (t, y) ∈ R+ × Y the mapping φ(t, ·, y) : B 7→ B is linear.

Denote by L(B) the space of all linear bounded operators A acting on the space
B, by [B] the Banach space of all linear bounded operators L(B) equipped with the
operator norm ||A|| := sup

|x|≤1
|Ax|.

Recall [12, Ch.III] that a sequence {An}n∈N of linear bounded operators from
[B] strongly converges to A ∈ [B] if lim

n→∞
Anx = Ax for any x ∈ B. Denote by

[B]s the space of all linear bounded operators L(B) equipped with strong operator
topology.

Theorem 4. [12, Ch.III] (Banach-Steinhaus). If a sequence {An} ⊂ [B] is strongly
convergent, then it is bounded, i.e., there exists a constant C > 0 such that ∥An∥ ≤ C
for any n ∈ N.

Lemma 2. The mapping F : [B]s × B → B defined by F (A, x) := Ax for any
(A, x) ∈ [B]s ×B is continuous.

Proof. Let (A0, x0) be an arbitrary point from [B]s×B and {(An, xn)} be a sequence
from [B]s ×B such that

An → A0 in [B]s and xn → x0 in B (5)

as n→ ∞. According to Theorem 4 there exists a constant C > 0 such that

∥An∥ ≤ C

for any n ∈ N. Taking into account (6) we obtain

|Anxn −A0x0| = |An(xn − x0) + (Anx0 −A0x0)| ≤ (6)

∥An∥|xn − x0|+ |Anx0 −A0x0| ≤ C|xn − x0|+ |Anx0 −A0x0|

for any n ∈ N. Since An → A0 in [B]s as n→ ∞, then we have

lim
n→∞

|Anx0 −A0x0| = 0. (7)

Passing to the limit in (6) as n→ ∞ and taking into account (5) and (7) we obtain
lim
n→∞

Anxn = A0x0. Lemma is proved.
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Corollary 2. The mapping F : [B]s×[B]s×B → B defined by F (A,B, x) := A(Bx)
for any (A,B, x) ∈ [B]s × [B]s ×B is continuous.

Proof. Let (A0, B0, x0) be an arbitrary point from [B]s × [B]s ×B and

{(An, Bn, xn)}n∈N ⊂ [B]s × [B]s ×B

such that (An, Bn, xn) → (A0, B0, x0) in [B]s × [B]s × B as n → ∞. Denote by
yn := Bnxn and y0 := B0x0, then by Lemma 2 yn → y0 in B as n → ∞. Let
zn := Anyn and z0 := A0y0, then by Lemma 2 we have z0 = lim

n→∞
Anyn = A0B0x0,

i.e.,

lim
n→∞

AnBnxn = A0B0x0.

Corollary is proved.

Corollary 3. Let f ∈ C(Y,B) and A,B ∈ C(Y, [B]s), then the mapping F ∈
C(Y,B), where F (y) := A(y)(B(y)f(y)) for any y ∈ Y , is continuous.

Proof. This statement follows directly from Corollary 2.

Remark 3. Let ⟨B, φ, (Y,R, σ)⟩ be a cocycle over dynamical system (Y,R, σ) with
the fibre B and U be the mapping from R+ × Y into L(B) defined by the equality

U(t, y) := φ(t, ·, y),

then it possesses the following properties:

a. U(0, y) = IdB for any y ∈ Y , where IdB is the unit operator acting on B;

b. U(t+ τ, y) = U(t, σ(τ, y))U(τ, y) for any t, τ ∈ R+;

c. for any x ∈ B the mapping Ux : R+ × Y 7→ B defined by Ux(t, y) := U(t, y)x
(for any (t, y) ∈ R+ × Y ) is continuous.

Lemma 3. Let {U(t, y)| t ∈ R+, y ∈ Y } be the family of operators from L(B)
possessing properties a.-c., then the mapping φ : R+ × B × Y → B, defined by
φ(t, x, y) := U(t, y)x for any (t, x, y) ∈ R+×B×Y satisfies the following conditions:

1. φ(0, x, y) = x for any (x, y) ∈ B× Y ;

2. φ(t+ τ, x, y) = φ(t, φ(τ, x, y), σ(τ, y)) for any t, τ ∈ R+ and (x, y) ∈ B× Y ;

3. the mapping φ : R+ ×B× Y → B is continuous.

Proof. The first two conditions follow directly from the properties a. and b. respec-
tively.

Now we will establish the continuity of the mapping φ. Let (t0, x0, y0) be an
arbitrary point from R+×B×Y and {(tn, xn, yn)}n∈N be a sequence from R+×B×Y
such that (tn, xn, yn) → (t0, x0, y0). In virtue of the condition c. we have U(tn, yn) →
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U(t0, y0) in [B]s as n→ ∞. By Theorem 4 the sequence of operators {U(tn, yn)}n∈N
from L(B) is bounded, i.e., there exists a positive constant C such that

∥U(tn, yn)∥ ≤ C (8)

for any n ∈ N. Note that

|φ(tn, xn, yn)− φ(t0, x0, y0)| = (9)

|U(tn, yn)(xn − x0) + (U(tn, yn)− U(t0, y0))x0| ≤
∥U(tn, yn)∥|xn − x0|+ |(U(tn, yn)− U(t0, y0))x0|

for any n ∈ N. From (8) and (9) we receive

|φ(tn, xn, yn)− φ(t0, x0, y0)| ≤ C|xn − x0|+ |(U(tn, yn)− U(t0, y0))x0| (10)

for any n ∈ N. Passing to the limit in (10) as n → ∞ and taking into account the
strongly continuity of the mapping U : (t, y) → U(t, y) we obtain lim

n→∞
φ(tn, xn, yn) =

φ(t0, x0, y0). Lemma is proved.

