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an acute-angled polytope for a disjoint subset
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Abstract. We formulate and prove an optimality criterion for the disjoint bilinear
programming problem and show how it can be efficiently used for solving the problem
when one of the disjoint subsets has the structure of an acute-angled polytope. A
class of integer and combinatorial problems that can be reduced to the disjoint bilinear
programming problem with an acute-angled polytope is presented and it is shown how
the considered optimality criterion can be applied.
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1 Introduction and problem formulation

The main results of this article are concerned with studying and solving the
following well-known disjoint bilinear programming problem (see [1,2,5,9,16–18,20]):

Minimize

z = xTCy + gx+ ey (1)

subject to

Ax ≤ a, x ≥ 0; (2)

By ≤ b, y ≥ 0, (3)

where
C = (cij)n×m, A = (aij)q×n, B = (bij)l×m,

aT = (a10, a20, . . . , aq0) ∈ Rq, bT = (b10, b20, . . . , bl0) ∈ Rl,

g = (g1, g2, . . . gn) ∈ Rn, e = (e1, e2, . . . , em) ∈ Rm,

xT = (x1, x2, . . . , xn) ∈ Rn, yT = (y1, y2, . . . , ym) ∈ Rm.

Throughout the article we will assume that the solution sets X and Y of the corre-
sponding systems (2) and (3) are nonempty and bounded. Our aim is to formulate
and prove an optimality criterion for problem (1)-(3) that can be efficiently used for
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studying and solving the problem in the case when the set of solutions Y has the
structure of an acute-angled polytope.

Disjoint bilinear programming model (1)-(3) comprises a large class of integer
and combinatorial optimization problems, including the well-known NP-complete
problem of the existence of a boolean solution for a given system of linear inequalities

n∑
i=1

aijxj ≤ ai0, i = 1, 2, . . . , q;

xj ≥ 0, j = 1, 2, . . . , n.

(4)

It is easy to show that this problem can be represented as the following disjoint
bilinear programming problem:
Minimize

z =

n∑
j=1

(xjyj + (1− xj)(1− yj)) (5)

subject to 
n∑

j=1
aijxj ≤ ai0, i = 1, 2, . . . , q,

0 ≤ xj ≤ 1, j = 1, 2, . . . , n,

(6)

0 ≤ yj ≤ 1, j = 1, 2, . . . , n, (7)

The relationship between this bilinear programming problem and the problem of
determining a boolean solution of system (4) is the following: system (4) has a
boolean solution x∗ = (x∗1, x

∗
2, . . . , x

∗
n) if and only if x∗ = (x∗1, x

∗
2, . . . , x

∗
n) and

y∗ = (y∗1, y
∗
2, . . . , y

∗
q ) with y

∗
j = 1− x∗j , j = 1, 2, . . . , n, represent an optimal solution

of the disjoint bilinear programming problem (5)-(7) where z(x∗, y∗) = 0.

To disjoint bilinear programming problem (1)-(3) also the following classical
boolean linear programming problem can be reduced:
Minimize

z =

n∑
j=1

cjxj (8)

subject to 
n∑

i=1
aijxj ≤ ai0, i = 1, 2, . . . , q;

xj ∈ {0, 1}, j = 1, 2, . . . , n.

(9)

This problem has an optimal boolean solution x∗ = (x∗1, x
∗
2, . . . , x

∗
n) if and only if

system (4) has a feasible boolean solution. If coefficients aij and cj of problem (8),4)
are integer, then z∗ = z(x∗) ∈ [−nH, nH], where H = max{|ci|, i = 1, 2, . . . , n}.
Therefore optimal solution of boolean linear programming problem (8),(4) can be
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found by solving a sequence of disjoint bilinear programming problems
Minimize

z =
n∑

j=1

(xjyj + (1− xj)(1− yj)

subject to 

n∑
j=1

cjxj ≤ tk,

n∑
i=1

aijxj ≤ ai0, i = 1, 2, . . . , q,

0 ≤ xj ≤ 1, j = 1, 2, . . . , n,

0 ≤ yj ≤ 1, j = 1, 2, . . . , n,

with integer parameters tk on [−nH, nH] by applying the bisection method with a
standard integer roundoff procedure for tk.

Boolean programming problem (8), (9) can be also formulated as the following
disjoint bilinear programming problem:
Minimize

z =
n∑

j=1

cjxj +M
n∑

j=1

(xjyj + (1− xj)(1− yj)) (10)

subject to 
n∑

j=1
aijxj ≤ ai0, i = 1, 2, . . . , q,

0 ≤ xj ≤ 1, j = 1, 2, . . . , n,

(11)

0 ≤ yj ≤ 1, j = 1, 2, . . . , n, (12)

where M is a suitable large value. More precisely, if the coefficients in (8), (9) are
integer, then M should satisfy the condition M ≥ n · H · 22L+1, where L is the
length of the binary encoding of the coefficients of boolean problem (8), (4). The
relationship between boolean linear programming problem (8), (9) and disjoint
bilinear programming problem (10)-(12) is the following: boolean linear program-
ming problem (8), (9) has an optimal solution x∗ = (x∗1, x

∗
2, . . . , xn∗) if and only

if x∗ = (x∗1, x
∗
2, . . . , x

∗
n) and y∗ = (y∗1, y

∗
2, . . . , y

∗
n), where y∗i = 1 − x∗i , i =

1, 2, . . . , n, represent a solution of disjoint bilinear programming problem (10)-(12)
and z(x∗, y∗) =

∑n
j=1 cjx

∗. So, the boolean programming problem can be reduced
in polynomial time to disjoint programming problem (1)-(3) where the matrix B is
an identity one.

Another important problem which can be reduced to disjoint bilinear program-
ming problem (1)-(3) is the following piecewise linear concave programming problem:
Minimize

z =
l∑

j=1

min{cjkx+ cjk0 , k = 1, 2, . . . ,mj} (13)

subject to (2), where x ∈ Rn, cjk ∈ Rn, cjk0 ∈ R1.
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This problem arises as an auxiliary one when solving a class of resource allocation
problems [12, 16]. In [16] it is shown that this problem can be replaced by the
following disjoint bilinear programming problem:
Minimize

z =

l∑
j=1

mj∑
k=1

(cjkx+ cjk0 )yjk

subject to

Ax ≤ a, x ≥ 0;
mj∑
k=1

yjk = 1, j = 1, 2, . . . , l;

yjk ≥ 0, k = 1, 2, . . . ,mj , j = 1, 2, . . . , l.

In this problem we can eliminate y1,m1 , y2,m2 , . . . , yl,ml
, taking into account that

yjmj = 1 −
mj−1∑
k=1

yjk, j = 1, 2, . . . l, and we obtain the following disjoint bilinear

programming problem:
Minimize

z =
l∑

j=1

mj−1∑
k=1

(cjk − cjmj )xyjk +
l∑

j=1

cjmjx+

+

l∑
j=1

mj−1∑
k=1

(cjk0 − c
jmj

0 )yjk +

l∑
j=1

c
jmj

0 (14)

subject to

Ax ≤ a, x ≥ 0; (15)
mj−1∑
k=1

yjk ≤ 1, j = 1, 2, . . . , l;

yjk ≥ 0, k = 1, 2, . . . , l, k = 1, 2, . . . ,mj − 1,

(16)

i.e. we obtain a special case of disjoint bilinear programming problem (1)-(3) where
the corresponding matrix B is step-diagonal.

