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Abstract. In this paper, we extend some fixed point results for various classes of
mappings to approximating fixed points, using Mann iterative process in the context
of convex G-metric spaces.
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1 Introduction and preliminaries

The concept of G-metric space was introduced by Mustafa and Sims [5] as an
extension of the notion of metric spaces in which to every triplet of elements a non-
negative real number is assigned. These authors developed the well known Banach
contraction principle, and some fixed point results for various classes of mappings
in this new context.

Later on, many authors obtained some fixed point results under different conditions,
in the setting of G-metric spaces, but without approximating these fixed points. The
notion of convex metric spaces was first introduced in 1970 by Takahashi [8], and was
investigated by several authors in approximation of fixed points in convex spaces.
Our aim in this paper is to use Mann iterative process in convex G-metric spaces to
approximate fixed points for some types of mappings.

Definition 1. [6] Let X be a non-empty set and let G : X x X x X — RT be a
function satisfying the following properties:

(Gl) G(z,y,2) =0if x =y = z,

(G2) 0 < G(z,z,y) for all x,y € X with = # y,

(G3) G(z,x,y) < G(z,y,z) for all x,y,z € X with y # z,

(G4) G(z,y,2) = G(x,z,y) = G(y,z,z) = ... (symmetry in all three variables),

(G5) G(z,y,2) < G(x,a,a) + G(a,y, z) for all z,y,z,a € X (rectangle inequality).
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Then the function G is called a generalized metric or, more specifically, a G-metric
on X, and the pair (X, Q) is called a G-metric space.
Every G-metric on X defines a metric dg on X by

dG(gjay) = G(ﬂf,y,y) + G(y7$7$) for all T,y € X.

Example 1. [4] Let (X, d) be a metric space. The function
G: X x X xX —|[0,+00], defined as

G(z,y,z) =d(z,y) +d(y, z) + d(z, x)
G(z,y,z) = max{d(x,y),d(y, z),d(z,x)},

for all x,y,z € X, is a G-metric on X.

Definition 2. [6] Let (X, G) be a G-metric space. Let (x,,) be a sequence of points
of X. We say that (z,) is G-convergent to = if lim G(z,zp,xy) = 0; that is, for

n,1M—00
any € > 0, there exists k& € N such that G(x, z,, z,,) < € for all n,m > k. We call z
the limit of the sequence and we write x,, — x or lim z,, = .

n—oo

Proposition 1. [6] Let (X,G) be a G-metric space. Then the following are equiv-
alent:

1. (zy) s G-convergent to x,

2. G(xp,xn,z) — 0 asn — oo,

3. G(xp,z,x) — 0 as n — o0,

4. G(xm, Tn,x) — 0 as m,n — oo.

Definition 3. [6] Let (X,G) be a G-metric space. A sequence (z,) is called
G—Cauchy if for each ¢ > 0, there is k € N such that G(x,,xm,x;) < € for all
m,n,l >k, that is, G(xy, xm,x;) — 0 as n,m,l — oo.

Proposition 2. [6] Let (X,G) be a G-metric space, then the following conditions
are equivalent:

1. The sequence (xy,) is G-Cauchy.

2. For every € > 0, there exists k € N such that G(xp, Tm,Tm) < €, for all
n,m > k.

Definition 4. [6] A G-metric space (X, G) is called G-complete if every G-Cauchy
sequence is G-convergent in (X, G).

Proposition 3. [6] Let (X, G) be a G-metric space. Then for any z,y,z, anda € X,
it follows that
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Proposition 4. [6] Let (X,G) be a G-metric space. Then T : X — X is G-
continuous at x € X if and only if it is G-sequentially continuous at x, that is,
whenever (x,,) is G-convergent to x, (T'zy,) is G-convergent to Tx.

Proposition 5. [6] Let (X,G) be a G-metric space. Then the function G(z,y, z) is
jointly continuous in all the three of its variables

Theorem 1. [5] Let (X,G) be a complete G-metric space, and let T : X — X, be
a mapping satisfying one of these conditions

G(Tx, Ty, Ty) < a|G(x,Ty,Ty) + G(y, Tz, Tz)] (1)

or
G(Tz,Ty,Ty) < alG(z,2,Ty) + G(y,y, Tx)], (2)

for all x,y € X, where a € |0, %[, then T has a unique fixed point (say u), and T is
G-continuous at u.