Definition 18. A family of linear bounded operators {U(t)}t∈R+ is said to be a
C0-semigroup (a semigroup of strongly continuous linear bounded operators) if the
following conditions are fulfilled:

1. U(0) = IdB;

2. U(t+ τ) = U(t)U(τ) for any t, τ ∈ R+;

3. lim
t→0+

U(t)x = x for any x ∈ X.

Let A0 : D(A0) → B be the infinitesimal generator [13, Ch.I] of the strongly
continuous semigroup {U(t)}t∈R+ .

Definition 19. A function F ∈ C(Y ×B,B) is said to be local Lipschitzian with
respect to variable u ∈ B uniformly with respect to y ∈ Y if there exists a nonde-
creasing function L : R+ → R+ such that

|F (y, u1)− F (y, u2)| ≤ L(r)|u1 − u2| (11)

for any u1, u2 ∈ B[0, r] and y ∈ Y , where B[0, r] := {u ∈ B : |u| ≤ r}.

Definition 20. The smallest constant figuring in (11) is called Lipshchitz constant
of the function F on Y ×B[0, r] (notation Lip(r, F )).

Let (Y,R, σ) be a dynamical system on the metric space Y . Consider the differ-
ential equation

x′ = A0x+ F (σ(t, y), x), (y ∈ Y ) (12)

where F ∈ C(Y ×B,B).



26 DAVID CHEBAN

Definition 21. A function u : [0, a) 7→ B is said to be a weak (mild) solution
of equation (12) passing through the point x ∈ B at the initial moment t = 0 if
u ∈ C([0, T ],B) and satisfies the integral equation

u(t) = U(t)x+

∫ t

0
U(t− s)F (σ(s, y), u(s))ds

for any t ∈ [0, T ] and 0 < T < a.

Theorem 5. [6, Ch.VI] Let x0 ∈ B, r > 0 and the conditions listed above be
fulfilled. Then, there exist positive numbers δ = δ(x0, r) and T = T (x0, r) such
that the equation (12) admits a unique solution φ(t, x, y) (x ∈ B[x0, δ] = {x ∈
B | |x− x0| ≤ δ}) defined on the interval [0, T ] with the conditions: φ(0, x, y) = x,
|φ(t, x, y) − x0| ≤ r for any t ∈ [0, T ] and the mapping φ : [0, T ] × B[x0, δ] × Y →
B ((t, x, y) 7→ φ(t, x, y)) is continuous.

Definition 22. A function F ∈ C(Y × B,B) is said to be globally Lipschitzian
with respect to variable u ∈ B uniformly with respect to y ∈ Y if there exists a
positive constant L such that

|F (y, u1)− F (y, u2)| ≤ L|u1 − u2| (13)

for any u1, u2 ∈ B and y ∈ Y .

Definition 23. The smallest constant L with the property (13) is called Lipshchitz
constant of the function F (notation Lip(F )).

Denote by CL(Y ×B,B) the Banach space of all globally Lipschitzian functions
F ∈ C(Y ×B,B) and with sup

y∈Y
|F (y, 0)| < +∞ and equipped with the norm

||F ||CL := max
y∈Y

|F (y, 0)|+ Lip(F ).

Theorem 6. [6, Ch.VI] Suppose that a function F ∈ C(Y × B,B) is globally
Lipschitzian. Then for any (x, y) ∈ B×Y there exists a unique solution φ(t, x, y) of
the equation (12) defined on the semi-axis [0,+∞) with the conditions: φ(0, x, y) = x
and the mapping φ : [0,+∞)×B× Y → B ((t, x, y) 7→ φ(t, x, y)) is continuous.

Example 2. Let (Y,R, σ) be a dynamical system on the metric space Y and A ∈
C(Y, [B]s). Consider the following differential equation

u′ = (A0 +A(σ(t, y))u, (14)

where A0 is the infinitesimal generator of a C0-semigroup {U(t)}t≥0.
Denote by Cb(Y, [B]s) the family of all A ∈ C(Y, [B]s) with sup

y∈Y
∥A(y)∥ < +∞.

Theorem 7. Let A0 be the infinitesimal generator of C0-semigroup {U(t)}t≥0 on
B and A ∈ Cb(Y, [B]s).

Then the following statements hold:
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1. for each (u, y) ∈ B× Y the Cauchy problem

x′ = (A0 +A(σ(t, y)))x, x(0) = u

has a unique mild solution φ(t, u, y);

2.

φ(t, u, y) = U(t)u+

∫ t

0
U(t− τ)A(σ(τ, y))φ(τ, u, y)dτ

for any (t, u, y) ∈ R+ ×B× Y ;

3. the triplet ⟨B, φ, (Y,R, σ)⟩ is a linear cocycle over (Y,R, σ) with the fibre B.

Proof. We can rewrite the equation (15) as follows

x′ = A0x+ F (σ(t, y), x),

where F (y, x) := A(y)x. Since A ∈ Cb(Y, [B]s) then there exists a constant L > 0
such that ∥A(y)∥ ≤ L for any y ∈ Y . Thus we have

|F (y, x1)− F (y, x2)| ≤ L|x1 − x2|

for any x1, x2 ∈ B and y ∈ Y . Now to finish the proof of Theorem it suffices to
apply Theorem 6.

3.2 Linear nonhomogeneous (affine) dynamical systems

Let ⟨B, φ, (Y,R, σ)⟩ be a linear cocycle over dynamical system (Y,R, σ) with the
fibre B, U(t, y) := φ(t, ·, y) for any (t, y) ∈ R+×Y , f ∈ C(Y,B) and ψ be a mapping
from R+ ×B× Y into B defined by the equality

ψ(t, u, y) := U(t, y)u+

∫ t

0
U(t− τ, σ(τ, y))f(σ(τ, y))dτ. (15)

From the definition of ψ the following properties follow:

1. ψ(0, u, y) = u for any (u, y) ∈ B× Y ;

2. ψ(t+ τ, u, y) = ψ(t, ψ(τ, u, y), σ(τ, y)) for any t, τ ∈ R+ and (u, y) ∈ B× Y ;

3. the mapping ψ : R+ ×B× Y 7→ B is continuous;

4. ψ(t, λu+ µv, y) = λψ(t, u, y) + µψ(t, v, y) for any t ∈ R+, u, v ∈ B, y ∈ Y and
λ, µ ∈ R (or C) with condition λ+ µ = 1, i.e., the mapping ψ(t, ·, y) : B 7→ B
is affine for every (t, y) ∈ R+ × Y .