Disjoint bilinear programming problem (1)-(3) has been extensively studied in
[1,2,5,9,16–18,20] and some general methods and algorithms have been developed.
In this article we shall use a new optimization criterion that takes into account the
structure of the disjoint subsets X and Y .

It can be observed that in the presented above examples of disjoint programming
problems the matrixB is either identity one or step diagonal. This means that the set
of solutions Y has the structure of an acute-angled polyhedron [3, 8]. Acute-angled
polyhedra are polyhedra in which all dihedral angles are acute or right. A detailed
characterization of such polyhedra has been made by Coxeter [8] and Andreev [3,
4]. Moreover, in [3, 4] it has been proven that in an acute-angled polyhedron the
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hyperplanes of nonadjacent facets cannot intersect. Based on this property in the
present article we show that for a disjoint bilinear programming problem with the
structure of an acute-angled polytope for a disjoint subset an optimality criterion
can be formulated that can be efficiently used for studying and solving the problem.
In fact we show that the formulated optimality criterion is valid not only for the
case when Y is an acute-angle polytope but it holds also for a more general class of
polyhedra which in this article are called perfect polyhedra; we call the corresponding
disjoint bilinear programming problems with such a disjoint subset disjoint bilinear
programming problems with a perfect disjoint subset. The aim of this paper is to
show that for this class of problems an optimality criterion can be formulated that
takes into account the mentioned structure of the disjoint subset Y and that can be
efficiently used for solving the problem.

The article is organized as follows. In Section 2 we present the formulation of the
disjoint bilinear programming problem with a prefect disjoint subset that generalizes
the problem with a disjoint subset having the structure of an acute-angled polytope.
In Sections 3-5 we present some basic properties of the disjoint bilinear programming
problem (1)-(3) in general. In Section 7 we present new necessary conditions related
to redundant inequalities for the system of linear inequalities. The main results of
the article are presented in Section 8 where we formulate and prove the optimality
criterion for the disjoint bilinear programming problem with a perfect disjoint subset.

2 Disjoint bilinear programming with a perfect disjoint subset

Let us consider the following disjoint bilinear programming problem:

Minimize

z = xTCy + gx+ ey (17)

subject to

Ax ≤ a, x ≥ 0; (18)

Dy ≤ d, (19)

This problem differs from problem (1)-(3) only by system (19) in whichD=(dij)p×m

and dT = (d10, d20 . . . , dm0) ∈ Rm; in this problem A,C, a, g, e are the same as in
problem (1)-(3). We call this problem a disjoint bilinear programming problem with
perfect disjoint subset Y if system (19) has a full rank equal to m, where m < p,
and this system possesses the following properties:

a) system (19) does not contain redundant inequalities and its solution set Y is

a bounded set with nonempty interior;

b) the set of solutions Y ′ of an arbitrary subsystem D′y ≤ d′ of rank m with

m inequalities of system (19) represents a convex cone with the origin at

an extreme point y′ of the set of solutions Y of system (19), i.e. y′ is the

solution of the system of equations D′y = d′;
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c) at each extreme point y′ of the set of solutions Y of system (19) exactly m
hyperplanes of the facets of the polytope Y intersect ;

Note that if Y = {y
∣∣ Dy ≤ d} is a nonempty set that has the structure of a

nondegenerate acute-angled polytope, then it satisfies conditions a)-c) above.

3 Disjoint bilinear programming and the min-max linear problem
with interdependent variables

Disjoint bilinear programming problem (1)-(3) is tightly connected with the fol-
lowing min-max linear programming problem with interdependent variables:

To find
z∗ = min

y∈Y
max
u∈U(y)

(ey − aTu) (20)

and
y∗ ∈ Y = {y| By ≤ b, y ≥ 0} (21)

for which
z∗ = max

u∈U(y∗)
(ey∗ − aTu), (22)

where
U(y) = {u ∈ Rq| −ATu ≤ Cy + gT , u ≥ 0}. (23)

The relationship between the solutions of problem (1)-(3) and min-max problem
(20)-(23) can be obtained on the basis of the following theorems.

Theorem 1. If (x∗, y∗) is an optimal solution of problem (1)-(3) and z∗ is the
optimal value of the objective function in this problem, then z∗ and y∗ ∈ Y represent
a solution of min-max problem (20)-(23) and vice versa: if z∗ and y∗ ∈ Y represent
a solution of min-max problem (20)-(23), then z∗ is the optimal value of the objective
function of problem (1)-(3) and y∗ corresponds to an optimal point in this problem.

Proof. The proof of the theorem is obtained from the following reduction procedure
of bilinear programming problem (1)-(3) to min-max problem (20)-(23). We repre-
sent disjoint bilinear programming problem (1)-(3) as the problem of determining

ψ1(y
∗) = min

y∈Y
ψ1(y), (24)

where {
ψ1(y) = min

x∈X
(xTCy + gx+ ey),

X = {x ∈ Rn| Ax ≤ a, x ≥ 0}.
(25)

If we replace linear programming problem (25) with respect to x by the dual problem

ψ1(y) = max
u∈U(y)

(ey − aTu)

and after that we introduce this expression in (24), then we obtain min-max problem
(20)-(23).
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Similarly we can prove the following result.

Theorem 2. If (x∗, y∗) ∈ X×Y is an optimal solution of disjoint bilinear program-
ming problem (1)-(3) and z∗ is equal to the minimal value of the objective function
of this problem, then z∗ and x∗ correspond to a solution of the following min-max
linear problem:

To find

z∗ = min
x∈X

max
v∈V (x)

(gx− bT v) (26)

and

x∗ ∈ X = {x| Ax ≤ a, x ≥ 0} (27)

for which

z∗ = max
v∈V (x∗)

(cx∗ − bT v), (28)

where

V (x) = {v ∈ Rl| −BT v ≤ CTx+ eT , v ≥ 0}. (29)

Corollary 1. If (x∗, y∗) ∈ X × Y is an optimal solution of the following disjoint
bilinear programming problem:
Minimize

z = xTCy + gx+ ey

subject to

Ax ≤ a, x ≥ 0, Dy ≤ d,

and h∗ is equal to the minimal value of the objective function of this problem, then
z∗ and x∗ correspond to a solution of the following min-max linear problem:
To find

z∗ = min
x∈X

max
v∈V (x)

(gx− dT v)

and

x∗ ∈ X = {x| Ax ≤ a, x ≥ 0}

for which

z∗ = max
v∈V (x∗)

(gx∗ − dT v),

where

V (x) = {v ∈ Rl| −DT v = CTx+ eT , v ≥ 0}.

Problems (20)-(23) and (26)-(29) can be regarded as a couple of dual min-max
linear problems with interdependent variables. It is easy to see that these min-max
problems always have solutions if X and Y are nonempty and bounded sets.
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4 Estimation of the optimal value of the objective function

Let L be the length of the input data of disjoint bilinear programming problem
(1) - (3) with integer coefficients of matrices C,A,B and vectors a, b, c′, c′′ [11,12],
i.e.