Theorem 2. [5] Let (X,G) be a complete G-metric space, and let T : X — X, be
a mapping which satisfies the following conditions, for all x,y,z € X,

G(z,y,2),G(z, T2, Tx),G(y, Ty, Ty),
G(Tx,Ty,Tz) < kmax G(2,Tz,Tz),G(x, Ty, Ty), , (3)
Gy, T2,Tz),G(z, Tz, Tx)
where k € [0, %[ Then T has a unique fized point (say u) and T is G-continuous at
u.

Theorem 3. [5] Let (X,G) be a complete G-metric space, and let T : X — X, be
a mapping which satisfies the following conditions, for all x,y,z € X,

G(z, Ty, Ty) + Gy, Tz, Tx),
G(Tx,Ty,Tz) < kmax<{ G(y,Tz,Tz)+ G(z,Ty,Ty), , (4)
G(xz,Tz,Tz)+ G(2, Tz, Tx)

where k € [0, %[ Then T has a unique fized point (say u) and T is G-continuous at
u.



70 N. FETOUCI

Theorem 4. [5] Let (X,G) be a complete G-metric space, and let T : X — X, be
a mapping which satisfies the following conditions, for all x,y,z € X,

Gy, Ty, Ty) + G(z, Ty, Ty),
<
G(Tz,Ty,Ty) < kmax { 2G(y, T, T'x) , (5)
where k € [0, %[ Then T has a unique fized point (say u) and T is G-continuous

at u.

Theorem 5. [2] Let (X,G) be a complete G-metric space, let T : X — X, be a
mapping such that
G(Tz,Ty,Tz) < kM(z,y,z) (6)

for all x,y, z, where k € [0, %[ and

G(z,Tx,y),G(y, Tz, Ty),G(Tz, T*x, Ty),
Gy, Tz, Ty),G(z, Tz, 2),G(z,T?x,Tz),
M(z,y,2) =max{ G(Tx,T?x,Tz),G(z, Tz, Ty),G(x, Tz, Tx), . (7)
G(z,y,2),Gy, Ty, Ty),G(2,Tz,Tz),
G(z,Tz,Tx),G(z, Ty, Ty),G(y, Tz,T=z)

Then there is a unique x € X such that Tx = x.
In what follows, we recall Suzuki-type fixed point results in G-metric spaces.

Theorem 6. [1] Let (X,G) be a complete G-metric space and let T be a mapping
on X. Define a strictly decreasing function, n from [0,1] onto ]%, 1] by n(r) =
Assume that there exists r € [0,1] such that for every x,y € X,

1
1+r-

n(r)G(z, Tz, Tx) < G(z,y,y) implies  G(Tz, Ty, Ty) <rG(z,y,y).  (8)
Then there exists a unique fived point z of T and imT™(z) = z for all x € X.
n
Moreover, T is G-continuous at z.

Definition 5. [8] A convex structure in a metric space (X, d) is a mapping
Sc : X2 x [0,1] — X satisfying, for all z,y,u € X and all 8 € [0, 1],

d(Sc(z,y; 8),u) < Bd(z,u) + (1 = B)d(y, u). 9)

Convez structure was introduced by Modi et al.[3], in the context of G-metric
spaces.

Definition 6. [3] Let (X, G) be a G-metric space. A mapping S¢ : X®x]0,1] — X
is said to be a convex structure on (X, G) if for each (z,y,2,\) € X3x]0,1] and for
all u,v € X the condition

w| >

Glu,0, S0(,,2, X)) < 56w 0,2) + 56w vy) + 3G,v,2)  (10)

holds. If S¢ is a convex structure on a G-metric space (X,G), then the triplet
(X,G, S¢) is called a convex G-metric space.
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A more appropriate definition of convex structure in G-metric spaces was given
by Yildirim and Khan [9] as follows:

Definition 7. [9] Let (X,G) be a G-metric space. A mapping S¢ : X2 x I? — X
is termed as a convex structure on X if

G(SC(xay;A77)7u7v) < AG(QZ‘,U,U) +7G(y,u,v) (11)

for real numbers A\ and v in I = [0, 1] satisfying A+~ =1 and z,y,u and v € X.

