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Abstract. The goal of the paper is to study the relationship between asymptotic
stability and exponential stability of the solutions of generalized homogeneous nonau-
tonomous dynamical systems. This problem is studied and solved within the frame-
work of general non-autonomous (cocycle) dynamical system. The application of our
general results for differential and difference equations is given.
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1 Introduction

This paper is dedicated to the study of the problem of asymptotic stability
of a class of nonautonomous dynamical systems with some property of symme-
try. Namely, we study this problem for so-called generalized homogeneous nonau-
tonomous dynamical systems, that is, a class of nonautonomous dynamical systems
invariant with respect to a group of transformations called dilations. We establish
our main results in the framework of general nonautonomous (cocycle) dynamical
systems.

The motive for writing of this article was the works of A. Bacciotti and L. Ro-
sier [2], A. Polyakov [16], V. I. Zubov [24] (see also the bibliography therein) and
the work of the author [5]. We prove the equivalence of uniform asymptotic sta-
bility and exponential stability for this class of nonautonomous dynamical systems.
If the phase space Y of driving system (Y,T, σ) for the cocycle dynamical systems
〈Rn, ϕ, (Y,T, σ)〉 is compact, then we prove that the asymptotic stability and uni-
form asymptotic stability are equivalent. If additionally the driving system (Y,S, σ)
with compact phase space Y is minimal, then for asymptotic stability the uniform
stability and the existence of a positive number a and an element y0 ∈ Y such that
lim

t→+∞
|ϕ(t, u, y0)| = 0 for any u ∈ B[0, a] are sufficient. We apply these results for

differential and difference equations.

The paper is organized as follows. In the second Section, we collect some known
notions and facts from dynamical systems that we use in this paper. Namely, we

c© David Cheban, 2023
DOI: https://doi.org/10.56415/basm.y2023.i2.p52

52



GLOBAL ASYMPTOTIC STABILITY OF HOMOGENEOUS DYNAMICAL SYSTEMS 53

present the construction of shift dynamical systems, definitions of Poisson stable mo-
tions and some facts about compact global attractors of dynamical systems. In the
third Section we establish the relation between uniformly asymptotic stability and
exponential stability for general nonautonomous (cocycle) dynamical systems. The
fourth Section is dedicated to the relation between asymptotic stability and expo-
nential stability for the nonautonomous dynamical systems with the compact phase
space of their driving system. In the fifth Section, we study the nonautonomous
dynamical system with driving system (Y,S, σ), when Y is a compact and minimal
set. Finally, in the sixth Section we apply our general results, obtained in Sections
3-5 to differential/difference equations.

2 Preliminaries

Throughout the paper, we assume that X and Y are metric spaces and for
simplicity we use the same notation ρ to denote the metrics on them, which we
think would not lead to confusion. Let R = (−∞,+∞), Z := {0,±1,±2, . . .}, S = R

or Z, S+ := {s ∈ S| s ≥ 0} and T ⊆ S be a sub-semigroup of S such that S+ ⊆ T.

Let (X,T, π) be a dynamical system on X and M be some family of subsets from
X.

Definition 1. A dynamical system (X,T, π) is said to be M-dissipative if for every
ε > 0 and M ∈ M there exists L(ε,M) > 0 such that πtM ⊆ B(K, ε) for any
t ≥ L(ε,M), where K is a subset from X depending only on M. In this case we will
call K an attractor for M.

The most important for applications are the cases when K is a bounded or
compact set and M = {{x} | x ∈ X} or M = C(X), or M = {B(x, δx) | x ∈
X, δx > 0}, where

1. C(X) is the family of all compact subsets of X;

2. B(x0, δ) := {x ∈ X| ρ(x, x0) < δ}.

Definition 2. The system (X,T, π) is called:

− pointwise dissipative if there exists K ⊆ X such that for every x ∈ X

lim
t→+∞

ρ(xt,K) = 0; (1)

− compactly dissipative if the equality (1) takes place uniformly w.r.t. x on
the compact subsets from X;

− locally dissipative if for any point p ∈ X there exists δp > 0 such that the
equality (1) takes place uniformly w.r.t. x ∈ B(p, δp).
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Let (X,T, π) be compactly dissipative and K be a nonempty compact set that
is an attractor for compact subsets X. Then for every compact M ⊆ X the equality

lim
t→+∞

sup
x∈M

ρ(xt,K) = 0

holds. It is possible to show [7, Ch.I] that the set J defined by the equality

J := ω(K)

does not depend on the choice of the set K attracting all compact subsets of the
space X.

Lemma 1. [7, Ch.I] If the dynamical system (X,T, π) is pointwise dissipative, ΩX 6=
∅ and it is compact, then ΩX ⊆ J+(ΩX).

Theorem 1. [7, Ch.I] For the dynamical systems (X,T, π) with the locally compact
phase space X the pointwise, compact and local dissipativity are equivalent.

Definition 3. (Cocycle on the state space E with the base (Y,S, σ).) A triplet
〈E,φ, (Y,S, σ)〉 (or briefly φ if no confusion) is said to be a cocycle on state space
(or fibre) E with base (Y,S, σ) (or driving system (Y,S, σ)) if the mapping φ :
S+ × Y × E → E satisfies the following conditions:

1. φ(0, u, y) = u for all u ∈ E and y ∈ Y ;

2. φ(t+ τ, u, y) = φ(t, φ(τ, u, y), σ(τ, y)) for all t, τ ∈ S+, u ∈ E and y ∈ Y ;

3. the mapping φ is continuous.

Remark 1. If ϕ(t0, u1, y0) = ϕ(t0, u2, y0) (t0 > 0, u1, u2 ∈ E and y0 ∈ Y ), then
ϕ(t, u1, y0) = ϕ(t, u2, y0) for any t ≥ t0.

