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B-spline collocation method for solving Fredholm
integral equations with discontinuous right-hand side
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Abstract. In this paper, we propose a method for approximating the solution
of the linear Fredholm integral equation of the second kind which is defined on a
closed contour I' in the complex plane. The right-hand side of the equation is a
piecewise continuous function that is numerically defined on a finite set of points on
I'. To approximate the solution, we use a linear combination of B-spline functions
and Heaviside step functions defined on I'. We discuss both theoretical and practical
aspects of the pointwise convergence of the method, including its performance in the
vicinity of the points where discontinuities occur.
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1 Introduction and problem formulation

Let a closed and piecewise smooth contour I' be the boundary of the simply con-
nected domain QT C C, and let the point z = 0 € Q. Consider the Riemann
function z = ¢ (w) that performs the conformal map of the domain D~ from the
outside of the circle I'g := {w € C: |w| = 1} onto the domain Q™ from the outside
of the contour T', such that ¥ (c0) = 0o, ¥’ (00) > 0. The function ¢ (w) transforms
the circle I'g onto the contour I'. Next, we consider that the points of the contour
I' are defined by means of the function v (w).

Let f : ' — C be a continuous or piecewise continuous function on I', and in
this context, we will use the notation f € PC (I"). If the function f € PC (") is
discontinuous on I', we consider that it has finite jump discontinuities, being left-
continuous at the discontinuity points.

Let’s consider the linear Fredholm integral equation of the second kind

go(t)—)\/FK(t,s)go(s)dSZf(t), tel, (1)

which is defined on the contour I' described above. The kernel function is continuous
in both variables, K € C (I x I'). The right-hand side function f € PC ('), and the
constant A € C satisfies the sufficient condition for equation (1) to have a unique
solution ¢ € PC (I).
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Considering that the right-hand side f is numerically defined on the set of points
{t;} on the contour I', we aim to develop an efficient method for computing a
sequence of approximations (,, to the solution ¢ which converges pointwise to ¢ on
I'as n — o0.

Global or piecewise polynomial approximation is generally ineffective for ap-
proximating piecewise continuous functions, except when studying convergence in
the norm of Lebesgue spaces L,, 1 < p < oo. In such cases, it is shown that the se-
quence of interpolation polynomials converges to the solution ¢, with the exception
of a countable set of points [1].

It is known that if algebraic polynomials or spline functions of order m > 2 are
used to approximate the piecewise continuous function ¢, then in the vicinity of
the discontinuity points, the approximation error does not tend to zero, no matter
how much we increase the amount of informations required for constructing the
approximation.

For applications, it is of interest to define analytically a sequence of approxima-
tion functions ¢, that converge pointwise to the piecewise continuous function ¢,
including in the vicinity of the discontinuity points.

Linear spline functions can be employed as an approximation technique, but in
this case, the convergence rate of the approximation process can be exceedingly slow
[2]. Some numerical results show that the oscillatory effect disappears and pointwise
convergence of the approximations is attained, even in the vicinity of discontinuity
points, when the approximation ¢, is constructed as a linear combination of B-spline
functions of order m > 2 [2,3]. However, in the vicinity of discontinuity points, the
convergence rate of the approximations is exceedingly slow. Furthermore, it should
be noted that continuous curves in the complex plane frequently lead to a heavily
distorted approximation of discontinuous curves.

The proposed approximation method entails constructing a sequence of piecewise
continuous approximations for the function ¢, with the objective of incorporating
the convergence properties of B-spline functions. Specifically, we define the sequence
of approximations ¢, as a linear combination of B-spline functions and Heaviside
step functions. Previous studies have examined these approximations on intervals
of the real axis [4]. In this paper, we investigate the case where the approximations
are defined on the contour I' in the complex plane.

Let {tj}?fl be the set of distinct points on the contour I' where the values of
the function f € PC (') are defined. We consider that the points ¢; are generated
based on the relation

tj :w(wj), wj = eiej, 9]' =21 (j — 1) /nB, j: 1,...,713.

We denote by I'; := arc|tj,tj41] the set of points of the contour I', located
between the points t; and tj;1 (see Figure 1).

We admit that the values f (t,‘f) of the function f are known at the discontinuity
points t¢, r =1, ..., npd, on the contour I'. For the function f, defined numerically,
in [5] and [6] several algorithms have been proposed for establishing the locations of
the discontinuity points on I.
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Figure 1: The contour and notations used

2 The computational scheme for approximating the solution of the
integral equation

The algorithm we propose for approximating the solution ¢ of equation (1) is based
on the concept of B-spline functions of order m > 2 which are defined at the points
tj of the contour I'. These B-spline functions are defined using the recursive formula

B (1) m ( L=ty Bu1; (1) tﬂB+m_tB (t)) =1
m,j = — B Bom—13 + B BPm—1j+1 , J=1,...,1B,
m—1 tj—l—m o tj tj-i-m o tj
(2)
1 . B .B
71ft€a7“c[t- t: ) np+m
where By ; (t) =< Gt J779%1) . The set of nodes {tf} 'B sat-
0 otherwise J=1
isfies the condition t¥ = t;, j = 1,..,np, t5 ., = 7,8 ., =45, .., f . =t}

(see [3]). For a fixed m > 2, the B-spline functions (2) have an explicit representation
[3].