A G-metric space (X,G) with a convex structure S¢ is called a convex G-metric
space and denoted as (X, G, S¢).

A nonempty subset C' of a convex G-metric space (X, G, S¢) is said to be convex if
Sc(z,y; \;y) € C for all z,y € C and A,y € I.

In the end of this section we give the definition of Mann iterative process in the
setting of G-metric space.

Definition 8. [9] Let (X, G, S¢) be a convex G-metric space with a convex structure
Sc and

T : X — X be a mapping. Let (3,) be a sequence in [0, 1] for n € N. Then for any
given xy € X, the iterative process defined by the sequence

Tn+l = SC($nyTxn§ 1- ﬁmﬁn)y n €N, (12)

is called Mann iterative process in the convex G-metric space (X, G, S¢).
It follows from the structure of convex G-metric space that

G($n+1,u,v) = G(SC(xnaT$na 1- ﬁnvﬁn)vuvv)
< (1= 6n)G(zn,u,v) + BnG(Txy, u,v). (13)

A

2 Main results

Our first main result is the following:

Theorem 7. Let (X, G, Sc) be a convex G-metric space with a conver structure Sc,
and let
T:X — X, be a mapping satisfying one of these conditions

G(Tx, Ty, Ty) < a|G(x,Ty,Ty) + G(y, Tz, Tx)] (14)
G(Tz, Ty, Ty)) < a[G(z,2,Ty) + G(y, y, Tx)], (15)

for all x,y € X, where a € |0, %[ Let (x,) be defined iteratively by (12), z¢ € X,
and (B,) C [0,1] satisfying > 0" By = 0o0. Then (xy,) converges strongly to a fized
point of T.
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Proof. Using (13) and the fact that u is a fixed point of the mapping T', we have

G(xn+1,u,u) = G(SC(xnaT$na 1- ﬁnvﬁn)vuvu)
< (1= 6n)G(zn, u,u) + BnG(Txn, u,u) (16)
= (1-=70,)G(xn,u,u) + BrG(Txy, Tu, Tu).

Applying the inequality (14) to G(T'zy, Tu, Tu),

G(Txp, Tu,Tu) < alG(xn,Tu,Tu)+ G(u,Txy,, Tx,)]
< alG(xp, Tu, Tu) + 2G(Txyp, u, u)l, (17)
hence from (17) we have:
a
<
G(Txp,u,u) < T 2aG(azn,u,u), (18)

and so from the inequalities (16) and (18) we obtain

G, ut) < (1= B)G (@, u,u) + BG(T2y, Tu, Tu)
< (1= B)Glan,uyu) + fog—s-Glan, u,w)
< (1= Bu) 4 Bug g, G, w) (19)
< L full — 75 G )]

[1—06,(1-9)|G(xp,u,u),

where § = 1%
Note that 0 < < 1 and

G(zpt1,u,u) <[1 =61 —0)]G(xp,u,u).

Indeed

furthermore, if 1—2a = 0, then a < 1—2a, means that ¢ < 0, which is a contradiction
since a > 0. By induction, we get

G(zpt1,u,u) H [1— Gk(1—0)]G(xg,u,u). (20)
k=0
Since 0 < 1, B € [0,1] and .7, B, = 00, we deduce that

Jim JT0 -1 -9) =0, (21)
k=0
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and (16) implies that
lim G(zp,u,u) = 0. (22)

n—oo

Thus the sequence (x,,) defined iteratively by (12) converges strongly to the fixed
point of T

Now, applying the inequality (15) to G(Tx,,Tu,Tu), and using the same method
as above, one obtains

G(Sc(l'n, Txp;1 — ﬂm an)a u, u)
(1= Bn)G (2, u,u) + BnG (T, u,u) (23)
(1 = Bn)G(xn,u,u) + BrG(Txy, Tu, Tu)

G(zpt1,u,u)

IN

and

G(Txp, Tu, Tu) a|G(xp, xn, Tu) + G(u,u, Tx,)]

a|G(xp, Tu, Tu) + 2G(Txp, u, u)], (24)