L = L1 + L2 + (qm+ q +m)(1 + log(H + 1)),

where

L1 =

q∑
i=0

n∑
j=1

log(|aij |+ 1) + log n(q + 1),

L2 =
l∑

i=1

m∑
j=0

log(|bij |+ 1) + log l(m+ 1),

H = max{|cij |, |gi|, |ej |, i = 1, n, j = 1,m}.

Then the following lemma holds.

Lemma 1. If disjoint bilinear programming problem (1)-(3) with integer coefficients
has optimal solutions, then the optimal value z′ of the objective function (1) is a

rational number that can be expressed by an irreducible fraction
M

N
with integer M

and N (|N | ≥ 1), where |M | and |N | do not exceed 2L.

Proof. If the optimal value of the objective function of problem (1)-(3) exists then
this value is attained at an extreme point (x′, y′) of the polyhedral set X × Y de-
termined by (2), (3) where x′ ∈ X and y′ ∈ Y (see [1, 2, 5, 9]). Then according
to Lemma 1 from [13] (see also [14]) each component x′i of x′ is a rational value

and it can be expressed by a fraction of form x′ =
M1

i

N1
0

with integer M1
i and N1

0 ,

where M1
i is a determinant of the extended matrix of system (2), N1

0 is a nonzero

determinant of matrix A and |M1
i |, |N1

0 | ≤
2L1

n(q + 1)
; similarly each component y′j of

y′ is a rational value and it can be expressed by a fraction of form y′ =
M2

j

N2
0

with

integer M2
j and N2

0 , where Mj is a determinant of the extended matrix of system

(3), N2
0 is a nonzero determinant of matrix B and |M2

j |, |N2
0 | ≤

2L2

l(m+ 1)
. Therefore

z′ =
1

N1
0N

2
0

( q∑
i=1

m∑
j=1

cijM
1
i M

2
j +

q∑
i=1

giM
1
i N

2
0 +

m∑
j=1

ejM
2
jN

1
0

)
where ∣∣N1

0N
2
0 | =

∣∣N1
0

∣∣∣∣N2
0

∣∣ ≤ 2L1+L2

n(q + 1)l(m+ 1)
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and ∣∣∣ q∑
i=1

m∑
j=1

cijM
1
i M

2
j +

q∑
i=1

giM
1
i N

2
0 +

m∑
j=1

ejM
2
jN

1
0

∣∣∣ ≤
H
∣∣∣ q∑
i=1

m∑
j=1

M1
i M

2
j +

q∑
i=1

M1
i N

2
0 +

m∑
j=1

M2
jN

1
0

∣∣∣ ≤
2log(H+1)

(
2L1+L2 + 2L1+L2 + 2L1+L2

)
≤ 2L.

So, the optimal value z′ of the objective function (1) is a rational number that can

be represented by a fraction
M

N
with integer M and N (|N | ≥ 1), where |M | and

|N | do not exceed 2L.

5 An optimality criterion for disjoint bilinear programming (1)-(3)

Let us assume that the optimal value of the objective function of disjoint bilinear
programming problem (1)-(3) is bounded. Then problem (1)-(3) can be solved by
varying the parameter h ∈ [−2L, 2L] in the problem of determining the consistency
(compatibility) of the system

Ax ≤ a;
xTCy + gx+ ey ≤ h;
By ≤ b;
x ≥ 0, y ≥ 0.

(30)

In order to study the consistency problem for system (30) we will reduce it to a
consistency problem for a system of linear inequalities with a right-hand member
depending on parameters using the following results.

Lemma 2. Let solution sets X and Y of the corresponding systems (2) and (3) be
nonempty. Then system (30) for a given h ∈ R1 has no solutions if and only if the
system of linear inequalities 

−ATu ≤ Cy + gT ;
aTu < ey − h;
u ≥ 0

(31)

is consistent with respect to u for every y satisfying (3).

Proof. System (30) has no solutions if and only if for every y ∈ Y the system of
linear inequalities 

Ax ≤ a,
xT (Cy + gT ) ≤ h− ey,
x ≥ 0

(32)
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has no solutions with respect to x. If we apply the duality principle (Theorem 2.14
from [7]) for system (32) with respect to vector of variables x then we obtain that
it is inconsistent if and only if the system of linear inequalities

ATλ+ (Cy + gT )t ≥ 0;
aTλ+ (h− ey)t < 0;
λ ≥ 0, t ≥ 0,

(33)

has solutions with respect to λ and t for every y ∈ Y . Note that for an arbitrary
solution (λ∗, t∗) of system (33) the condition t∗ > 0 holds. Indeed, if t∗ = 0, then it
means that the system {

ATλ ≥ 0;
aTλ < 0, λ ≥ 0,

has solutions, which, according to Theorem 2.14 from [7], involves the inconsistency
of system (2) that is contrary to the initial assumption. Consequently, t∗ > 0. Since
t > 0 in (33) for every y ∈ Y , then, dividing each inequality of this system by t and
denoting u = (1/t)λ, we obtain system (30). So, system (30) is inconsistent if and
only if system (31) is consistent with respect to u for every y satisfying (3).

Corollary 2. Let solution sets X and Y of the corresponding systems (2) and (3)
be nonempty. Then for a given h system (30) has solutions if and only if there exists
y ∈ Y for which system (31) is inconsistent with respect to u. The minimal value
h∗ of parameter h for which such a property holds is equal to the optimal value of
the objective function in disjoint bilinear programming problem (1)-(3).

Theorem 3. Let solution sets X and Y of the corresponding systems (2) and (3)
be nonempty and bounded. Then for a given h ∈ R1 the system

Ax ≤ a;
xTCy + gx+ ey < h;
By ≤ b;
x ≥ 0, y ≥ 0.

(34)

is inconsistent if and only if the system of linear inequalities
−ATu ≤ Cy + gT ;
aTu ≤ ey − h;
u ≥ 0

(35)

is consistent with respect to u for every y satisfying (3). The maximal value h∗ of the
parameter h for which system (35) is consistent with respect to u for every y ∈ Y is
equal to the minimal value of the objective function of disjoint bilinear programming
problem (1)-(3). Moreover, for the considered systems the following properties hold:

1) If the system of linear inequalities
−ATu− Cy ≤ gT ;
aTu− ey < −h∗;
u ≥ 0

(36)
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is inconsistent with respect to u and y, then the system
Ax ≤ a;

CTx = −eT ;
cx = h∗;
x ≥ 0

(37)

is consistent and an arbitrary solution to it x∗ together with an arbitrary y ∈ Y
determine a solution (x∗, y) of disjoint bilinear programming problem (1)-(3).

2) If system (36) is consistent with respect to u and y, then there exists y∗ ∈ Y
for which the system 

−ATu ≤ Cy∗ + gT ;
aTu < ey∗ − h∗;
u ≥ 0

(38)

has no solutions with respect to u. An arbitrary y∗ ∈ Y with such a property together
with a solution x∗ of the system of linear inequalities

Ax ≤ a,
xT (Cy∗ + gT ) ≤ h∗ − ey∗,
x ≥ 0

(39)

with respect to x, represent an optimal solution (x∗, y∗) for disjoint bilinear pro-
gramming problem (1)-(3).