Condition (C). (Strong uniqueness condition.) If ϕ(t0, u1, y0) = ϕ(t0, u2, y0)
(t0 > 0, u1, u2 ∈ E and y0 ∈ Y ), then ϕ(t, u1, y0) = ϕ(t, u2, y0) for any t ∈ T+.

Everywhere below in this paper we consider the cocycles ϕ satisfying Condition
(C).

Definition 4. (Skew-product dynamical system.) Let 〈E,φ, (Y,S, σ)〉 be a cocycle
on E, X := E × Y and π be a mapping from S+ ×X to X defined by π := (φ, σ),
i.e., π(t, (u, y)) = (φ(t, u, y), σ(t, y)) for all t ∈ S+ and (u, y) ∈ E × Y . The triplet
(X,S+, π) is an autonomous dynamical system and is called skew-product dynamical
system.

Let x ∈ X. Denote by Σ+
x := {π(t, x) : t ≥ 0} (respectively, Σx := {π(t, x0) :

t ∈ T}) the positive semi-trajectory (respectively, the trajectory) of the point x and

H+(x) := Σ
+
x (respectively, H(x) := Σx) the semi-hull of x (respectively, the hull of

x), where by bar the closure of Σ+
x (respectively, Σx) in X is denoted.

Let (X,S, π) be a dynamical system. Let us recall the classes of Poisson stable
motions we study in this paper, see [20,23] for details.



GLOBAL ASYMPTOTIC STABILITY OF HOMOGENEOUS DYNAMICAL SYSTEMS 55

Definition 5. A point x ∈ X is called stationary (respectively, τ -periodic) if
π(t, x) = x (respectively, π(t+ τ, x) = π(t, x)) for all t ∈ S.

Definition 6. For given ε > 0, a number τ ∈ R is called an ε-shift of x (respectively,
ε-almost period of x) if ρ(π(τ, x), x) < ε (respectively, ρ(π(τ + t, x), π(t, x)) < ε for
all t ∈ R).

Definition 7. A point x ∈ X is called almost recurrent (respectively, almost pe-
riodic) if for any ε > 0 there exists a positive number l such that any segment of
length l contains an ε-shift (respectively, ε-almost period) of x.

Definition 8. If a point x ∈ X is almost recurrent and its trajectory Σx is precom-
pact, then x is called (Birkhoff) recurrent.

Remark 2. It is easy to see that every almost periodic point x ∈ X is recurrent, but
the reverse statement generally speaking is not true.

Denote by C(T × R
n,Rn) the family of all continuous functions f : T × R

n →
R

n equipped with the compact-open topology. This topology can be generated by
Bebutov distance (see, e.g., [3], [23, ChIV])

d(f, g) := sup
L>0

min{ max
|t|+|x|≤L

ρ(f(t, x), g(t, x)), 1/L}.

Denote by (C(T × R
n,Rn),T, σ) the shift dynamical system (or called Bebutov

dynamical system), i.e., σ(τ, f) := f τ , where f τ (t, x) := f(t+ τ, x) for any (t, x) ∈
T × R

n.
We will say that the function f ∈ C(T × R

n,Rn) possesses the property
(A) if the motion σ(t.f) possesses this property in the shift dynamical system
(C(T × R

n,Rn),T, σ). As the property (A) we will consider the Lagrange stabil-
ity, periodicity in time (respectively, almost periodicity, recurrence and so on).

Note that the function f ∈ C(T × R
n,Rn) is Lagrange stable if and only if

the function fK := f∣∣
T×K

is bounded and uniformly continuous on T ×K for any

compact subset K from R
n (see, e.g., [21], [23, ChIV]).

Definition 9. Let (Rn,T, λ) be a linear dynamical system on R
n [7, Ch.II]. A

function F ∈ C(Y × R
n,Rn) is said to be λ-homogeneous if

F (y, λ(τ, w)) = λ(τ, F (y,w)) (or equivalently F (y, λτw) = λτF (y,w))

for any (y, τ, w) ∈ Y × T × R
n.

Example 1. Let (Y,T, σ) be a dynamical system on the metric space Y and T = R+

or R. Consider a differential equation

u′ = F (σ(t, y), u), (y ∈ Y ) (2)

where F ∈ C(Y × R
n,Rn) is a regular function, i.e., for any (u, y) ∈ R

n × Y there
exists a unique solution ϕ(t, u, y) of equation (2) defined on R+ with initial data
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ϕ(0, u, y) = u. Then (see, for example, [4], [20]-[22] the continuous mapping ϕ :
R+×R

n×Y → R
n satisfying the condition ϕ(t+τ, u, y) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for

any t, τ ∈ R+ and (u, y) ∈ R
n×Y is well defined . Then the triplet 〈Rn, ϕ, (Y,T, σ)〉

is a cocycle over (Y,T, σ) with the fibre R
n (shortly ϕ) generated by (2).

Lemma 2. Assume that the function F ∈ C(Y × R
n,Rn) is λ-homogeneous, then

the cocycle ϕ generated by (2) is also λ-homogeneous.

Proof. To prove this statement we consider the function ψ(t) := λτϕ(t, u, y). It is
easy to check that

ψ
′

(t) = λτϕ
′

(t, u, y) = λτF (σ(t, y), ϕ(t, u, y)) =

F (σ(t, y), λτϕ(t, u, y)) = F (σ(t, y), ψ(t))

for any t ∈ T. Since ψ(0) = λτu, then we obtain ψ(t) = ϕ(t, λτu, y), i.e.,
λτϕ(t, u, y) = ϕ(t, λτu, y) for any t, τ ∈ T and (u, y) ∈ R

n×Y . Lemma is proved.