VANVAN

which is the case of (14).
Our second result is the following

Theorem 8. Let (X, G, Sc) be a convex G-metric space with a conver structure Sc,
and let
T:X — X, be a mapping which satisfies the following conditions, for all x,y,z € X,

G(z,y,2),G(x, Tz, Tx), G(y, Ty, Ty),
G(Tz,Ty,Tz) < kmax G(2,Tz,Tz),G(z, Ty, Ty), , (25)
Gy, Tz,Tz),G(z, Tz, Tx)

where k € [0, 3. Let (zy) be defined iteratively by (12), zo € X, and (8,) C [0,1]
satisfying
>0 o Bn = 00. Then (z,,) converges strongly to a fized point of T

Proof. Regarding (13) and the fact that u is a fixed point of the mapping 7', one
has

G(xn+1,u,u) = G(SC(xnaT$na 1- ﬁnvﬁn)vuvu)
< (1= 6n)G(zn, u,u) + BnG(Txn, u,u) (26)

= (1-3,)G(xn,u,u) + BnG(Txy, Tu, Tu).
In view of the inequality (25) and the rectangle inequality, we obtain
G(Txn, Tu,Tu) < k[G(zy,u,u) + G(u, Txy, Txy)], (27)
then from Proposition 3 we get

G(Tzp, Tu,Tu) < kG(xy,u,u) + 2kG(Txy, u, u), (28)
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SO

G(Txn,Tu,Tu) <

By inequalities (26) and (29), we obtain

G(:En—i-lauvu) < (1_ﬁn)G($n7u7u)+ﬁnm
k

= (1 (= NG, ) (30)
one can see that 0 < § < 1 and 1 — 2k # 0. Indeed,

G(zn, u,u)

_ _k
where 0 = =57,

1
k:§§:>k:<1—2k:> <1,

1-2k

in addition, if 1 — 2k # 0, then according to above, k£ < 1 — 2k leads to k < 0 which
is a contradiction.
Next, similarly to the proof of theorem above, we obtain

lim G(xy,u,u) =0,

n—oo

which completes the proof. O

Our third result is given by

Theorem 9. Let (X, G, Sc) be a convex G-metric space with a convex structure Sc,
and let
T:X — X, be a mapping which satisfies the following conditions, for all x,y,z € X,

G(z, Ty, Ty) + Gy, Tz, Tx),
G(Tz, Ty, Tz) < kmax<{ G(y,T2,Tz)+ G(2,Ty,Ty), ¢, (31)
G(x,Tz,Tz) + G(z,Tx,Tx)

where k € [0,1[. Let (z,) be defined iteratively by (12), zo € X, and (8,) C [0, 1]
satisfying
Yoo Bn =00. Then (z,,) converges strongly to a fized point of T.

Proof. By (13) and the fact that u is a fixed point of the mapping T, one has

G(xn+1,u,u) = G(SC(xnaT$na 1- ﬁnvﬁn)vuvu)
< (1= 6n)G(zn, u,u) + BnG(Txn, u,u) (32)
= (1 - 5,)G(xn,u,u) + BnG(Txy, Tu, Tu).

By inequality (31), we obtain
(p, Tu, Tu) + G(u, Txy, Txy),

G
G(Tzp, Tu,Tu) < kmax] G(u,Tu,Tu) + G(u, Tu, Tu), ,
G(zn, Tu,Tu) + G(u, Txp, Txy)
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SO

G(Tzp, Tu,Tu) < k[G(zp,u,u) + G(u, Tz, Txy)], (33)
and hence the result follows from the same argument as in Theorem 8. O
We give by the sequel our fourth result.

Theorem 10. Let (X,G, S¢) be a conver G-metric space with a convex structure
Sc, and let
T:X — X, be a mapping which satisfies the following conditions, for all x,y,z € X,

Gy, Ty, Ty) + G(z, Ty, Ty),
G(Tz,Ty,Ty) < kmax { 2G(y, T, Tz) (34)

where k € [0, 2[. Let (z,,) be defined iteratively by (12), xo € X, and (8,) C [0,1]
satisfying > o” o B = 00. Then (xy) converges strongly to a fized point of T'.