Proof. System (34) is inconsistent if and only if the system
Ax ≤ a,
xT (Cy + gT ) < h− ey,
x ≥ 0

(40)

is inconsistent with respect to x for every y ∈ Y . Taking into account that the
set of solutions of system (2) is nonempty and bounded we can replace (40) by the
following homogeneous system

Ax− at ≤ 0,
xT (Cy + gT )− (ey − h)t < 0,
x ≥ 0

(41)

preserving the inconsistency property with respect to x and t for every y ∈ Y .
Therefore system (34) is inconsistent if and only if system (41) is inconsistent for
every y ∈ Y . Applying the duality principle for system (41) we obtain that it is
inconsistent for every y ∈ Y if and only if system (35) is consistent with respect to y
for every y satisfying (3). Based on this property and Corollary 2 we may conclude
that the maximal value h∗ of parameter h in system (35) for which it has solutions
with respect to u for every y ∈ Y is equal to the minimal value of the objective
function in problem (1)-(3).
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Now let us prove property 1) from the theorem. Assume that system (36) is
inconsistent with respect to u and y. Then the system

−ATu− Cy − gT t ≤ 0;
aTu− ey + h∗t < 0;
u ≥ 0, t ≥ 0

is inconsistent. This involves that system (37) has solutions. For an arbitrary
solution x = x∗ of system (37) we have

x∗TCy + gx∗ + ey = yT (CTx∗ + eT ) + gx∗ = gx∗ = h∗,

where h∗ is the minimal value of the objective function in problem (1)-(3). This
means that x∗ together with an arbitrary y ∈ Y determine an optimal solution
(x∗, y) of problem (1)-(3). Moreover, in this case the optimal value h∗ of the objective
function of the problem does not depend on the constraints (3) that define Y , i.e.
Y may be an arbitrary subset from Rm.

Finally let us prove property 2) of the theorem. Assume that system (36) is
consistent and there exists y∗ ∈ Y for which system (38) is inconsistent. Then
according to Corollary 2 we obtain that for h = h∗ system (30) has solutions. In
this case the corresponding homogeneous system

−ATu− (Cy∗ + gT )t ≤ 0;
au− (ey∗ − h∗)t < 0;
u ≥ 0, t ≥ 0

has no solutions and based on the duality principle we obtain that system (39) has
solutions with respect to x. This means that y∗ ∈ Y together with a solution (x∗)
of system (39) determine an optimal solution (x∗, y∗) of problem (1)-(3).

Corollary 3. The linear programming problem:
Maximize

z = h (42)

subject to 
−ATu− Cy ≤ gT ;

au− ey ≤ −h;
u ≥ 0,

(43)

has solutions if and only if the linear programming problem :
Minimize

z′ = cx (44)

subject to 
Ax ≤ a;

CTx = −eT ;
x ≥ 0,

(45)
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has solutions. If h∗ is the optimal value of the objective function of linear program-
ming problem (42), (43), then an optimal solution x∗ of linear programming problem
(44), (45) together with an arbitrary y ∈ Y is an optimal solution of the disjoint
bilinear programming problem with an arbitrary subset Y ∈ Rm.

Proof. If we dualize (42), (43 ), then we obtain the problem:
Minimize:

z′ = c′x

subject to 
−Ax+ at ≥ 0;

−CTx− eT t ≥ 0;
t = 1;

x ≥ 0,

i.e. this problem is equivalent to problem (44), (45). So, problem (42), (43) has
solutions if and only if problem (44), (45) has solutions.

If in Lemma 2 we take into account that the set of solutions X of system (2)
is nonempty and bounded, then we obtain the following result.

Corollary 4. Linear programming problem (42), (43) has solutions if and only if
system (45) is consistent. If system (45) is inconsistent, then the objective function
(42) is unbounded on the set of feasible solutions (43).

Remark 1. Let Uh(y) be the set of solutions of system (31) with respect to u for
fixed h ∈ R1 and y ∈ Rm. Additionally, let Uh(y) be the set of solutions of system
(35) with respect to u for fixed h ∈ R1 and y ∈ Rm and denote

Yh = {y ∈ Rm|Uh(y) ̸= ∅}; Y h = {y ∈ Rm|Uh(y) ̸= ∅}.

Then Yh is an open set and Uh(y) is a closed set. In terms of these sets we can
formulate the results above as follows:

1. System (30) has solutions if and only if Y ̸⊂ Yh and the minimal value h∗ of

h for which this property holds is equal to the optimal value of the objective

function of problem (1)-(3).

2. System (34) has no solutions if and only if Y ⊆ Y h and the maximal

value h∗ of h for which this property holds is equal to the optimal value of

the objective function of problem (1)-(3);

3. If system (36) is consistent, then Y ⊂ Y h for h < h∗ and Y ̸⊂ Yh for h ≥ h∗,

i.e, Y h∗ \ Yh∗ represents the set of optimal points y∗ ∈ Y for problem (1)-(3);

4. If system (36) is inconsistent, then Yh∗ = ∅ and an arbitrary solution x∗

of system (37) together with an arbitrary y ∈ Y represent an optimal solution

of problem (1)-(3), i.e Yh = ∅ for h ≥ h∗ and Y ⊂ Y h for h < h∗.
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Thus, based on Theorem 3, we can replace disjoint bilinear programming problem
(1)-(3) with the problem of determining the optimal value h∗ of h and vector y∗ ∈ Y
for which system (35) is consistent with respect to u. System (35) can be regarded
as a parametric system with right-hand members that depend on the vector of
parameters y ∈ Y and h ∈ R1. If in (30) we regard x as a vector of parameters, then
we can prove a variant of Theorem 3 in which parametrical system (35) is replaced
by the parametrical system 

−BT v ≤ CTx+ eT ;
bv ≤ gx− h;
v ≥ 0,

(46)

where v is the vector of variables and x is the vector of parameters that satisfies
(2). This means that for the considered parametric linear systems (35) and (46) we
can formulate the following duality principle (see [15]):

Theorem 4. The system of linear inequalities (35) is consistent with respect to
u for every y satisfying (3) if and only if the system of linear inequalities (46) is
consistent with respect to v for every x satisfying (2).

All results formulated and proved in this section are valid also for the case when
Y is determined by an arbitrary consistent system

Dy ≤ d, (47)

where D = (dij) is a p×m-matrix and d is a column vector with p components. In
the case when system (3) is replaced by system (47), the following duality principle
holds.

Theorem 5. The system of linear inequalities (35) is consistent with respect to u
for every y satisfying (47) if and only if the system

−DT v = CTx+ eT ;
dv ≤ gx− h;
v ≥ 0,

(48)

is consistent with respect to v for every x satisfying (2).

6 The general scheme of the approach for solving problem (1)-(3)

The approach we shall use for solving the disjoint bilinear programming problem
(1)-(3) is based on Theorem 2 and is as follows:

We replace problem (1)-(3) by problem of determining the maximal value h∗

of parameter h such that system (35) is consistent with respect to u for every
y satisfying (3). Then we show how to determine the corresponding points x∗, y∗

that satisfy the conditions of Theorem 2. To apply this approach we will develop
algorithms for checking conditions 1) and 2) of the theorem, i.e. we will develop
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algorithms for checking the condition Y ̸⊂ Yh for a given h ∈ [−2L, 2L]. Based
on such an approach and the bisection method we can determine h∗ and y∗. To
do this in Section 8 we state Theorem 3 for the case when Y represents a perfect
polytope and formulate the condition Y ̸⊂ Yh in terms of the existence of a basic
feasible solution for a linear system with a fixed basic component.