3 Uniformly Asymptotical Stability of Nonautonomous General-

ized Homogeneous Dynamical Systems: General Case

Let X := R
n with euclidian norm |x| :=

√
x2

1 + . . .+ x2
n. Denote by

|x|r,p :=
(
Σn

i=1|xi|
p

ri

) 1
p ,

where r := (r1, . . . , rn), ri > 0 for any i = 1, . . . , n and p ≥ 1.
Denote by

1. ρ(x) := |x|r,p;

2. Sr,p := {x ∈ R
n| ρ(x) = 1};

3. K := {α ∈ C(R+,R+)| α(0) = 0 and α is strictly increasing} and

4. K∞ := {α ∈ K| α(t) → +∞ as t→ +∞}.

There exist a, b ∈ K∞ such that

a(|x|r,p) ≤ |x| ≤ b(|x|r,p) (3)

for any x ∈ R
n (see for example [10]).

A generalized weight is a vector r = (r1, . . . , rn) with ri > 0 for any i = 1, . . . , n.
The dilation associated to the generalized weight r is the action of the multiplicative
group R+ \ {0} on R

n given by:

Λr : R+ \ {0} → R
n

(
(µ, x) → Λr

µx
)
,

where Λr
µ := diag(µri)ni=1.

Remark 3. The following statements hold:
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1. Λr
1 = I, where I := diag(1, . . . , 1);

2. Λr
µ1

Λr
µ2

= Λr
µ1µ2

for any µ1, µ2 ∈ R+ \ {0};

3. the matrix Λr
µ (µ > 0) is invertible and Λr

µ−1 is its inverse, i.e., Λr
µ−1 =

(
Λr

µ

)−1
,

because Lr
µΛr

µ−1 = Λr
1 = I for any µ > 0;

4. ||Λr
µ|| → 0 as µ→ 0;

5.
|Λr

µx| ≥ µν |x| (4)

for any x ∈ R
n and µ > 0, where ν := min{ri| i = 1, . . . , n} > 0;

6.
ρ(Λr

µx) = µρ(x) (5)

for any (µ, x) ∈ (0,+∞) × R
n, where ρ(x) := |x|r,p;

7. Λ
(1,...,1)
µ = diag(µ, . . . , µ) = µI for any µ > 0.

Lemma 3. [7, Ch.II] Let D be a family of functions η : R+ → R+ satisfying the
conditions:

a. there exists M > 0 such that 0 < η(t) ≤M for all t ≥ 0 and η ∈ D;

b. η(t) → 0 as t → +∞ uniformly in η ∈ D, i.e., for any ε > 0 there exists
L(ε) > 0 such that η(t) < ε for any t ≥ L(ε) and η ∈ D .

Then we have the following statements:

1. if η(t + τ) ≤ η(t)η(τ) for any t, τ ≥ 0 and η ∈ D, then there exit positive
numbers N and ν such that

η(t) ≤ N e−νt

for any t ≥ 0 and η ∈ D;

2. if η(t + τ) ≤ η(t)η(τηm(t)) (m > 0) for any t, τ ≥ 0 and η ∈ D, then there
exist positive numbers a and b such that

η(t) ≤M(a+ bt)−
1
m

for any t ≥ 0 and η ∈ D.

Definition 10. Following [13, 16, 18, 24] a cocycle 〈Rn, ϕ, (Y,T, σ)〉 over dynamical
system (Y,T, σ) (driving system) with the fibre R

n is said to be r-homogeneous of
degree m ∈ R if

ϕ(t,Λr
µu, y) = µmΛr

µϕ(t, u, y) (6)

for any µ > 0 and (t, u, y) ∈ T+ × R
n × Y .
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In this subsection we suppose that the phase space Y of the driving system
(Y,R, σ), generally speaking, is not compact.

Definition 11. The trivial motion u = 0 of the cocycle ϕ is said to be:

1. uniformly stable if for arbitrary positive number ε there exists a positive num-
ber δ = δ(ε) such that |u| < δ implies

|ϕ(t, u, y)| < ε

for any (t, y) ∈ T+ × Y ;

2. uniformly attracting if there exists a positive number γ such that

lim
t→+∞

sup
|u|≤γ,y∈Y

|ϕ(t, u, y)| = 0;

3. uniformly asymptotically stable if it is uniformly stable and uniformly attract-
ing.

Lemma 4. The trivial motion u = 0 of the r-homogeneous cocycle ϕ of the degree
zero is uniformly stable if and only if for arbitrary ε > 0 there exists δ = δ(ε) > 0
such that ρ(u) < δ implies ρ(ϕ(t, u, y)) < ε for any (t, y) ∈ T+ × Y .

Proof. Let u = 0 be uniformly stable motion of ϕ, µ > 0 and ∆(µ) > 0 be a
positive number figuring in the definition of the uniform stability of u = 0. For any
ε > 0 we put δ(ε) := b−1(∆(a(ε))) > 0, where a and b are some functions from K∞

figuring in (3). If ρ(u) < δ, then we have |u| ≤ b(ρ(u)) < ∆(a(ε)) and, consequently,
|ϕ(t, u, y)| < a(ε) for any t ∈ T+. Note that ρ(ϕ(t, u, y)) ≤ a−(|ϕ(t, u, y)|) <
a−1(a(ε)) = ε for any t ≥ 0.

The inverse statement can be proved using the same arguments as above. Lemma
is proved.

Lemma 5. If the trivial motion u = 0 of the cocycle ϕ is uniformly stable, then
there exists a positive number M such that

|ϕ(t, u, y)| ≤ M̃

for any |u| ≤ 1 and (t, y) ∈ T+ × Y .