Proof. In view of (13) and the fact that u is a fixed point of the mapping 7', one has

G(xn+1,u,u) = G(SC(xnaT$na 1- ﬁnvﬁn)vuvu)
< (1= 6n)G(zn, u,u) + BnG(Txn, u,u) (35)
= (1-=70,)G(xn,u,u) + BrG(Txy, Tu, Tu).

Using inequality (34), we obtain

G(u,Tu, Tu) + G(xp, Tu, Tu),
G(Tzp, Tu,Tu) < kmax { 26 (u, Ty, T , (36)
it follows that
G(zp, Tu,Tu),
<
G(Txn, Tu,Tu) < k‘max{ AG(Txy, u,11) } . (37)

There are two distinct cases: for the first case, assume that
G(Tzp, Tu,Tu) < 4kG(Txp, u,u).

It is a contradiction since 0 < k < %.
For the second case, suppose that G(Tz,, Tu,Tu) < 4kG(xy, u, u).
Then, the expression (35) turns into

G(zpi1,u,u) < (1 —=06p)G(xn,u,u) + BnG(Txy, Tu, Tu)
< (1= 0n)G(zn,u,u) + BrdkG(zy, u, u) (38)
= [1— 3,11 —4k)|G(zn,u,u)

[1=Bn(1 = 8)]G(zn, u,u),

it is easily seen that 0 < ¢ < 1. Indeed, we have k < % = 4k < 1.

Using the same argument as in the proof of Theorem 8, one can deduce that the
sequence () defined iteratively by (12) converges strongly to the fixed point of
T. O
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Theorem 11. Let (X, G, S¢) be a conver G-metric space with a convex structure
Sc, and let
T:X — X, be a mapping which satisfies the following conditions,

G(Tz,Ty,Tz) < kM(z,y,z) (39)
for all x,y, z, where k € [0, %[ and

G(z,Tx,y),G(y, T?z, Ty), G(Tz, T?x,Ty),
G(y, Tz, Ty),G(z,Tx, 2),G(z, T?x,Tz),
M(z,y,2) =max{ G(Tx,T?z,Tz2),G(z2,Tx,Ty),G(x, Tz, Tx), 5. (40)
G(z,y,2),G(y, Ty, Ty),G(z,Tz,T=z),
G(z,Tx,Tx),G(x, Ty, Ty),G(y, Tz,Tz)

Let (xy) be defined iteratively by (12), xop € X, and (8,) C [0,1] satisfying
> oo o Bn = 00. Then () converges strongly to a fized point of T

Proof. Employing (13) and the fact that u is a fixed point of the mapping T, one
has

G(xnt1,u,u) = G(Sc(xn, Ten; 1 — B, Bn), u,u)
(1 = Bn)G(xn,u,u) + B G(Txp, u,u) (41)
= (1= n)G(2n,u,u) + BnG(Txy, Tu, Tu).

IN

Applying inequality (40), we obtain

G(u, Tu, ), G(xn, T?u, Tzy), G(Tu, T?u, Txy,),
G(zn, Tu, Txy,), G(u, Tu, ), G(2yn, T?u, Tx,),
G(Tzp, Tu,Tu) < 2k max G(Tu, T*u, Txy,), G(xn, Tu, Txy), G(u, 2, 2,), ,
G(xp, Txp, Try), G(u, Tu,Tu), G(xy, Txy, Txy),
G(u,Txn, Txy), G(xn, Tu, Tu), G(xn, TTp, Txy)
(42)

this entails

G(Txn,Tu,Tu) S 2k max { G(U,T$n,$n),G(U,U,T.l'n),G(’LL,$n,3§‘n) } .