7 Some auxiliary results related to redundant inequalities for lin-
ear systems

In that follows we shall use some properties of redundant inequalities for linear
systems. An inequality

m∑
j=1

sjyj ≤ s0 (49)

is called redundant for a consistent system of linear inequalities

m∑
j=1

dijyj ≤ di0, i = 1, 2, . . . , p, (50)

if (49) holds for an arbitrary solution of system (50). We call the redundant in-
equality (49) non-degenerate if sj ̸= 0 at least for an index j ∈ {1, 2, . . . ,m}. If
sj = 0, j = 1, 2, . . . ,m, and s0 ≥ 0 we say that the redundant inequality (49) is de-
generate. We call the redundant inequality (49) for consistent system (50) strongly
redundant if there exists ϵ > 0 such that the corresponding inequality

m∑
j=1

sjyj ≤ s0 − ϵ

is redundant for (50); if such an ϵ does not exist, then we call inequality (49) weakly
redundant . If an inequality

m∑
j=1

dkjyj ≤ dk0 (51)

of system (50) can be omitted without changing the set of its feasible solutions, then
we say that it is redundant in (50), i.e., inequality (51) is redundant in (50) if it is
redundant for the system of the rest of its inequalities.

The redundancy property of linear inequality (49) for consistent system (50) can
be checked based on the following well-known result [7, 10]:

Theorem 6. Inequality (49) is redundant for consistent system (50) if and only if
the system 

sj =
p∑

i=1
dijvi, j = 1, 2, . . . ,m;

s0 =
p∑

i=1
di0vi + v0;

vi ≥ 0, i = 0, 1, 2, . . . , p,

(52)
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has solutions with respect to v0, v1, v2, . . . , vp. Moreover, if inequality (49) is redun-
dant for system (50), then system (52) has a basic feasible solution v∗0, v

∗
1, v

∗
2, . . . , v

∗
p

that satisfies the following conditions:

1) the set of column vectors

{
Di =


di1

di2

...
dim

 : v∗i > 0, i ∈ {1, 2, . . . , p}
}

is linearly independent;

2) inequality (49) is redundant for the subsystem of system (49) induced

by the inequalities that correspond to indices i ∈ {1, 2, . . . , p} with v∗i > 0.

3) if v∗0 > 0, then inequality (49) is strongly redundant for system (50) and

if v∗0 = 0, then inequality (49) is weakly redundant for system (50).

The proof of this theorem can be found in [7, 10].

Corollary 5. Let redundant inequality (49) for consistent system (50) be given and
consider the following linear programming problem:
Minimize

z =

p∑
i=1

di0vi (53)

subject to  sj =
p∑

i=1
dijvi, j = 1, 2, . . . ,m;

vi ≥ 0, i = 1, 2, . . . , p.
(54)

Then this problem has an optimal solution v∗1, v
∗
2, . . . , v

∗
p where s0 ≥

p∑
i=1

di0v
∗
i . If

s0 >
p∑

i=1
di0v

∗
i then inequality (49) is strongly redundant for system (50) and if

s0 =
p∑

i=1
di0v

∗
i then inequality (49) is weakly redundant for system (50).

Theorem 6 can be extended for the case when system (50) is inconsistent.

Definition 1. Assume that system (50) is inconsistent. Inequality (49) is called
redundant for inconsistent system (50) if there exists a consistent subsystem

m∑
j=1

dikjyj ≤ dik0, k = 1, 2, . . . , p′(p′ < p), (55)

of system (50) such that inequality (49) is redundant for (55).
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Theorem 7. Inequality (49) is redundant for inconsistent system (50) if and only if
system (52) has a basic feasible solution v0, v1, v2, . . . , vp for which the set of column
vectors

D+ =

{
di1
di2
...

dim

 : vi > 0, i ∈ {1, 2, . . . , p}

}
(56)

is linearly independent. Moreover, the subsystem of inconsistent system (50) induced
by inequalities that correspond to indices with v0i > 0 is a consistent subsystem of
system (50).

Proof. ⇒ Assume that inequality (49) is redundant for inconsistent system (50).
Then there exists a consistent subsystem (55) of system (50) such that (49)
is redundant for (55). Then according to Theorem 6 there exists a basic feasible
solution v0, vi1 , vi2 , . . . , vip′ for the system

sj =
p′∑

k=1

dikjvik , j = 1, 2, . . . ,m;

s0 =
p′∑

k=1

dik0vik + v0;

v0 ≥ 0, vik ≥ 0, k = 1, 2, . . . , p′,

such that the set of column vectors

{
dik =


dik1

dik2

...
dikm

 : vik > 0, k ∈ {1, 2, . . . , p′}
}

is linearly independent.

⇐ Let (50) be an arbitrary inconsistent system and v0, v1, v2, . . . , vp be a
solution of system (52) that contains p′ ≥ 1 nonzero components vi1 , vi2 , . . . , vip′
such that the corresponding system of column vectors {dik : vik > 0, k =
1, 2, . . . , p′} is linearly independent. Then p′ ≤ min{m, p} and the corresponding
system

m∑
j=1

dikjyj ≤ dik0, k = 1, 2, . . . , p′

has solutions. Based on Theorem 6 we obtain that the inequality (49) is redundant
for system (55) . This means that the inequality (49) is redundant for inconsistent
system (50).
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8 The optimality criterion for disjoint bilinear programming prob-
lem with a perfect disjoint subset

In this section we present a refinement of Theorem 3 for the disjoint bilinear
programming problem (17)-(19) with conditions a) − c) for system (19). In fact
this refinement of Theorem 3 is related to the case when Y = {By ≤ b, y ≥ 0}
is replaced by Y = {y|Dy ≤ d} that satisfies conditions a) − c). Based on this,
we show that the optimality criterion for problem (17)-(19) with conditions a)− c)
can be formulated in terms of the existence of a basic solution with the given basic
component for a given system of linear equations.

We present the optimality criterion in new terms for problem (17)-(19) in the
following extended form:
Minimize

z =
n∑

i=1

m∑
j=1

cijxiyj +
n∑

i=1

gixi +
n∑

i=1

ejyj (57)

subject to 
n∑

j=1

aijxj ≤ ai0, i = 1, 2, . . . , q;

xj ≥ 0, j = 1, 2, . . . , n;

(58)

m∑
j=1

dijyj ≤ di0, i = 1, 2, . . . , p (m < p), (59)

We will assume that the set of solutions Y of system (59) in this problem satisfies
the following conditions:

a) system (59) does not contain redundant inequalities and the set of its
solutions Y is a bounded set with nonempty interior;

b) the set of solutions of an arbitrary subsystem

m∑
j=1

dikjyj ≤ dik0, k = 1, 2, . . . ,m,

of rank m represents a convex cone Y −(yr) with the origin at an
extreme point yr from the set of extreme points {y1, y2, . . . , yN} of the
set of solutions Y of system (59);

c) at each extreme point yr ∈ {y1, y2, . . . , yN} of the set of solutions Y
of system (59) exactly m hyperplanes of the facets of of polytope Y
intersect.

It is easy to see that if D =

(
B

−I

)
, d =

(
b

0

)
, I is the identity matrix and 0 is

the column vector with zero components, then problem (57)-(59) becomes problem
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(1)-(3). Additionally if matrix B is an identity one or step-diagonal, then we obtain
a disjoint bilinear programming problems for which conditions a)− c) hold.