Proof. Since the trivial motion u = 0 of the cocycle ϕ is uniformly stable, then there
exists a positive number δ0 = δ(1) such that |u| ≤ δ0 implies

|ϕ(t, u, y)| ≤ 1

for any |u| ≤ δ0 and (t, y) ∈ T+ × Y . Since ‖Λr
µ−1‖ → 0 as µ → +∞, then there

exists a positive number µ0 such that

‖|Λr
µ−1‖ ≤ δ0
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for any µ ≥ µ0. Note that

|ϕ(t, u, y)| = |ϕ(t,Λr
µΛr

µ−1u, y)| = |Λr
µϕ(t,Λr

µ−1u, y)| ≤ ‖Λr
µ‖|ϕ(t,Λr

µ−1u, y)| (7)

for any µ ≥ µ0 and (t, u, y) ∈ T+ × R
n × Y . By (7) we have

|Λr
µ−1

0
u| ≤ δ0

for any |u| ≤ 1 and, consequently,

sup
|u|≤1

|ϕ(t,Λr
µ−1

0
u, y)| ≤ 1 (8)

for any (t, y) ∈ T+ × Y . Finally, we note that from (7) and (8) we obtain

|ϕ(t, u, y)| ≤ ‖Λr
µ−1

0
‖ := M̃

for any |u| ≤ 1 and (t, y) ∈ T+ × Y . Lemma is proved.

Corollary 1. Under the conditions of Lemma 5 for any R > 0 there exists a positive
constant M(R) such that

|ϕ(t, u, y)| ≤M(R)

for any u ∈ R
n with |u| ≤ R and (t, y) ∈ T+ × Y .

Proof. Let R be an arbitrary positive number. Since ‖Λr
µ−1‖ → 0 as µ→ +∞, then

there exists a positive number µ0 = m0(R) such that

‖Λr
µ−1‖ ≤ R−1 (9)

for any µ ≥ µ0 and, consequently,

|Λr
µ−1u| ≤ ‖Λr

µ−1
0
‖|u| ≤ R−1R = 1 (10)

for any |u| ≤ R. Note that

|ϕ(t, u, y)| = |ϕ(t,Λr
µ0

Λr
µ−1

0

u, y)| = |Λr
µ0
ϕ(t, λr

µ−1
0

u, y)| ≤

‖Λr
µ0
‖|ϕ(t,Λr

µ−1
0

u, y)| (11)

for any (t, u, y) ∈ T+ × R
n × Y . According to (9)-(11) we obtain

|ϕ(t, u, y)| ≤ ‖Λr
µ0
‖|ϕ(t,Λr

µ−1
0
u, y)| ≤ ‖Λr

µ−1
0
‖M̃ := M(R)

for any |u| ≤ R and (t, y) ∈ T+ × Y .

Corollary 2. Under the conditions of Lemma 5 there exists a positive constant M
such that

ρ(ϕ(t, u, y)) ≤M

for any u ∈ R
n with ρ(u) ≤ 1 and (t, y) ∈ T+ × Y .
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Proof. Let u ∈ R
n with ρ(u) ≤ 1 and a, b ∈ K∞ be the function from (3), then we

have
|u| ≤ b(ρ(u)) ≤ b(1)

and
a(ρ(ϕ(t, u, y)) ≤ |ϕ(t, u, y)| ≤M(b(1)) (12)

for any (t, y) ∈ T+ × Y . From (12) we obtain

ρ(ϕ(t, u, y)) ≤ a−1(M(b(1)) := M

for any ρ(u) ≤ 1 and (t, y) ∈ T+ × Y .

Lemma 6. Let 〈Rn, ϕ, (Y,T, σ)〉 be a cocycle over (Y,T, σ) with the fibre R
n. As-

sume that ϕ is an r-homogeneous of the degree zero cocycle.
Then

1.
ρ(ϕ(t+ τ, u, y)) = ρ(ϕ(τ, u, y))ρ(ϕ(t,Λr

µ−1ϕ(τ, u, y), σ(τ, y)) (13)

for any t, τ ∈ T+, where µ := ρ(ϕ(τ, u, y));

2.
ρ(ϕ(t, u, y)) = ρ(u)ρ(ϕ(t,Λr

ρ(u)−1u, y))

for any u ∈ R
n \ {0}, t ∈ T+ and y ∈ Y .

Proof. Note that

ρ(ϕ(t+ τ, u, y)) = ρ(ϕ(t, ϕ(τ, u, y), σ(τ, y)) =

ρ(ϕ(t,Λr
µΛr

µ−1ϕ(τ, u, y), σ(τ, y)) = ρ(Λr
µϕ(t,Λr

µ−1ϕ(τ, u, y), σ(τ, y)) =

µρ(ϕ(t,Λr
µ−1ϕ(τ, u, y), σ(τ, y)) (14)

for any µ > 0, t, τ ∈ T+ and (u, y) ∈ R
n × Y . In particular for µ = ρ(ϕ(τ, u, y)) > 0

we obtain from (14) the following equality

ρ(ϕ(t+ τ, u, y)) = ρ(ϕ(τ, u, y))ρ(ϕ(t,Λr
µ−1ϕ(τ, u, y), σ(τ, y).

The second statement of Lemma follows from the first one if we take τ = 0.

Theorem 2. Let 〈Rn, ϕ, (Y,T, σ)〉 be an r-homogeneous cocycle of the degree zero.
The following statements are equivalent:

1. the trivial motion u = 0 of the cocycle ϕ is uniformly stable;

2. there exists a positive number M such that

ρ(ϕ(t, u, y)) ≤Mρ(u) (15)

for any (t, u, y) ∈ T+ × R
n × Y .
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Proof. To prove this Theorem it is sufficient to show (i) implies (ii) because the
inverse implication, taking into account Lemma 4, is evident.

Let M be the positive number from Corollary 2 and (t, u, y) be an arbitrary
element from T+ × R

n × Y with u 6= 0, then by Lemma 6 (item (ii)) we have

ρ(ϕ(t, u, y)) = ρ(u)ρ(ϕ(t,Λr
ρ(u)−1u, y)). (16)

Since ρ(Λr
ρ(u)−1u) = ρ(u)−1ρ(u) = 1, then by Corollary 2 we have

ρ(ϕ(t,Λr
ρ(u)−1u, y)) ≤M. (17)

From (16) and (17) we obtain (15). Theorem is proved.