Recall that a triplet ⟨B, ψ, (Y,R, σ)⟩ is called an affine (nonhomogeneous) cocycle
over dynamical system (Y,R, σ) with the fibre B if ψ is a mapping from T×B× Y
into B possessing the properties 1.-4.
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Remark 4. If we have a linear cocycle ⟨B, φ, (Y,R, σ)⟩ over dynamical system
(Y,R, σ) with the fibre B and f ∈ C(Y,B), then by the equality (15) an affine
cocycle ⟨B, ψ, (Y,R, σ)⟩ over dynamical system (Y,R, σ) with the fibre B is defined,
which is called an affine (nonhomogeneous) cocycle associated with the linear cocycle
φ and the function f ∈ C(Y,B).

Example 3. Let Y be a complete metric space, (Y,R, σ) be a dynamical system on
Y . Consider the following linear nonhomogeneous differential equation

x′ = (A0 +A(σ(t, y)))x+ f(σ(t, y)), (y ∈ Y ) (16)

where A ∈ Cb(Y, [B]s).
Under the above assumptions equation (15) generates a linear cocycle ⟨B, φ, (Y,

R, σ)⟩ over dynamical system (Y,R, σ) with the fibre B. According to Remark 4 by
the equality (15) a linear nonhomogeneous cocycle ⟨B, ψ, (Y,R, σ)⟩ over dynamical
system (Y,R, σ) with the fibre B is defined. Thus every nonhomogeneous linear
differential equations (16) generates a linear nonhomogeneous (affine) cocycle ψ.

3.3 Exponential dichotomy and Green’s function

Definition 24. Recall (see, for example, [7, Ch.VI]) that a linear cocycle ⟨B, φ, (Y,
R, σ)⟩ is hyperbolic (or equivalently, satisfies the condition of exponential dichotomy)
if there exists a continuous projection-valued function P : Y → [B]s satisfying:

1. P (σ(t, y))U(t, y) = U(t, y)P (y) for any (t, y) ∈ R+ × Y :

2. for any (t, y) ∈ R+ × Y the operator UQ(t, y) is invertible as an operator
from ImQ(y) to ImQ(σ(t, y)), where Q(y) := IdB − P (y) and UQ(t, y) :=
U(t, y)Q(y);

3. there exist constants ν > 0 and N > 0 such that

∥UP (t, y)∥ ≤ N e−νt and ∥UQ(t, y)
−1∥ ≤ N e−νt

for any y ∈ Y and t ∈ R+, where UP (t, y) := U(t, y)P (y) and U(t, y) =
φ(t, ·, y).

A Green’s function G(t, y) (see, for example, [7, Ch.VII]) for hyperbolic cocycle
φ is defined by

G(t, y) :=

{
UP (t, y), if (t, y) ∈ R+ × Y

−[UQ(−t, y)Q(σ(t, y))]−1Q(σ(t, y), if (t, y) ∈ R− × Y,

where UQ(t, y) := UQ(−t, σ(t, y)) for any (t, y) ∈ R− × Y .
Denote by Cb(Y,B) the Banach space of all continuous and bounded functions

f : Y → B equipped with the sup-norm. If the metric space Y is compact, then
Cb(Y,B) = C(Y,B).
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Lemma 4. Suppose that the linear cocycle ⟨B, φ, (Y,R, σ)⟩ over dynamical system
(Y,R, σ) with the fibre B is hyperbolic and f ∈ Cb(Y,B).

Then the following statements hold:

1.
|G(σ(−τ, y), τ)f(σ(−τ, y))| ≤ N e−ν|τ |∥f∥

for any (τ, y) ∈ R× Y ;

2. the integral
∫∞
−∞G(σ(−τ, y), τ)f(σ(−τ, y))dτ converges uniformly in y ∈ Y

and

|
∫ ∞

−∞
G(σ(−τ, y), τ)f(σ(−τ, y))dτ | ≤ 2

N
ν
∥f∥

for any y ∈ Y ;

3. by the equality

ξ(y) :=

∫ ∞

−∞
G(σ(−τ, y), τ)f(σ(−τ, y))dτ (17)

a continuous mapping ξ : Y → B is well defined and ξ ∈ Cb(Y,B).

Proof. The first two statements are well known (see, for example, [7, Ch.VII]). To
finish the proof of Lemma it suffices to establish that the mapping defined by (17)
is continuous. To this end we note that

1.
ξ(y) = lim

n→∞
ξn(y),

where

ξn(y) :=

∫ n

−n
G(σ(−τ, y), τ)f(σ(−τ, y))dτ ;

2.

|ξ(y)− ξn(y)| ≤
2N∥f∥
ν

e−νn

for any n ∈ N and, consequently, ξn(y) → ξ(y) as n→ ∞ uniformly in y ∈ Y ;

3. for any n ∈ N the mapping ξn : Y → B is continuous;

4. the mapping ξ : Y → B is continuous and ξ ∈ Cb(Y,B).