G(xp, Txpn, Txy), G(u, Txy, Txy,), G2y, u, u)
(43)

Now, we have to examine six cases:
1. G(Txp,u,u) < 2kG(Txp,u,u), leads to a contradiction, since 0 < k < %,

2. G(Tzy,u,u) < 2kG(Txy, zy,u), from the rectangle inequality we get
G(Txyn,u,u) < 2k[G(Txp,u,u) + G(u, u, z,)] which implies that

2k

<
G(Tzp,u,u) < T ok

G(u, u, ).
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Then, the expression (41) turns into

G(zpi1,u,u) < (1= 6,)G(xn,u,u) + BnG(Txy, Tu, Tu)
< (1= B)G (st 0) + g Gl 0,1
2k
= [1-8.(1- m)]G(fEmU,U)

= [1-08.(1-90)|G(zpn,u,u),

tion 3 we get

G(Tzp,u,u) < 2k[G(xn,u,u)+ G(u,Txy, Txy,)]
< 2]{7[G($m u, u) + 2G(T33m u, u)]
= 2kG(xp,u,u) + 4kG(Tzy, u,u),
SO
(T )< 2k o )
xn7u7u —1_4k xn7u7u7
hence
G(zpi1,u,u) < (1= 06,)G(xn,u,u) + BnG(Txy, Tu, Tu)
2k
< — -
= (1 ﬁn)G($nau7U) + ﬁnl — 4kG($mu7U)
2k
= [1-p6,1- m)]G(xn,u,u)
= [1-03.(1-=90)]G(zpn,u,u).

. G(Txp,u,u) < 2kG(u, Ty, Tx,), using Proposition 3 we obtain
G(Txp,u,u) < 4kG(Txp,u,u),
leads to a contradiction.

. G(Txp,u,u) < 2kG(xy,u,u), thus

G(zpi1,u,u) < (1 =706,)G(xn,u,u) + G (T, Tu, Tu)
< (1= 6n)G(xn,u,u) + Bp2kG (2, u,u)
= [1- 06,1 —2k)|G(xn,u,u)
= [1=n(1 = 9)|G(zn,u,u),

it is easily seen that in above cases 0 < § < 1, because k < %.

7

(44)

3. G(Tzp,u,u) < 2kG(zy, Txn, Txy), by the rectangle inequality and Proposi-

(45)
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6. G(Tzy,u,u) < 2kG(u,zy,,x,), using Proposition 3 we obtain
G(Tzp,u,u) < 4kG(xp,u,u), thus

G(rnt1,u,u) < (1 —=0,)G(xn,u,u) + 5y G(Tay, Tu, Tu)
< (1= 6n)G(xn, u,u) + BpdkG(zy, u,u) (47)
= [1- 06,1 —4k)|G(xn,u,u)
= [1=n(1 = 0)|G(zn,u,u),

it is easily seen that in above cases 0 < § < 1, because k < %.

Using the same argument as in the proof of Theorem 8, one can conclude that the
sequence (z,,) defined iteratively by (12) converges strongly to the fixed point of T'.
O

Our last result is the following

Theorem 12. Let (X, G, S¢) be a conver G-metric space with a convex structure
Sc, and let
T:X — X, be a mapping on X. Define a strictly decreasing function n from [0, i[

onto 12,1] by n(r) = ﬁ Assume that there exists v € [0,1] such that for every
z,y € X,
n(r)G(e, Te, Tx) < G(z,y,y) implies  G(Tx,Ty,Ty) <rG(z,y,y).  (48)

Let (xy) be defined iteratively by (12), xop € X, and (8,) C [0,1] satisfying
>0 o Bn = 00. Then (z,,) converges strongly to a fized point of T

Proof. Using (13), and since u is a fixed point of the mapping T, we have

G($n+1, u, U) = G(SC(xna Txp; 1 — By, Bn)a u, u)

< (1= 6n)G(zp, u,u) + By G(Ty, u,u) (49)
= (1-06n)G(zp,u,u) + BnG(Txy, Tu, Tu)

since
n(r)G(u, Tu, Tu) < G(u, Ty, xy),

then by hypothesis we get
G(Tu, Ty, Txy) < rG(u, zy, xy),
thus, (49) implies that

G(zpy1,u,u) (1 = Bn)G(xn,u,u) + 20, G(Tu, Ty, Ty,

(1 = Bn)G(xn,u,u) + 28,rG(u, Ty, Tp) (50)
(1 = 5n)G(xn,u,u) + 4rB,G(zy, u, u)
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= [1-06,1—4r)]G(zp,u,u),

as r < %, so 0 < 4r < 1. Using the same method as in the proof of Theorem 8, one
can conclude that the sequence (x,) defined iteratively by (12) converges strongly
to the fixed point of T'.

O
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