The main results we describe in this section are concerned with elaboration of
an algorithm that determines if the property Y ̸⊂ Yh holds.

8.1 The properties of feasible solutions of problem (57)-(59)

Let yr = (yr1, y
r
2, . . . , y

r
m), r = 1, 2, . . . N , be the extreme points of the set of

solutions Y of system (59) that satisfies conditions a) − c). Then for each yr, r ∈
{1, 2, . . . , N}, there exists a subsystem

m∑
j=1

dikjyj ≤ dik0, k = 1, 2, . . . ,m, (60)

of rank m of system (59) such that yr1, y
r
2, . . . , y

r
m is the solution of the system of

linear equations
m∑
j=1

dikjyj = dik0, k = 1, 2, . . . ,m. (61)

Denote

I(yr) = {i ∈ {1, 2, . . . , p} :
m∑
j=1

dijy
r
j = di0}

and consider the convex cone Y −(yr) for system (59) as the solution set of the
following system

m∑
j=1

dijyj ≤ di0, i ∈ I(yr), (62)

where yr = (yr1, y
r
2, . . . , y

r
m) is the origin of the cone Y −(yr). We call the solution

set of the system
m∑
j=1

dijyj ≥ di0, i ∈ I(yr)

the symmetrical cone for Y −(yr) and denote it by Y +(yr).

Obviously, Y −(yr), Y +(yr) represent convex polyhedral sets with interior points
such that Y = ∩N

r=1Y
−(yr) ; Y +(yr) ∩ Y −(yr) = yr, r = 1, 2, . . . , N .

Lemma 3. If Y +(y1), Y +(y2), . . . , Y +(yN ) represent the symmetrical cones
for the corresponding cones Y −(y1), Y −(y2), . . . , Y −(yN ) of system (59)
with properties a) − c), then Y +(yr)

⋂
Y +(yk) = ∅ for r ̸= k. Additionally

if z1, z2, . . . , zN represent arbitrary points of the corresponding cones
Y +(y1), Y +(y2), . . . , Y +(yN ), then the convex hull Conv

(
z1, z2, . . . , xN

)
of points

z1, z2, . . . , zN contains Y .
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Proof. The property Y +(yr)∩Y +(yk) = ∅ for r ̸= k can be proven by contradiction.
Indeed, if we assume that Y +(yr) ∩ Y +(yk) ̸= ∅, then this polyhedral set contains
an extreme point y0, where y0 ̸∈ Y , because Y +(yr) ∩ Y +(yk) is determined by the
system of inequalities consisting of inequalities that define Y +(yr) and inequalities
that define Y +(yk). This means that y0 = (y01, y

0
2, . . . , y

0
m) is the solution for the

system of equations
m∑
j=1

dikjyj = dik0, k ∈ {1, 2, . . . ,m},

of rank m. Then according to properties a) − c) we obtain that y0 is a solution
of system (59) which is in contradiction with the fact that y0 ̸∈ Y . So, Y +(yr) ∩
Y +(yk) = ∅ for r ̸= k.

Now let us show that if z1, z2, . . . , zN represent arbitrary points of
the corresponding sets Y +(y1), Y +(y2), . . . , Y +(yN ), then the convex hull
Conv(z1, z1, z2, . . . , zN ) of points z1, z1, z2, . . . , zN contains Y . Indeed, if we con-
struct the convex hull Y 1 = Conv(z1, y2, . . . , yN ) of points z1, y2, . . . , yN ,
then y1 ∈ Y 1 and Y ⊆ Y 1. If after that we construct the convex hull
Y 2 = Conv(z1, z2, y3 . . . , yN ) of points (z1, y2, . . . , yN ), then y2 ∈ Y 2 and
Y 1 ⊆ Y 2 and so on. Finally at step N we construct the convex hull Y N =
Conv(z1, z2, . . . , zN ) of points z1, z2, . . . , zN where yN ∈ Y N and Y N−1 ⊆ Y N ,
i.e. Y ⊆ Y 1 ⊆ Y 2 ⊆ · · · ⊆ Y N = Conv

(
z1, z2, . . . , zN

)
.

Corollary 6. If system (59) satisfies conditions a)− c), then the system
m∑
j=1

dijyj ≥ di0, i = 1, 2, . . . , p,

is inconsistent and the inequalities of this system can be divided into N disjoint
consistent subsystems

m∑
j=1

dijyj ≥ di0, i ∈ I(yr), r = 1, 2, . . . , N,

such that Y +(yr) ∩ Y +(yk) = ∅.

8.2 Criteria to check Y ̸⊂ Yh

We formulate some criteria for checking the condition Y ̸⊂ Yh that late we shall
use for our basic result.

If for problem (57)-(59) we consider system (35) (see Theorem 3)

−
q∑

i=1

aijui −
m∑
j=1

cijyj ≤ gi, j = 1, 2, . . . , n;

q∑
i=1

ai0ui −
m∑
j=1

ejyj ≤ −h;

ui ≥ 0, i = 1, 2, . . . , q,

(63)
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then either this system has solutions with respect to u1,u2, . . . ,uq, y1, y2, . . . ,ym for
an arbitrary h ∈ R1 or there exists a minimal value h∗ of h for which this system
has a solution. According to Corollary 3 if for system (63) there exists a minimal
value h∗ for which it is consistent, then the optimal solution of problem (57)-(59)
can be found by solving linear programming problem (44),(45). Therefore in what
follows we will analyze the case when system (63) has solutions for every h ∈ R1, i.
e. the case when system (45) has no solutions.

Lemma 4. Let disjoint bilinear programming problem (57)-(59) be such that system
(59) satisfies conditions a) − c) and the set of solutions X of system (58) is
nonempty and bounded. If system (45) has no solutions, then for a given h the
property Y ̸⊂ Yh holds if and only if for system (63) there exists a non-degenerate
redundant inequality

m∑
j=1

sjyj ≤ s0 (64)

such that the corresponding symmetrical inequality

−
m∑
j=1

sjyj ≤ −s0 (65)

is redundant for the inconsistent system

−
m∑
j=1

dijyj ≤ −di0, i = 1, 2, . . . , p. (66)

Proof. ⇒ Assume that system (45) has no solutions. Then according to Corollary
4 of Theorem 3 we have Yh ̸= ∅. Therefore if Y ̸⊂ Yh, then among the extreme
points y1, y2, . . . , yN of Y there exists at least one that does not belong to Yh.
Denote by y1, y2, . . . , yN

′
the extreme points of Y that do not belong to Yh and by

yN
′+1, yN

′+2, . . . , yN the extreme points of Y that belong to Yh. Each extreme point
yl = (yl1, y

l
2, . . . , y

l
m), l ∈ {1, 2, . . . , N}, of Y represents the vertex of the cone Y −(yl)

that is determined by the solution set of system (62). At the same time each extreme
point yl of Y is the vertex of the symmetrical cone Y +(yl) that is determined by
the solution set of the subsystem of linear inequalities

−
m∑
j=1

dijyj ≤ −di0, i ∈ I(yl) (67)

of inconsistent system (66). According to Lemma 3 we have Y +(yl) ∩ Y +(yk) = ∅
for l ̸= k.