Of the above statements, only the continuity of ξ is nontrivial. We will prove it.
Since ξ is a uniform limit of the functional sequence {ξn}, then it is sufficient to
establish the continuity of ξn for any n ∈ N (in fact, for sufficiently large n). Let
y0 be an arbitrary point of Y and {yk} be a sequence from Y such that yk → y0 as
k → ∞. For any n ∈ N we have

|ξn(yk)− ξn(y0)| ≤ (18)
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∫ n

−n
|G(σ(−τ, yk), τ)f(σ(−τ, yk))−G(σ(−τ, y0), τ)f(σ(−τ, y0))|dτ =

∫ n

−n
αk(τ)dτ,

where

αk(τ) := |G(σ(−τ, yk), τ)f(σ(−τ, yk))−G(σ(−τ, y0), τ)f(σ(−τ, y0))|.

The function αk : [−n, n] \ {0} → R+ possesses the following properties:

1. αk is continuous;

2. αk(τ) → 0 as k → ∞ for any τ ∈ [−n, n] \ {0};

3. αk(τ) ≤ 2N∥f∥e−ν|τ | for any τ ∈ [−n, n] and k ∈ N.

By Lebesgue dominated convergence theorem we have

lim
k→∞

∫ n

−n
αk(τ)dτ = 0 (19)

for any n ∈ N. From (18) and (19) we obtain lim
k→∞

ξn(yk) = ξn(y0) for any n ∈ N.
Since ξ is the uniform limit of continuous functions ξn, then ξ is also continuous

on Y . Lemma is completely proved.

Theorem 8. Assume that the following conditions are fulfilled:

1. A ∈ Cb(Y, [B]s);

2. the linear cocycle ⟨B, φ, (Y,R, σ)⟩ over dynamical system (Y,R, σ) with the
fibre B generated by the equation

x′ = (A0 +A(σ(t, y)))x (y ∈ Y )

is hyperbolic.

Then the following statements hold:

1. by the equality

ψ(t, u, y) := U(t, y)u+

∫ t

0
U(t− τ, σ(τ, y))f(σ(τ, y))dτ

an affine (linear nonhomogeneous) cocycle ⟨B, ψ, (Y,R, σ)⟩ over dynamical sys-
tem (Y,R, σ) with the fibre B is defined;

2. if ξ = G(f), then

ξ(σ(t, y)) = U(t, y)ξ(y) +

∫ t

0
U(t− τ, σ(τ, y))f(σ(τ, y))dτ : (20)
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3. if f ∈ Cb(Y,B), then by the equality

ξ(y) =

∫ ∞

−∞
G(σ(−τ, y), τ)f(σ(−τ, y))dτ (21)

a continuous and invariant section of the affine cocycle ⟨B, ψ, (Y,R, σ)⟩ is
defined;

4. if a point y ∈ Y of the dynamical system (Y,R, σ) is Poisson stable, then the
solution ψ(t, ν(y), y) of the equation

x′ = (A0 +A(σ(t, y)))x+ f(σ(t, y)) (y ∈ Y ) (22)

is compatible, i.e., Ny ⊆ Nx with x := (ξ(y), y);

5. if a point y ∈ Y is Lagrange stable, then the solution ψ(t, ξ(y), y) is uniformly
compatible, i.e., My ⊆ Mx and x = (ξ(y), y).

Proof. The first statement follows from Theorem 7 and Example 3.

The second statement follows from Proposition 7.33 [7, Ch.VII].

To prove the third statement we note that the continuity of the map ξ : Y → B
defined by (21) follows from Lemma 4 (item (iii)). The invariance of the mapping ξ
follows from the second statement. Indeed, in virtue of (20) we have

ψ(t, ξ(y), y) = U(t, y)ξ(y) +

∫ t

0
U(t− τ, σ(τ, y))f(σ(τ, y))dτ (23)

for any (t, y) ∈ R+ × Y . By (23) and (20) we obtain

ψ(t, ξ(y), y) = ξ(σ(t, y)) (24)

for any (t, y) ∈ R+ × Y .

To prove the fourth statement of Theorem it suffices to show that Ny ⊆ Nx,
where x := (ξ(y), y). Let {tn} ∈ Ny, i.e., σ(tn, y) → y as n → ∞. Denote by
x := (ξ(y), y) ∈ X := B× Y . We note that

π(tn, x) = (ψ(tn, ξ(y), y), σ(tn, y)) (25)

for any n ∈ N. Taking into account (24) and (25) we obtain

π(tn, x) = (ξ(σ(tn, y)), σ(tn, y))) (26)

for any n ∈ N. Since {tn} ∈ Ny, then passing to the limit in (26) as n → ∞ we
receive lim

n→∞
π(tn, x) = (ξ(y), y) = x, i.e., {tn} ∈ Nx. Thus we have the inclusion

Ny ⊆ Nx.

Let now the point y be Lagrange stable, then by Theorem 3 to prove that the
solution ψ(t, ξ(y), y) of the equation (22) is uniformly compatible it suffices to show



32 DAVID CHEBAN

that My ⊆ Mx, where x = (ξ(y), y). Let {tn} ∈ My, then there exists a point
q ∈ H(y) such that

σ(tn, y) → q (27)

as n→ ∞. Reasoning as above we obtain

π(tn, x) = (ψ(tn, ξ(y), y), σ(tn, y)). (28)

Passing to the limit in (28) as n → ∞ and taking into account (27) we obtain
π(tn, x) → p := (ξ(q), q) ∈ H(x) as n → ∞, i.e., My ⊆ Mx. This means that the
point x is uniformly comparable by character of recurrence with the point y (or
equivalently, the solution ψ(t, ξ(y), y) of the equation (22) is uniformly compatible).
Theorem is completely proved.

Corollary 4. Under the conditions of Theorem 8 if a point y ∈ Y is stationary (re-
spectively, τ -periodic, quasi-periodic with the frequency base {ν1, . . . , νm}, Bohr al-
most periodic, almost automorphic, recurrent, almost recurrent, Levitan almost peri-
odic, Poisson stable, pseudo-recurrent and Lagrange stable, uniformly Poisson stable
and Lagrange stable), then the solution ψ(t, ξ(y), y) of the equation (22) is also sta-
tionary (respectively, τ -periodic, quasi-periodic with the frequency base {ν1, . . . , νm},
Bohr almost periodic, almost automorphic, recurrent, almost recurrent, Levitan al-
most periodic, Poisson stable, pseudo-recurrent and Lagrange stable, uniformly Pois-
son stable and Lagrange stable).