We define the Heaviside step function H on the contour I', constructed using the
discontinuity points t¢, r =1, ..., Npd:

H(t—td) _ { 0 iftelhu...Ul's1Uarc [tf,tf})
r) 1 ift€arc[tdtB )UT U UT,,
where I's = arc [tSB,tSBH] , tdeTy.

Taking into account that the solution ¢ of equation (1) is a function with jump
discontinuities on the contour I', and the linear combination of B-spline functions
generates a continuous curve, we will seek the approximation of the solution ¢ of
equation (1) in the form

Npd

ol ()= > B () + > Aol (= t1) (3)
k=1 r=1
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where the coefficients o, € C, k = 1,...,np, and 8, € C, r = 1,...,n,q, are deter-
mined by imposing the interpolation conditions

ory (15) = A/FK (t9,5) o (s)ds=f (t§), j=1,...n. (4)

In relation (4), where n := npg + n,q, the following elements of the B-spline knot set
are selected as interpolation points t]C, j=1..n

1. the first np interpolation points tjc, 7 =1,...,np, are the nodes t? =tj, j=
1,....,np;

2. the remaining n,, interpolation points t]C, j=mnp+1,...,n, are the disconti-
nuity points tf, r =1,...,npq, of the function f.

If among the interpolation points tjc, 7 =1,...,np, there are discontinuity points
t? = (eieﬂg‘l ) of the function f on I', then instead of them we consider the points

f? = (ei(gﬂg‘lfm)), where €9 > 0 is a small value, for example, e5 = 0.01. Since the

function is left continuous, for a sufficiently small 5, it can be considered that the
value of the function f at point f;-l coincides with its value at point t;l.
Taking into account the representation

/FK (t,s) gonHB (s)ds = /FK (t,s) (; ar Bk (s) + ;@H (s - tf)) ds =

TLpd

np
=Sl (1) + Y B2 (1),
k=1 r=1

where IU™ (t) := [, K (t,8) Bmy (s)ds, I2(t) := [ K (t,s) H (s —t?) ds, we can
write the interpolation conditions (4) in the form

% (B 49) M7 (1)) 3 (1 (5 - ) < 12269)) .-
k=1 r=1
=f(t5), j=1,..,n (5)

The relation (5) can be written in matrix form as BZ = f, where

B = {mjx}?_y, mjk = Bmy (t9) =A™ (1), j=1,.on, k=1,...,np,
mj = H (tJC — tf_l) — )\IZ (tjc) ,j=1,...n, k=ng+1,..,n,

T = (aly"'7an37/817"'7/8npd)T7 fT: (f (tlc) 7"'7f (tg))T
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If we consider tjc = tﬁl, j=1,...,np, form=2 and tjc = tﬁ_Q, 7=1,..,np,
for m = 3 and m = 4, then the elements of the matrix B can be calculated as

follows:

B = By — ABs. (6)
The properties of matrix
B (t9) -+ By (t) H@§ —t9) - H (t? _ tﬁpd)
B = : ) : : :
Bri (t§) -+ By (t§) H(S —td) - H (tg _ tflzpd)

have been examined in [3], and the elements of matrix

L) o Lt () R0 o I, ()
By = A : L
L () o Lt () L) o I, ()

can be determined as follows:
For the elements I,}:’m tc> ,J=1..,n, k=1,...,np, the following relations

J
hold:

I,i’m (tjc) = /FK (tJC, s) Bk (s)ds = /a K (t]C, s) Bk (s)ds =

'rc[tf ’tllc3+m]

m . m GEJrr
= Z/ K (tjc, 5) p,(C ) (s)ds = Z/ g§7k (0)de,
r=1 arc[tl?+'r71’th+r] r=1 91163«1»7“71

where g7, = K (tjcﬂb (6i9)> p,(:) (v (ew)) (v (ew) ie’?, and p,(:) (s) represents the
components of the B-spline function B, j (s) of the corresponding order m. For
example, for m = 4, we have:

3
1) 4(s—1t7)

P (s) =
g (s —t0) (s —tF) (R —t2) (20 — 7))

Pi(f) (s)=4(1 +I2),

where
s = th 1 2
Il = W (Il +Il) 5
k44 k
(s —t8) (2 —5)
b
(th+3 - th) (th+2 - tf) (tf+2 - th+1)
(8 - tfﬂ) (t£+3 - 5)
(t1§+3 - tl?) (t1§+3 - tE+1) (tE+2 - tl?—l—l)