Let us show that among the extreme points y1, y2, . . . , yN
′
there exists a

point yj0 for which the corresponding cone Y +(yj0) has no common elements
with Yh, i.e. Y +(yj0)

⋂
Yh = ∅. This fact can be proved using the rule

of contraries. If we assume that Y +(yr)
⋂
Yh ̸= ∅, l = 1, 2, . . . , N ′, then
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we can select from each set Y +(yr)
⋂
Yh an element zr and construct the con-

vex hull Conv(z1, z2, . . . , zN
′
, yN

′+1, yN
′+2, . . . , yN ) for the set of the

points {z1, z2, . . . , zN
′
, yN

′+1, yN
′+2, . . . , yN}. Taking into account that

zr ∈ Yh, r = 1, 2, . . . , N ′ and yN
′+l ∈ Yh, r = 1, 2, . . . , N − N ′, we have

Conv(z1, z2, . . . , zN
′
, yN

′+1, yN
′+2, . . . , yN ) ⊆ Yh. However according to Lemma 3

we have Y ⊆ Conv(z1, z2, . . . , zN
′
, yN

′+1, yN
′+2, . . . , yN ), i.e. we obtain Y ⊆ Yh.

This is in contradiction with the condition yr ̸∈ Yh for r = 1, 2, . . . , N ′.

Thus, among Y +(y1), Y +(y2), . . . , Y +(yN
′
) there exists a cone Y +(yj0) with ver-

tex yj0 for which Y +(yj0)
⋂
Yh = ∅. Therefore for convex sets Y +(yj0) and Yh there

exists a separating hyperplane [6, 19]

m∑
j=1

sjyj = s0

such that
n∑

j=1

sjyj < s0, ∀(y1, y2, . . . , yn) ∈ Yh

and

−
m∑
j=1

sjyj ≤ −s0, ∀(y1, y2, . . . , yn) ∈ Y +(yj0).

So, the inequality
n∑

j=1
sjyj ≤ s0 is redundant for system (63) and the inequality

−
n∑

j=1
sjyj ≤ −s0 is redundant for consistent subsystem (67) of inconsistent system

(66).

⇐ Assume that for system (63) there exists a non-degenerate redundant inequal-
ity (64) such that the corresponding inequality (65) is redundant for inconsistent sys-
tem (66). Then there exists a consistent subsystem (67) of system (66) for which the
conical subset Y −(yi0) has no common points with Yh where Yh ̸= ∅, i.e. yj0 ̸∈ Yh.
Taking into account that yj0 ∈ Y we obtain Y ̸⊂ Yh.

Corollary 7. Assume that the conditions of Lemma 4 are satisfied. Then the
minimal value z∗ of objective function of problem (57)-(59) is equal to the minimal
value h∗ of parameter h in system (63) for which there exists a non-degenerate
redundant inequality

m∑
j=1

s∗jyj ≤ s∗0 (68)

such that the corresponding symmetrical inequality

−
m∑
j=1

s∗jyj ≤ −s∗0 (69)
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is redundant for inconsistent system (66). An optimal point y∗ for problem (57)-(59)
can be found by solving the following system

m∑
j=1

dijyj ≤ di0, i = 1, 2, . . . , p ;

m∑
j=1

s∗jyj = s∗0.

(70)

Proof. Assume that for system (63) with given h there exists a non-degenerate re-
dundant inequality (64) such that symmetrical inequality (65) is redundant for sys-
tem (66). Then according to Corollary 2 of Lemma 2 and Theorem 3 for problem
(57)-(59) there exists a feasible solution such that the corresponding value of the
objective function is not greater than h. Therefore the minimal value z∗ of the ob-
jective function of problem (57)-(59) is equal to minimal value h∗ of parameter h
in system (63) for which there exists a non-degenerated redundant inequality (68)
such that the corresponding symmetrical inequality (69) is redundant for inconsis-
tent system (66). In this case yj0 = y∗ ∈ Y ∩ bd(Y h∗) and the optimal point y∗ ∈ Y
can be found by solving system (70).

Theorem 8. Let disjoint bilinear programming problem (57)-(59) be such that sys-
tem (59) satisfies conditions a) − c) and the set of solutions X of system (58) is
nonempty and bounded. If system (45) has no solutions, then for a given h the
property Y ̸⊂ Yh holds if and only if the following system

n∑
j=1

aijxj + xn+i = ai0, i = 1, 2, . . . , q;

n∑
i=1

cijxi +

p∑
k=1

dkjvk = −ej , j = 1, 2, . . . ,m;

n∑
i=1

gixi −
p∑

k=1

dk0vk + vp+1 = h;

xi ≥ 0, i = 0, 1, 2, . . . , n+ q; vk ≥ 0, k = 1, 2, . . . , p+ 1

(71)

has a basic feasible solution x01, x
0
2, . . . , x

0
n+q, v

0
1, v

0
2, . . . , v

0
p+1 for which the set of

vectors

{
Dk =


dk1

dk2

...
dkm

 : v0k > 0, k ∈ {1, 2, . . . , p}
}

(72)

is linearly independent. The minimal value h∗ of parameter h for which Y ̸⊂ Yh
is equal to the of the optimal value of the objective function of problem (57)-(59).

Proof. According to Lemma 4 the condition Y ̸⊂ Yh holds if and only if there exist
s0, s1, s2, . . . , sn such that (64) is non-degenerate redundant inequality for system
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(63) and (65) is a redundant inequality for inconsistent system (66). If for (64) and
63) we apply the Minkowski-Farkas theorem (Theorem 6), then we obtain that (64)
is redundant for (63) if and only if there exist x0, x1, x2, . . . , xn+q, t such that

0 = −
n∑

j=1

aijxj − xn+i + ai0t, i = 1, 2, . . . , q;

sj = −
n∑

i=1

cijxi − ejt, j = 1, 2, . . . ,m;

s0 =

n∑
i=1

gixi − ht+ x0;

xj ≥ 0, i = 0, 1, 2, . . . , n+ q; t ≥ 0.

(73)

Now let us apply Theorem 7 for inequality (65) and inconsistent system (66).
According to this theorem, inequality (65) is redundant for system (66) if and only
if there exist v0, v1, v2, . . . , vm such that


−sj = −

p∑
k=1

dkjvk, j = 1, 2, . . . ,m;

−s0 = −
n∑

k=1

dk0vk + v0;

vk ≥ 0, k = 0, 1, 2, . . . , p ,

(74)

where
∑p

k=1 dkjvi ̸= 0 at least for an index j ∈ {1, 2, . . . ,m} and the set of column
vectors (72) is linearly independent.

So, Lemma 4 can be formulated in terms of solutions of systems (73),
(74) as follows: the condition Y ̸⊂ Yh holds if and only if there exist s0, s1,
s2, . . . , sm, x0, x1, x2, . . . , xn+q, v0, v1, v2, . . . , vp+1, t that satisfy (73), (74),
where

∑p
k=1 dkjvk ̸= 0 at least for an index j ∈ {1, 2, . . . ,m} and the set of column

vectors (72) is linearly independent. If we eliminate s1, s2, . . . , sm from (73) by
introducing (74) in (73) and after that denote vp+1 = v0 + x0, then we obtain the
following system

n∑
j=1

aijxj + xn+i = ai0t, i = 1, 2, . . . , q;

n∑
i=1

cijxi +

p∑
k=1

dkjvk = −ejt, j = 1, 2, . . . ,m;

n∑
i=1

gixi −
p∑

k=1

dk0vk + vp+1 = ht;

xj ≥ 0, j = 1, 2, . . . , n+ q; vk ≥ 0, k = 1, 2, . . . , p+ 1; t ≥ 0.