4 Semi-Linear Differential Equations

4.1 Global Lipschitzian Perturbations

Denote by dCL the distance on the Banach space (CL(Y ×B,B), ∥·∥CL) defined
by

dCL(F1, F2) := ∥F1 − F2∥CL

for any F1, F2 ∈ CL(Y ×B,B).

Theorem 9. Suppose that the following conditions are fulfilled:

1. linear differential equation

x′ = (A0 +A(σ(t, y)))x (29)

is hyperbolic;

2. F ∈ CL(Y ×B,B);

3. Lip(F ) ≤ ε0, where N , ν are the positive constants from Definition 24 and
0 < ε0 <

ν
2N .

Then
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1. the equation

x′ = (A0 +A(σ(t, y)))x+ F (σ(t, y), x) (30)

admits a unique invariant section ξ ∈ Cb(Y,B);

2. the mapping F → ξF from CL(Y ×B,B) into Cb(Y,B), where ξF is a unique
invariant section of (30), is continuous.

Proof. Let the equation (29) be hyperbolic and G(t, y) be its Green’s function, then
there exist positive constants N and ν such that

||G(t, y)|| ≤ N e−ν|t|

for any y ∈ Y and t ∈ R. Consider the operator Φ defined on the Banach space
Cb(Y,B) by the equality

(Φψ)(y) =

∫ +∞

−∞
G(−τ, σ(−τ, y))F (σ(−τ, y), ψ(σ(−τ, y)))dτ. (31)

Note that the operator Φ maps Cb(Y,B) into itself. It is easy to see that F (·, ψ(·)) ∈
C(Y,B) for any ψ ∈ C(Y,B). Indeed, let y0 be an arbitrary point from Y and
{yk} ⊂ Y such that yk → y0 as k → ∞. Then we have

|F (yk, ψ(yk))− F (y0, ψ(y0))| ≤ (32)

|F (yk, ψ(yk))− F (yk, ψ(y0))|+ |F (yk, ψ(y0))− F (y0, ψ(y0))| ≤
Lip(F )|ψ(yk)− ψ(y0)|+ |F (yk, ψ(y0))− F (y0, ψ(y0))|

for any k ∈ N. Passing to the limit in (32) as k → ∞ we receive lim
k→∞

F (yk, ψ(yk)) =

F (y0, ψ(y0)). This means that F (·, ψ(·)) ∈ C(Y,B). Moreover, if ψ ∈ Cb(Y,B),
then F (·, ψ(·)) ∈ Cb(Y,B). To show this fact we notice that

|F (y, ψ(y))| ≤ |F (y, ψ(y))− F (y, 0)|+ |F (y, 0)| ≤
Lip(F )|ψ(y)|+ |F (y, 0)| ≤ Lip(F )∥ψ∥Cb(Y,B) +A

for any y ∈ Y and, consequently, ∥F (·, ψ(·))∥ ≤ Lip(F )∥ψ∥ + A, i.e., F (·, ψ(·)) ∈
Cb(Y,B).

By Lemma 4 (item (ii)) the function Φψ defined by (31) belongs to Cb(Y,B).
Now we will prove that Φ : Cb(Y,B) 7→ Cb(Y,B) is a contraction. Indeed, we have

|(Φψ1)(y)− (Φψ1)(y)| ≤
2M

α
||F (·, ψ1(·))− F (·, ψ2(·))||. (33)

On the other hand

|F (y, ψ1(y))− F (y, ψ2(y))| ≤
Lip(F )|ψ1(y)− ψ2(y)| ≤ ε0||ψ1 − ψ2||
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for any y ∈ Y and, consequently, we obtain

||F (·, ψ1(·))− F (·, ψ2(·))|| ≤ ε0||ψ1 − ψ2||. (34)

From (33) and (34) it follows

||Φψ1 − Φψ2|| ≤
2N
ν
ε0||ψ1 − ψ2||.

Thus Φ : Cb(Y,B) 7→ Cb(Y,B) is a contraction, and consequently, Φ has a unique
fixed point ξ ∈ Cb(Y,B): Φξ = ξ. It is easy to see that ξ is a unique invariant
section of perturbed equation (30) from Cb(Y,B).

Now we will prove the second statement of Theorem. Let F0, Fn ∈ CL(Y ×B,B)
with the condition Lip(F0), Lip(Fn) ≤ ε0 (for any n ∈ N) such that Fn → F0 as
n → ∞. Let ξF0 ∈ Cb(Y,B) (respectively, ξFn ∈ Cb(Y,B)) be the unique invariant
section of the equation

u′ = (A0 +A(σ(t, y)))u+ F0(σ(t, y), u)

(respectively, of the equation

u′ = (A0 +A(σ(t, y)))u+ Fn(σ(t, y), u)),

then ξFn − ξF0 is an invariant section of the equation

u′ = (A0 +A(σ(t, y)))u+ F0(σ(t, y), ξF0(σ(t, y)))−
Fn(σ(t, y), ξFn(σ(t, y))). (35)

Since the equation (35) has a unique invariant section, then we obtain

ξF0(y)− ξFn(y) = G[F0(·, ξF0(·))− Fn(·, ξFn(·))], (36)

where G is a Green operator associate with G(t, y). Note that

|F0(y, ξF0(y))− Fn(y, ξF0(y))| ≤ |F0(y, 0)− Fn(y, 0)|+
|(F0(y, ξF0(y))− Fn(y, ξF0(y)))− (F0(y, 0)− Fn(y, 0))| ≤

max
y∈Y

|F0(y, 0)− Fn(y, 0)|+ Lip(Fn − F0)||ξF0 || ≤

(1 + ||ξF0 ||)dCL(Fn, F0) (37)

and

|F0(y, ξF0(y))− Fn(y, ξFn(y))| ≤ |F0(y, ξF0(y))− Fn(y, ξF0(y))|+
|Fn(y, ξF0(y))− Fn(y, ξFn(y))| ≤ |F0(y, ξF0(y))− Fn(y, ξF0(y))|+