Lemma 7. If the trivial motion u = 0 of the cocycle ϕ is uniformly attracting, then

lim
t→+∞

sup
|u|≤1,y∈Y

|ϕ(t, u, y)| = 0. (18)

Proof. Since the trivial motion u = 0 of the cocycle ϕ is uniformly attracting, then
there exists a positive number γ such that

lim
t→+∞

sup
|u|≤γ,y∈Y

|ϕ(t, u, y)| = 0. (19)

Since ‖Λr
µ−1‖ → 0 as µ→ +∞, then there exists a positive number µ0 such that

‖|Λr
µ−1‖ ≤ γ (20)

for any µ ≥ µ0 and, consequently,

|Λr
µ−1

0
u| ≤ ‖Λr

µ−1
0
‖|u| ≤ γ (21)

for any |u| ≤ 1. From (7) we have

|ϕ(t, u, y)| ≤ ‖Λr
µ0
‖|ϕ(t,Λr

µ−1
0
u, y)| (22)

and taking into account (19)-(22) we obtain (18). Lemma is proved.

Corollary 3. Assume that the trivial motion u = 0 of the cocycle ϕ is uniformly
attracting, then

lim
t→+∞

sup
|u|≤R,y∈Y

|ϕ(t, u, y)| = 0 (23)

for any R > 0.

Proof. LetR be an arbitrary (fixed) positive number. Since ‖Λr
µ−1‖ → 0 as µ→ +∞,

then there exists a positive number µ0 such that

‖|Λr
µ−1‖ ≤ R−1 (24)
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for any µ ≥ µ0 and, consequently,

|Λr
µ−1

0
u| ≤ ‖Λr

µ−1
0
‖|u| ≤ R−1R = 1 (25)

for any |u| ≤ R. Taking into account (23)-(25) we obtain

|ϕ(t, u, y)| = |ϕ(t,Λr
µ0

Λr
µ−1

0

u, y)| = |Λr
µ0
ϕ(t,Λr

µ−1
0

u, y)| ≤

‖Λr
µ0
‖|ϕ(t,Λr

µ−1
0

u, y)| ≤ R−1 sup
|v|≤1,y∈Y

|ϕ(t, v, y)| → 0

as t→ +∞ uniformly with respect to |u| ≤ R and y ∈ Y .

Corollary 4. Under the conditions of Lemma 7 we have

lim
t→+∞

sup
ρ(u)≤1,y∈Y

ρ(ϕ(t, u, y)) = 0. (26)

Proof. Let u ∈ R
n with ρ(u) ≤ 1, then |u| ≤ b(1). Since

a(ρ(ϕ(t, u, y)) ≤ |ϕ(t, u, y)| ≤ sup
|u|≤b(1),y∈Y

|ϕ(t, u, y)| := η(t), (27)

and by Corollary 3
lim

t→+∞
η(t) = 0. (28)

From (27) we obtain

sup
ρ(u)≤1,y∈Y

ρ(ϕ(t, u, y)) ≤ a−1(η(t)) (29)

for any t ∈ T+. Passing to the limit in (29) and taking into account (28) we obtain
(26).

Theorem 3. Let ϕ be an r-homogeneous cocycle over dynamical system (Y,T, σ)
with the fibre. The following statements are equivalent:

1. the trivial motion u = 0 of the cocycle ϕ is uniformly asymptotically stable;

2. there are positive numbers N and ν such that

ρ(ϕ(t, u, y)) ≤ N e−νtρ(u) (30)

for any (t, u, y) ∈ T+ × R
n × Y .

Proof. It is evident that 2. implies 1.
Now we will establish that 1. implies 2. Indeed, denote by

m(t) := sup
ρ(u)≤1,y∈Y

ρ(ϕ(t, u, y)) (31)

for every t ∈ T+. By (31) the mapping m : T+ → R+ is well defined possessing the
following properties:
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a. 0 ≤ m(t) ≤M for any t ∈ T+, where M := a−1(M(b(1))) from Corollary 2;

b. m(t) → 0 as t→ +∞;

c. m(t+ τ) ≤ m(t)m(τ) for any t, τ ∈ T+.

The statement a. (respectively, statement b.) follows from Corollary 2 (respec-
tively, Corollary 4). To prove the statement c. we note that

m(t+ τ) = sup
ρ(u)≤1,y∈Y

ρ(ϕ(t + τ, u, y) =

sup
ρ(u)≤1,y∈Y

ρ(ϕ(t, ϕ(τ, u, y), σ(τ, y))) =

sup
ρ(u)≤1,y∈Y

ρ(ϕ(t,Λr
µΛr

µ−1ϕ(τ, u, y), σ(τ, y))) = (32)

sup
ρ(u)≤1,y∈Y

ρ(Λr
µϕ(t,Λr

µ−1ϕ(τ, u, y), σ(τ, y))),

where
µ := ρ(ϕ(τ, u, y)). (33)

By the equality (5) we have

sup
ρ(u)≤1,y∈Y

ρ(Λr
µϕ(t,Λr

µ−1ϕ(τ, u, y), σ(τ, y))) = (34)

µρ(ϕ(t,Λr
µ−1ϕ(τ, u, y), σ(τ, y))).