(75)

This means that Lemma 4 in terms of solutions of system (75) can be formulated
as follows: the property Y ̸⊂ Yh holds if and only if system (75) has a solution
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x1, x2, . . . , xn+q, v1, v2 , . . . , vp, vp+1, t where
∑p

k=1 dkjvi ̸= 0 at least for an
index j ∈ {1, 2, . . . ,m} and the set of column vectors (72) is linearly independent.

In (75) the subsystem
n∑

j=1

aijxj + xn+i = ai0t, i = 1, 2, . . . , q;

xj ≥ 0, j = 1, 2, . . . , n+ q, t ≥ 0

(76)

has a nonzero solution x1, x2, . . . , xn+q, t if and only if t > 0, because the set
of solutions of system (58) is nonempty and bounded. Therefore in (75) we can
set t = 1 and finally obtain that Y ̸⊂ Yh if and only if system (71) has a solution
x01, x

0
2, . . . , x

0
n+q, v

0
1, v

0
2, . . . , v

0
p+1 for which the set of column vectors (72) is

linearly independent and
∑p

k=1 dkjv
0
k ̸= 0 at least for an index j ∈ {1, 2, . . . ,m}.

If h∗ is the minimal value of parameter h for which system (71) has a basic
feasible solution where the system of vectors (72) is linearly independent, then ac-
cording to Corollary 7 of Lemma 4, h∗ is equal to the optimal value of the objective
function of problem (57)-(59).

Corollary 8. Let e disjoint bilinear programming problem (57)-(59) be such that
system (59) satisfies conditions a) − c) and the set of solutions X of system (58)
is nonempty and bounded. If system (45) has no solutions, then for a given h
the property Y ̸⊂ Yh holds if and only if system (71) has a basic feasible solution
x01, x

0
2, . . . , x

0
n+q, v

0
1, v

0
2, . . . , v

0
p+1, where v0p+1 is a basic component. The minimal

value h∗ of parameter h with such a property is equal to the optimal value of
objective function of problem (57)-(59).

Theorem 9. Let disjoint bilinear programming problem (57)-(59) be such that sys-
tem (59) satisfies conditions a) − c) and the set of solutions X of system (2) is
nonempty and bounded. Then the minimal value z∗ of the objective function of
problem (57)-(59) is equal to the minimal value h∗ of parameter h in system (71)
for which this system has a basic feasible solution x∗1, x

∗
2, . . . , x

∗
n+q, v

∗
1, v

∗
2, . . . , v

∗
p+1

where either the system of column vectors

{
Dk =


dk1

dk2

...
dkm

 : v∗k > 0, k ∈ {= 1, 2, . . . , p}
}

(77)

is linearly independent or this system of vectors is an empty set. If such a solution
for system (71) with h = h∗ is known, then x∗1, x

∗
2, . . . , x

∗
q together with an arbitrary

solution y∗1, y
∗
2, . . . , y

∗
m of the system

m∑
j=1

dkjyj ≤ dk0, k = 1, 2, . . . , p ;

m∑
j=1

(

p∑
k=1

dkjv
∗
k)yj =

p∑
k=1

dk0v
∗
k

(78)
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represents an optimal solution x∗1, x
∗
2, . . . , x

∗
n+q, y

∗
1, y

∗
2, . . . , y

∗
m of disjoint

programming problem (57)-(59). If
∑p

k=1 dkjv
∗
k = 0, j = 1, 2, . . . , m, then

v∗1 = 0, v∗2 = 0, . . . , v∗p+1 = 0; in this case x∗1, x
∗
2, . . . , x

∗
q together with an arbitrary

solution y1, y2, . . . , ym of system (59) represents a solution of problem (57)-(59).

Proof. Let h∗ be the minimal value of parameter h for which system (71) has a basic
feasible solution x∗1, x

∗
2, . . . , x

∗
n+q, v

∗
1, v

∗
2, . . . , v

∗
p+1 for which either the system of

vectors (77) is linearly independent or this system of vectors is an empty set. Then
according to Theorem 8 and Corollary 3 of Theorem 3 the optimal value of the
objective function of problem (57)-(59) with properties a) − c) is equal to h∗ and
v∗p+1 = 0.

Now let us prove the second part of the theorem. According to Corollary 1 of
Theorem 2, for disjoint bilinear programming problem (57)-(59) we can consider the
following min-max problem:

Find

h∗ = min
(x1,x2,...,xn)∈X

max
(v1,v2,...,vp) ∈V (x1,x2,...,xn)

( n∑
j=1

gjxj −
p∑

k=1

dk0vk

)
and (x∗1, x

∗
2, . . . , x

∗
n) ∈ X,

X =

{
(x1, x2, . . . , xn)

∣∣ n∑
i=1

aijxj ≤ai0, i = 1, 2, . . . , q; xi ≥0, i = 1, 2, . . . , q

}
,

such that

h∗ = max
(v1,v2...,vp) ∈V (x∗

1,x
∗
2,...,x

∗
n)

( n∑
i=1

gjx
∗
j −

p∑
k=1

dk0vk

)
,

where

V (x1, x2, . . . , xn)=

{
(v1, v2, . . . , vp)

∣∣− p∑
k=1

dkjvk =
n∑

i=1

cijxi + ej , j =1, 2, . . .m

}
.

We can observe that x∗1, x
∗
2, . . . , x

∗
n+q, v

∗
1, v

∗
2, . . . , v

∗
p+1 is a solution of this min-

max problem and x∗ = (x∗1, x
∗
2, . . . , x

∗
n+q) is an optimal point for problem (57)-(59)

with properties a) − c). Taking into account that
p∑

k=1

dkjv
∗
k = −

n∑
i=1

cijx
∗
i − ej , j =

1, 2, . . . ,m, and
p∑

k=1

dk0v
∗
k = −h∗+

p∑
i=1

gix
∗
i we obtain that system (78) coincides with

system (70), because s∗j =
p∑

k=1

dkjv
∗
k and s∗0 =

p∑
k=1

dk0v
∗
k. So, for the optimal point

x∗ = (x∗1, x
∗
2, . . . , x

∗
n+q) the corresponding optimal point y∗ = (y∗1, y

∗
2, . . . , y

∗
m) for

problem (57)-(59) can be found by solving system (78). If
∑p

k=1 dkjv
∗
k = 0, j =

1, 2, . . . , m, then v∗1 = 0, v∗2 = 0, . . . , v∗p+1 = 0 and we obtain that x∗1, x
∗
2, . . . , x

∗
q

together with an arbitrary solution y1, y2, . . . , ym of system (59) represents a solution
of problem (57)-(59).
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Thus, the disjoint bilinear programming problem with the perfect disjoint sub-
set Y (or with acute-angled polytope Y ) can be solved if there exists an efficient
algorithm for determining a basic feasible solution with the basic component vp+1

for system (71). For this problems we elaborated suitable algorithms.
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