Lip(Fn)|ξF0(y))− ξFn(y))| (38)

for any y ∈ Y . From (36)–(38) we obtain

|ξF0(y)− ξFn(y)| ≤ (1 + ||ξF0 ||)||F0 − Fn||CL +
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Lip(Fn)|ξF0(y)− ξFn(y)| ≤ (1 + ||ξF0 ||)dCL(Fn, F0) +

ε0|ξF0(y)− ξFn(y)|

and, consequently,

|ξF0(y)− ξFn(y)| ≤ (1− ε0)
−1(1 + ||ξF0 ||)dCLr0

(Fn, F0),

i.e.,

||ξF0 − ξFn || ≤ (1− ε0)
−1(1 + ||ξF0 ||)dCLr0

(Fn, F0)

for any n ∈ N. Passing to the limit in the last inequality as n → ∞ we obtain
ξFn → γF0 . Theorem is proved.

Corollary 5. Under the conditions of Theorem 9 if a point y ∈ Y is stationary (re-
spectively, τ -periodic, quasi-periodic with a frequency base {ν1, . . . , νm}, Bohr almost
periodic, almost automorphic, recurrent, almost recurrent, Levitan almost periodic,
Poisson stable, pseudo-recurrent and Lagrange stable, uniformly Poisson stable and
Lagrange stable), then the solution ψ(t, ξ(y), y) of the equation (30) is also station-
ary (respectively, τ -periodic, quasi-periodic with a frequency base {ν1, . . . , νm}, Bohr
almost periodic, almost automorphic, recurrent, almost recurrent, Levitan almost
periodic, Poisson stable, pseudo-recurrent and Lagrange stable, uniformly Poisson
stable and Lagrange stable).

Proof. This statement follows from Theorem 9 and Corollary 4.

Corollary 6. Suppose that the following conditions are fulfilled:

1. the linear equation (29) is hyperbolic;

2. F ∈ CL(Y ×B,B).

Then there exists a positive number λ0 so that:

1. for every λ ∈ [−λ0, λ0] the equation

u′ = A(σ(t, y))u+ f(σ(t, y)) + λF (σ(t, y), u) (y ∈ Y ) (39)

admits a unique invariant section ξλ ∈ Cb(Y,B);

2.

||ξλ − ξ0|| → 0

as λ→ 0, where ξ0 is a unique invariant section of equation

u′ = A(σ(t, y))u+ f(σ(t, y)) (y ∈ Y ).
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Proof. This statement follows from Theorem 9. Indeed. Denote by

Fλ(y, u) := f(y) + λF (y, u)

for any (y, u) ∈ Y ×B[0, r0], then

Lip(Fλ) ≤ |λ|Lip(F ) ≤ ε0

for any |λ| ≤ λ0 ≤ ε0/Lip(F ) and ||Fλ − f ||CL → 0 as λ→ 0 since f = F0.

Corollary 7. The following statements hold.

1. Under the conditions of Corollary 6 there exists a positive number λ0 such that
for any λ ∈ [−λ0, λ0] the equation (39) has a unique invariant section ξλ;

2. If a point y ∈ Y is stationary (respectively, τ -periodic, quasi-periodic with a
frequency base {ν1, . . . , νm}, Bohr almost periodic, almost automorphic, re-
current, almost recurrent, Levitan almost periodic, Poisson stable, pseudo-
recurrent and Lagrange stable, uniformly Poisson stable and Lagrange stable),
then the solution ψ(t, ξλ(y), y) = ξλ(σ(t, y)) of the equation (39) is also station-
ary (respectively, τ -periodic, quasi-periodic with a frequency base {ν1, . . . , νm},
Bohr almost periodic, almost automorphic, recurrent, almost recurrent, Lev-
itan almost periodic, Poisson stable, pseudo-recurrent and Lagrange stable,
uniformly Poisson stable and Lagrange stable);

3.

sup
t∈R

|ψ(t, ξλ(y), y)− ψ(t, ξ0(y), y)| ≤ ∥ξλ − ξ0∥ → 0

as λ→ 0.

Proof. This statement follows from Corollaries 4 and 10.

4.2 Local Lipschitzian Perturbations

Theorem 10. Suppose that the following conditions are fulfilled:

1. the linear equation (29) is hyperbolic;

2. F (·, 0) ∈ Cb(Y,B):

3. the function F ∈ C(Y ×B,B) is locally Lipschitzian;

4. Lip(r0, F ) ≤ ε0, where N , ν are the positive constants of hyperbolicity, A :=
sup
y∈Y

|F (y, 0)|, 0 < ε0 <
ν
2N and r0 :=

2N
ν A(1− ε0

2N
ν )−1.

Then

1. the equation (30) admits a unique invariant section ξ ∈ C(Y,B[0, r0]);
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2. the mapping F → ξF from CLr0(Y ×B[0, r0],B) into Cb(Y,B), where ξF is a
unique invariant section of (30), is continuous.

Proof. Let the equation (29) be hyperbolic and G(t, y) be its Green’s function. Con-
sider the operator Φ defined on the space Cb(Y,B[0, r0]) by the equality

(Φψ)(y) =

∫ +∞

−∞
G(−τ, σ(−τ, y))F (σ(−τ, y), ψ(σ(−τ, y)))dτ.