I =

I} =
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(t1§+4 - 3) (3 - t1§+1)2

IQ =
(th+4 - tf) (tf+4 - th+1) (th+3 - tf+1) (tf+2 - tf+1) ’
P (s) =45+ 1) .
and )
. (B =9 (s 1F)
. bl
(th+4 - tf) (t£+3 - th) (th+3 - th+1) (t£+3 - tfﬂ)
tB . —s
Iy = 7t]§+4 5 (I} +13),
k+4 = Yk
Ii _ (5 - tfﬂ) (tf+3 - 5)
(thra — thh) (s — thr) (s — o)
2= (3 - tE+2) (tE+4 - 3)
b
(s = then) (s — ths) (s — ths)
3
oD (s) = 4ty — ) .
g (s = t0) (s — t0) (e — ths) (e — 1)

6
The integrals [,

B

fan g;-" i (0)dO are approximated using the generalized trapezoidal
k+r—1 <’

rule, which is also applicable to functions with complex values [7]:

0y N-1
I:= /9 g(0)do~In:=h|05(g0m)+g0n))+ > gOm+ih) ]|, (7)

As N — oo, it has been shown in [7] that Iy — I at the rate of a geometric
progression.

For the elements I? (tjo) , J=1,...,m, r=1,...,npy, the relations

2

2 (1) = /FK (t5,s) H (s — 1) ds = /m[td " K (5, 5) ds :/ g, (6) df,

o
hold true, where ¢;(0) = K (tjc,l/) (ew)) Y (ew) ie’?.  Similarly, the integrals

f;f q; (0) df will be approximated using the generalized trapezoidal rule (7).

It should be noted that the functions g7, (¢) and g; (§) do not depend on the
function f (t). Therefore, they can be evaluated at any point 6 € [0,27], allowing

for the approximation of the integrals I ;m (tjc) and I? (tjc), respectively.
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3 About the convergence of the method and a numerical example

After determining the solution oy, k = 1,...,np, 3., r = 1,...,n,q, of the system
(5), we construct the approximation (3) of the function ¢ (¢) and calculate its values
at the points t € I'. The convergence of the approximation sequence gof{lB, defined
by (3), to the function ¢ € PC (I') as np — oo has been established in [3].

We exhibit the convergence of the proposed method through a numerical ex-
ample. Consider the Riemann function z = 1 (w) that performs the conformal
transformation of the set {w € C: |w| > 1} on the domain Q™ from the outside of
the contour I' as ¢ (w) = w + 1/ (3w?). Thus, ¢ (w) transforms the unit circle Ty
onto the astroid I' (see Figure 2).

3 -
T 25}
2 F
05F
15}
‘E’ 0 < 1r
= E
E osf
057 of
05}
-1
At
1.5 -1 -0.5 0 0.5 1 1.5 -1.5 A 4 2 0 2 4 6
Re(z) Re(2)
Figure 2: The contour and discontinuity ] )
points Figure 3: Graph of the solution

For testing purposes, we consider in the integral equation (1) the kernel func-
tion K (t,5) = t? + s%, the constant A = 0.5, and the right-hand side f (¢) given
analytically on I':

2t — Au if 6 € (0,67]
f@)=< +2t— I if € (67,67]
42t —Auif =0

We have 8¢ = 0.7, 69 = 2 and u := (0.78148 — 0.0812713) t240.91818+0.025237i.
The function f has ny,q = 2 jump discontinuity points on I', t;l =1 (eiﬁf ) , J=1,2
(see Figure 2 and Figure 3).

Likewise, the exact solution ¢ € PC (I') for the given test problem is known to
be
2t if 6 € (0,6¢]
p(t)=1q t3+2tif 6 (67,69]
22t if =0

It has two discontinuity points, the same as the right-hand side f.
The approximation algorithm for the solution of equation (1) takes as initial data
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the values f; of the function f at the points
tj =1 <6i97) el §j=2n(j—1)/np, npeN, k=1,...,np.

The coefficients of the approximation for the solution of equation (1) are deter-
mined as a linear combination according to (3), where B-spline functions of order
m = 4 are considered. The number of points where the value of the function f is
given on I' is np = 320. Consequently, the solution to the system of equations Bz =
f is determined, where & = (1, .oy Qg By ooy Buy) 5 T = (F(8) ooy (1)),
n = np + nyq, and the matrix B has the form specified in (6).

The integrals I ;m (tjc) and I? (tjc), which define the components of the matrix
B, are approximated using the generalized trapezoidal rule (7), with the parameter

N = 200.
For values np = 160 and np = 320 in Figure 4 and Figure 5 the error obtained

at the approximation of the solution ¢ by gofB is presented. It can be seen that the
maximum error decreases significantly for np = 320.
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Figure 4: The approximation error for nB=160
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Figure 5: The approximation error for nB=320
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