Note that
ρ(Λr

µ−1ϕ(τ, u, y)) = µ−1ρ(ϕ(τ, u, y) = 1 (35)

and, consequently,

ρ(ϕ(t,Λr
µ−1ϕ(τ, u, y), σ(τ, y))) ≤ sup

ρ(v)≤1,q∈Y
ρ(ϕ(t, v, q)) = m(t). (36)

From (32)-(36) we obtain
m(t+ τ) ≤ m(τ)m(t)

for any t, τ ∈ T+.
According to Lemma 6 (item (ii)) we have

ρ(ϕ(t, u, y)) = ρ(u)ρ(ϕ(t,Λr
ρ(u)−1u, y)) ≤ m(t)ρ(u)

for any u ∈ R
n \{0} and (t, y) ∈ T+×Y because ρ(Λr

ρ(u)−1u) = 1 and, consequently,

ρ(ϕ(t,Λr
ρ(u)−1u, y)) ≤ sup

ρ(v)≤1,y∈Y
ρ(ϕ(t, v, y)) = m(t). (37)

By Lemma 3 there are positive numbers N and ν such that m(t) ≤ N e−νt for any
t ∈ T+, and taking into account (37) we obtain (30). Theorem is proved.
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4 Asymptotic Stability of Nonautonomous Generalized Homoge-

neous Dynamical Systems: The Case of the Compact Phase

Space of Driving System

Let 〈Rn, ϕ, (Y,T, σ)〉 be a cocycle over (Y,T, σ) with the fibre R
n and Y be a

compact metric space. Assume that the cocycle ϕ admits the trivial motion 0, i.e.,
ϕ(t, 0, y) = 0 for any (t, y) ∈ T+ × Y .

Remark 4. Let 〈Rn, ϕ, (Y,T, σ)〉 be r homogeneous of order m, then ϕ admits the
trivial motion.

Denote by
W s

y (0) := {u ∈ R
n| lim

t→+∞
|ϕ(t, u, y)| = 0}.

Definition 12. A trivial motion 0 of the cocycle ϕ is said to be:

1. uniformly stable if for arbitrary ε > 0 there exists δ = δ(ε) > 0 such that
|u| < δ implies |ϕ(t, u, y)| < ε for any t ∈ T+ and y ∈ Y ;

2. attracting if there exists γ > 0 such that lim
t→+∞

|ϕ(t, u, y)| = 0 for any |u| < γ

and y ∈ Y ;

3. asymptotically stable if it is uniformly stable and attracting;

4. globally asymptotically stable if it is asymptotically stable and W s
y (0) = R

n

for any y ∈ Y .

Let 〈Rn, ϕ, (Y,T, σ)〉 be a cocycle over (Y,T, σ) with the fiber R
n and ϕ(t, 0, y) =

0 for any (t, y) ∈ T+ × Y .

Lemma 8. Let 〈Rn, ϕ, (Y,T, σ)〉 be an r ∈ (0,+∞)n homogeneous (of the degree
zero) cocycle over (Y,T, σ) with the fiber R

n. Assume that W s
y (0) is neighborhood of

0, then W s
y (0) = R

n.

Proof. Let u ∈ R
n be an arbitrary point. Under the condition of Lemma there exists

a positive number δy such thatB(0, δy) ⊆W s
y (0), whereB(0, δ) := {u ∈ R

n| |u| < δ}.
Since the cocycle ϕ is r homogeneous of the degree zero, then there exists a positive
number µ0 < 1 such that

Λr
µu ∈ B(0, δy) (38)

for any 0 < µ < µ0. Note that

ϕ(t, u, y) = ϕ(t,Λr
µ−1Λ

r
µu, y)) = Λr

µ−1ϕ(t,Λr
µu, y). (39)

From (38)-(39) we obtain u ∈W s
y (0), that is, R

n = W s
y (0). Lemma is proved.

Theorem 4. Let 〈Rn, ϕ, (Y,T, σ)〉 be a cocycle over (Y,T, σ) with the fibre Rn and
r ∈ (0,+∞)n. Assume that the cocycle ϕ is r homogeneous of the degree zero and
Y is compact. Then the following conditions are equivalent:
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1. the trivial motion u = 0 of the cocycle ϕ is attracting;

2. the skew-product dynamical system (X,T+, σ) generated by ϕ is pointwise dis-
sipative.

Proof. To prove this statement it is sufficient to show that (i) implies (ii). Let
x = (u, y) ∈ X = E × Y be an arbitrary point. By Lemma 8 we have W s

y (0) = R
n

and, consequently u ∈W s
y (0), i.e.,

lim
t→+∞

|ϕ(t, u, y)| = 0.

Since the space Y is compact, then the motion π(t, x) (x = (u, y) and π(t, x) =
(ϕ(t, u, y), σ(t, y))) is positively Lagrange stable and ∅ 6= ωx ⊆ Θ := {0} × Y . Thus
ΩX ⊆ Θ and, consequently, the dynamical system (X,T, σ) is pointwise dissipative.
Theorem is proved.

Theorem 5. Let ϕ be an r homogeneous cocycle over (Y,T, σ) of the degree zero
and Y be a compact metric space. Then the following statements are equivalent:

1. the trivial motion of ϕ is attracting;

2. the skew-product dynamical system (X,T+, π) generated by cocycle ϕ (X :=
R

n × Y and π = (ϕ, σ)) and its Levinson center J ⊆ Θ := {0} × Y .