We will show that Φ(C(Y,B[0, r0]) ⊆ C(Y,B[0, r0]). In fact, let ψ ∈ C(Y,B[0, r0]),
then we have

|F (y, ψ(y))| ≤ A+ Lip(r0, F )r0 ≤ A+ ε0r0

for any y ∈ Y and according to choice of the number r0 we obtain

||Φψ|| ≤ 2M

α
||F (·, ψ(·))|| ≤ 2N

ν
(A+ ε0r0) ≤ r0.

Now we will prove that Φ : C(Y,B[0, r0]) 7→ C(Y, [0, r0]) is a contraction. Notice
that

|(Φψ1)(y)− (Φψ1)(y)| ≤
2N
ν

||F (·, ψ1(·))− F (·, ψ2(·))|| (40)

for any ψ1, ψ2 ∈ C(Y,B[0, r0]).

On the other hand

|F (y, ψ1(y))− F (y, ψ2(y))| ≤
Lip(r0, F )|ψ1(y)− ψ2(y)| ≤ ε0||ψ1 − ψ2||

for any y ∈ Y and, consequently, we obtain

||F (·, ψ1(·))− F (·, ψ2(·))|| ≤ ε0||ψ1 − ψ2||. (41)

From (40) and (41) it follows

||Φψ1 − Φψ2|| ≤
2N
ν
ε0||ψ1 − ψ2||

for any ψ1, ψ2 ∈ C(Y,B[0, r0]). Thus Φ : C(Y,B[0, r0]) 7→ C(Y,B[0, r0]) is a con-
traction, and consequently, Φ has a unique fixed point ξ ∈ C(Y,B[0, r0]): Φξ = ξ.
It is easy to see that ξ is a unique invariant section of the perturbed equation (30)
from C(Y,B[0, r0]).

Now we will prove the second statement of Theorem. Let F0, Fn ∈ CL(Y ×
B[0, r0],B) with the condition Lip(r0, F0), Lip(r0, Fn) ≤ ε0 (for any n ∈ N) such
that Fn → F0 as n→ ∞. Let ξF0 ∈ C(Y,B[0, r0]) (respectively, ξFn ∈ C(Y,B[0, r0]))
be the unique invariant section of the equation

u′ = (A0 +A(σ(t, y)))u+ F0(σ(t, y), u)
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(respectively, of the equation

u′ = (A0 +A(σ(t, y)))u+ Fn(σ(t, y), u)),

then ξFn − ξF0 is an invariant section of the equation

u′ = (A0 +A(σ(t, y)))u+ F0(σ(t, y), ξF0(σ(t, y)))−
Fn(σ(t, y), ξFn(σ(t, y))). (42)

Since the equation (42) has a unique invariant section, then we obtain

ξF0(y)− ξFn(y) = G[F0(·, ξF0(·))− Fn(·, ξFn(·))], (43)

where G is a Green operator associate with G(t, y). Note that

|F0(y, ξF0(y))− Fn(y, ξF0(y))| ≤ |F0(y, 0)− Fn(y, 0)|+
|(F0(y, ξF0(y))− Fn(y, ξF0(y)))− (F0(y, 0)− Fn(y, 0))| ≤

max
y∈Y

|F0(y, 0)− Fn(y, 0)|+ Lip(r0, Fn − F0)||ξF0 || ≤

(1 + ||ξF0 ||)dCLr0
(Fn, F0) (44)

and

|F0(y, ξF0(y))− Fn(y, ξFn(y))| ≤ |F0(y, ξF0(y))− Fn(y, ξF0(y))|+
|Fn(y, ξF0(y))− Fn(y, ξFn(y))| ≤ |F0(y, ξF0(y))− Fn(y, ξF0(y))|+

Lip(r0, Fn)|ξF0(y))− ξFn(y))| (45)

for any y ∈ Y . From (43)–(45) we obtain

|ξF0(y)− ξFn(y)| ≤ (1 + ||ξF0 ||)||F0 − Fn||CL +

Lip(Fn)|ξF0(y)− ξFn(y)| ≤ (1 + ||ξF0 ||)dCLr0
(Fn, F0) +

ε0|ξF0(y)− ξFn(y)|

and, consequently,

|ξF0(y)− ξFn(y)| ≤ (1− ε0)
−1(1 + ||ξF0 ||)dCLr0

(Fn, F0),

i.e.,
||ξF0 − ξFn || ≤ (1− ε0)

−1(1 + ||ξF0 ||)dCLr0
(Fn, F0)

for any n ∈ N. Passing to the limit in the last inequality as n → ∞ we obtain
ξFn → ξF0 . Theorem is proved.

Corollary 8. Under the conditions of Theorem 10 if a point y ∈ Y is station-
ary (respectively, τ -periodic, quasi-periodic with a frequency base {ν1, . . . , νm}, Bohr
almost periodic, almost automorphic, recurrent, almost recurrent, Levitan almost
periodic, Poisson stable, pseudo-recurrent and Lagrange stable, uniformly Poisson
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stable and Lagrange stable), then the equation (30) admits a unique invariant section
ξ ∈ C(Y,B[0, r0]) and the solution ψ(t, ξ(y), y) of the equation (30) is also station-
ary (respectively, τ -periodic, quasi-periodic with a frequency base {ν1, . . . , νm}, Bohr
almost periodic, almost automorphic, recurrent, almost recurrent, Levitan almost
periodic, Poisson stable, pseudo-recurrent and Lagrange stable, uniformly Poisson
stable and Lagrange stable).

Proof. This statement follows from Theorem 10 and Corollary 4.

Corollary 9. Suppose that the following conditions are fulfilled:

1. the linear equation (29) is hyperbolic;

2. there exists a number r0 > 0 such that the function F ∈ C(Y × B,B) is
Lipschitzian on B[0, r0].

Then there exists a positive number λ0 so that:

1. for every λ ∈ [−λ0, λ0] equation

u′ = A(σ(t, y))u+ f(σ(t, y)) + λF (σ(t, y), u) (y ∈ Y ) (46)

admits a unique invariant section ξλ ∈ C(Y,B[0, r0]);

2.

||ξλ − ξ0|| → 0

as λ→ 0, where ξ0 is a unique invariant section of the equation

u′ = A(σ(t, y))u+ f(σ(t, y)) (y ∈ Y ). (47)

Proof. This statement follows from Theorem 10. Indeed, if we denote by

Fλ(y, u) := f(y) + λF (y, u)

for any (y, u) ∈ Y ×B[0, r0], then

Lip(r0,Fλ) ≤ |λ|Lip(r0, F ) ≤ ε0

for any |λ| ≤ λ0 ≤ ε0/Lip(r0, F ) and ||Fλ − f ||CLr0
→ 0 as λ→ 0 since f = F0.

Corollary 10. Under the conditions of Corollary 9 there exists a positive number
λ0 such that the following statements hold:

1. for every λ ∈ [−λ0, λ0] the equation (46) has the unique invariant section
ξλ ∈ C(Y,B[0, r0]);
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2. If a point y ∈ Y is stationary (respectively, τ -periodic, quasi-periodic with a
frequency base {ν1, . . . , νm}, Bohr almost periodic, almost automorphic, re-
current, almost recurrent, Levitan almost periodic, Poisson stable, pseudo-
recurrent and Lagrange stable, uniformly Poisson stable and Lagrange stable),
then the solution ψ(t, ξλ(y), y) = ξλ(σ(t, y)) of the equation (46) is also station-
ary (respectively, τ -periodic, quasi-periodic with a frequency base {ν1, . . . , νm},
Bohr almost periodic, almost automorphic, recurrent, almost recurrent, Lev-
itan almost periodic, Poisson stable, pseudo-recurrent and Lagrange stable,
uniformly Poisson stable and Lagrange stable);

3.
sup
t∈R

|ψ(t, ξλ(y), y)− ψ(t, ξ0(y), y)| ≤ ∥ξλ − ξ0∥ → 0

as λ→ 0, where ξ0 is a unique continuous invariant section of (47).

Proof. This statement follows from Corollaries 9 and 4.

Remark 5. Note that Corollary 9 assures existence and uniqueness of invariant sec-
tion ξλ of the equation (46) for sufficiently small λ, but this equation can have on
the space B more than one invariant section. We will confirm this fact below by the
corresponding example.

Example 4. Let p ∈ C(Y,R) be a positive function. Consider the differential
equation

x′ = x− λp(σ(t, y))x3, (y ∈ Y ) (48)

where λ ∈ R+. For λ = 0 it admits a unique invariant section ξ0(y) = 0 for any
y ∈ Y . If λ > 0, then the equation (48) admits three invariant sections: ξ1λ(y) = 0,
ξ2λ(y) = qλ(y) and ξ

3
λ(y) = −qλ(y) for any y ∈ Y , where

qλ(y) = λ−1/2
( 0∫
−∞

e2τp(σ(τ, y))dτ
)−1/2

(y ∈ Y ).

Note that ||ξ1λ|| → 0, ||ξ2λ|| → ∞ and ||ξ3λ|| → ∞ as λ goes to 0.
Finally we note that if λ < 0, the equation (48) admits a unique invariant section

ξλ = 0.

Below we give an example which illustrates our above results.

Example 5. Let Y be a two-dimensional torus T 2 := R2/2πZ2. Let (Y,R, σ)
be an irrational winding of T 2 with the frequency {1,

√
2} ∈ R2, i.e., σ(t, y) :=

(y1 + t(mod 2π), y2 +
√
2t(mod 2π)) for any (t, y) ∈ R× Y .

Let ε ∈ R be a sufficiently small parameter. Consider the heat equation on the
interval [0,1] with Dirichlet boundary condition:

∂u

∂t
=
∂2u

∂ξ2
+ε(cos(y1+t)+sin(y2+

√
2t))u+

1

3
(sin(y2+t)+cos(y2+

√
2t)) sinu (49)
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(y = (y1, y2) ∈ Y = T 2) on the interval [0,1] with Dirichlet boundary condition
u(t, 0) = u(t, 1) = 0, t > 0.

Let A0 be a linear operator defined by A0φ(x) = φ
′′
(x) (0 < x < 1), then

A0 : D(A0) = H2(0, 1)∩H1
0 (0, 1) → L2(0, 1) (for more details see [9, Ch.I]). Denote

H := L2(0, 1) and the norm on H by | · | and A(y)φ = (cos y1 + sin y2)φ for any
y ∈ Y and φ ∈ H. Then the equation (49) can be written as an abstract evolution
equation

x′(t) = (A0 + εA(σ(t, y)))x(t) + F (σ(t, y), x(t))

on the Hilbert space H, where

x(t) := u(t, ·), F (y, x) := f(y, x) and f(y, x) :=
1

3
(sin y1 + cos y2) sinx.

Note that σ(A0) = {−n2π2| n ∈ N} and A0 generates a C0-semigroup {U(t)}t≥0 =
{eA0t}t≥0 on H. It is easy to see that the semigroup {U(t)}t≥0 is exponentially
stable and consequently, for sufficiently small ε the linear equation

x′(t) = (A0 + εA(σ(t, y))x (y ∈ Y )

is uniformly exponentially stable (see, for example, [8]). Note that Lip(F ) ≤ 1, so
it is immediate to verify that conditions of Theorem 9 hold. Finally note that every
point y ∈ Y = T 2 is quasi-periodic in (T 2,R, σ). By Theorem 9 equation

∂u

∂t
=
∂2u

∂ξ2
+ ε(cos t+ sin

√
2t)u+

1

3

(
sin t+ cos

√
2t
)
sinu (y1 = 0, y2 = 0)

for sufficiently small ε has a unique quasi-periodic solution ψε with the frequency
basis {1,

√
2}.
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