Proof. To prove this statement it is sufficient to show that 1. implies 2. Indeed, by
Lemma 8 we have W s

y (0) = R
n × Y for any y ∈ Y . Since the space Y is compact,

then the skew-product dynamical system (X,T+, π) (X = R
n × Y and π = (ϕ, σ))

is pointwise dissipative. Since the phase space X = R
n ×Y is locally compact, then

by Theorem 1 the dynamical system (X,T+, π) is compactly dissipative. Denote by
J its Levinson center. Since J is a compact subset of X, then there exists a positive
number γ0 such that J ⊆ B[0, γ0] × Y , where B[0, γ0] := {u| |u| ≤ γ0}. Now we
will show that J ⊆ Θ. If we suppose that it is not true, then there exists a point
x0 = (u0, y0) ∈ J \ Θ. This means that u0 6= 0 and through the point x0 passes a
full trajectory {π(t, x0) = (ϕ(t, u0, y0), σ(t, y0)| t ∈ S} which belongs to J . Since the
cocycle ϕ is r-homogeneous of the degree zero, then

ϕ(t,Λr
µu0, y0) = Λr

µϕ(t, u0, y0) (40)

for any t ∈ S. From (40) it follows that the full trajectory {(ϕ(t,Λr
µu0, y0), σ(t, y0)| t ∈

S} is precompact and, consequently,

(Λr
µu0, y0) ∈ J

for any ε ∈ (0,+∞). Note that

|Λr
µu0| ≥ µν |u0| (41)

for any µ > 0, where ν = min{r1, . . . , rn} > 0. Passing to the limit in (41) as
µ → +∞ we conclude that the set J is not compact. This contradicts the fact
that the Levinson center is the maximal compact invariant set of (X,T+, π). The
obtained contradiction proves our statement. Theorem is completely proved.
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Theorem 6. Let ϕ be an r homogeneous cocycle over (Y,T, σ) of the degree zero
and Y be a compact metric space. Then the trivial motion u = 0 of the cocycle ϕ is
asymptotically stable if and only if it is uniformly asymptotically stable.

Proof. To prove this statement it is sufficient to show that the asymptotic stability
of the trivial motion u = 0 of ϕ implies its uniformly asymptotic stability. Assume
that the trivial motion u = 0 of the cocycle ϕ is asymptotically stable. Then by
Theorem 5 the skew-product dynamical system (X,T+, π) generated by cocycle ϕ
(X := R

n × Y , π = (ϕ, σ)) and its Levinson center J ⊆ Θ := {0} × Y . Let γ be an
arbitrary positive number, then

lim
t→+∞

sup
|u|≤γ,y∈Y

|ϕ(t, u, y)| = 0.

Suppose that it is not true, then there exist positive numbers ε0, γ0 and sequences
{uk} (with |uk| ≤ γ0 for any k ∈ N), {yk} ⊂ Y and tk ≥ k such that

|ϕ(tk, uk, yk)| ≥ ε0 (42)

for any k ∈ N. Since the set K0 := B[0, γ0] × Y is compact and the skew-product
dynamical system (X,T+, π) is compactly dissipative, then without loss of generality
we may assume that the sequences {uk}, {yk}, {σ(tk, yk)} and {ϕ(tk, uk, yk)} are
convergent. Denote by ȳ = lim

k→∞
σ(tk, yk) and

ū = lim
k→∞

ϕ(tk, uk, yk). (43)

It is clear π(tk, (uk, yk)) = (ϕ(tk, uk, yk), σ(tk, yk)) ∈ Σ+
K0

:=
⋃
{π(t,K0)| t ≥ 0} and

(ū, ȳ) ∈ ω(K0) ⊆ J ⊆ Θ := {0} × Y . This means, in particular, that

|ū| = 0. (44)

On the other hand passing to the limit in (42) as k → ∞ and taking into account
(43) we obtain

|ū| ≥ ε0 > 0

which contradicts (44). The obtained contradiction proves our statement. Theorem
is completely proved.

Theorem 7. Let ϕ be an r homogeneous cocycle over (Y,T, σ) of the degree zero
and Y be a compact metric space.

Then the trivial motion u = 0 of the cocycle ϕ is asymptotically stable if and
only if it is attracting.

Proof. To prove this statement it is sufficient to show that under the conditions
of Theorem if the trivial motion u = 0 of the cocycle ϕ is attracting, then it is
asymptotically stable. If we suppose that it is not true, then there are ε0 > 0,
δk → 0 (δk > 0) and tk → +∞ as k → ∞, uk ∈ R

n and yk ∈ Y such that

|uk| ≤ δk and |ϕ(tk, uk, yk)| ≥ ε0. (45)
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Reasoning as in the proof of Theorem 6 we can suppose that the sequence
{ϕ(tk, uk, yk)} converges. Denote its limit by ū = lim

k→∞
ϕ(tk, uk, yk). Passing to the

limit in (45) as k → ∞ we obtain ū 6= 0. On the other hand (ū, ȳ) ∈ J ⊆ Θ = {0}×Y
(see the proof of Theorem 6) and, consequently, ū = 0. The obtained contradiction
completes the proof of Theorem.

Corollary 5. Let r ∈ (0,+∞)n and ϕ be an r homogeneous cocycle over (Y,T, σ)
with the fibre R

n. If the space is compact, then the following statements are equiva-
lent:

1. the trivial motion u = 0 of the cocycle ϕ is asymptotically stable;

2. the skew-product dynamical system (X,T+, π) generated by ϕ is pointwise dis-
sipative.

Proof. This statement follows from Theorems 4 and 7.

Lemma 9. Let 〈Rn, ϕ, (Y,T, σ)〉 be a cocycle over (Y,T, σ) with the fibre R
n, then

the following statements hold:

1. the trivial motion u = 0 of the cocycle ϕ is positively uniformly stable if
and only if for any ε > 0 there exists δ(ε) > 0 such that ρ(u) < δ implies
ρ(ϕ(t, u, y)) < ε for any (t, u) ∈ T+ × Y ;

2. lim
t→+∞

|ϕ(t, u, y)| = 0 if and only if lim
t→+∞

ρ(ϕ(t, u, y)) = 0.

Proof. Assume that the trivial motion of the cocycle ϕ is positively uniformly sta-
ble, then for arbitrary ε > 0 there exists δ(ε) > 0 such that ρ(u) < δ implies
ρ(ϕ(t, u, y)) < ε for any (t, u) ∈ T+×Y . If we suppose that it is not true, then there
exist ε0 > 0, δk → 0 (δk > 0), ρ(uk) < δk (uk ∈ R

n), (tk, yk) ∈ T+ × Y such that

ρ(ϕ(tk, uk, yk)) ≥ ε0 (46)

for any k ∈ N. Let a, b ∈ K∞ be the functions figuring in (3), then from (3) and
(46) we obtain

0 < a(ε0) ≤ a(ρ(ϕ(tk, uk, yk))) ≤ |ϕ(tk, uk, yk)|. (47)

On the other hand by positively uniform stability of trivial motion for ϕ we can
choose a positive number δ(ε0) such that

|ϕ(t, u, y)| < a(ε0)

for any |u| < δ(ε0) and (t, y) ∈ T+ × Y . Note that |uk| ≤ b(ρ(uk)) < b(δk) → 0 as
k → ∞ and, consequently, there exists a number k0 ∈ N such that |uk| < δ(ε0) for
any k ≥ k0. Thus we have

|ϕ(t, uk, y)| < a(ε0) (48)
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for any k ≥ k0 and (t, y) ∈ T+ × Y . In particular, from (48) we receive

|ϕ(tk, uk, yk)| < a(ε0) (49)

for any k ≥ k0. The inequalities (47) and (49) are contradictory. The obtained
contradiction proves our statement. The converse statement can be proved using
absolutely the same arguments as above.

Let (u, y) ∈ R
n × Y be so that

lim
t→+∞

|ϕ(t, u, y)| = 0. (50)

Since a(ρ(ϕ(t, u, y))) ≤ |ϕ(t, u, y)|, then

ρ(ϕ(t, u, y)) ≤ a−1(|ϕ(t, u, y)|) (51)

for any (t, u, y) ∈ T+ × R
n × Y . Passing to the limit in (51) as t → +∞

and taking into account (50) we obtain lim
t→+∞

ρ(ϕ(t, u, y)) = 0. Then we have

|ϕ(t, u, y)| ≤ b(ρ(ϕ(t, u, y))) and, consequently, lim
t→+∞

|ϕ(t, u, y)| = 0. Lemma is

completely proved.

Theorem 8. Assume that the following conditions are fulfilled:

1. the cocycle 〈Rn, ϕ, (Y,T, σ)〉 is r-homogeneous of the degree zero;

2. the space Y is compact.

Then the following statements are equivalent:

a. the trivial motion of the cocycle ϕ is asymptotically stable;

b. there exit positive numbers N and ν such that

ρ(ϕ(t, u, y)) ≤ N e−νtρ(u)

for any u ∈ R
n, y ∈ Y and t ≥ 0.

Proof. To prove the theorem it is sufficient to establish the implication a.⇒ b., since
the converse statement is obvious.

Since the cocycle ϕ is r homogeneous of the degree zero and the trivial motion
u = 0 is attracting, then from Lemmas 9 and 6 we have W s

y (0) = R
n for any

y ∈ Y . Consider the skew-product dynamical system (X,T+, π) generated by the
cocycle ϕ (X := R

n × Y and π := (ϕ, σ)). Taking into account that Y is a compact
space and W s

y (0) = R
n (for any y ∈ Y ) according to Theorem 5 we conclude that

the dynamical system (X,T+, π) is compactly dissipative and its Levinson center
J ⊆ Θ := {0} × Y . This means that for any compact subset K ⊂ X = R

n × Y the
following statements hold:
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1.
M(K) := sup

(t,u,y)∈T+×K
|ϕ(t, u, y)| < +∞;

2.
mK(t) := sup

(u,y)∈K
|ϕ(t, u, y)| → 0

as t→ +∞.

Note that Sr,p × Y is a compact subset of X = R
n × Y , because Sr,p is a compact

subset of R
n. Denote by

m(t) := sup
(u,y)∈Sr,p×Y

ρ(ϕ(t, u, y)) (52)

and
M := sup

(t,u,y)∈T+×Sr,p×Y
ρ(ϕ(t, u, y)). (53)

Let a, b be the functions from K∞ figuring in (3), then we obtain

ρ(ϕ(t, u, y)) ≤ a−1(|ϕ(t, u, y)|) ≤ a−1(M(Sr,p)) (54)

and
ρ(ϕ(t, u, y)) ≤ a−1(|ϕ(t, u, y)|) ≤ a−1(mSr,p

(t)) (55)

for any t ∈ T+, u ∈ Sr,p and y ∈ Y . From (52)-(55) we have the following statements:

1. 0 < m(t) ≤M for any t ∈ T+;

2. m(t) → 0 as t→ +∞.

From Lemma 6 (item (ii)) we obtain

ρ(ϕ(t, u, y)) ≤ m(t)ρ(u)

for any t ∈ T+ and u 6= 0, where

m(t) := sup{ρ(ϕ(t, u, y))| (u, y) ∈ Sr,p × Y }.

Indeed, Λr
ρ(u)−1u ∈ Sr,p for any u 6= 0 and, consequently,

ρ(ϕ(t,Λr
ρ(u)−1u, y)) ≤ sup

(v,y)∈Sr,p×Y
ρ(ϕ(t, v, y)) = m(t) (56)

for any u 6= 0 and (t, y) ∈ T+ × Y . In particular from (56) we obtain

ρ(ϕ(t,Λr
ρ(ϕ(τ,u,y))−1ϕ(τ, u, y), σ(τ, y))) ≤ sup

(ũ,ỹ)∈Sr,p×Y
ρ(ϕ(t, ũ, ỹ) = m(t)

for any t, τ ∈ T+ and (u, y) ∈ Sr,p × Y .
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Finally, by the equality (13) we have

m(t+ τ) = sup
(u,y)∈Sr,p×Y

ρ(ϕ(t+ τ, u, y)) =

sup
(u,y)∈Sr,p×Y

ρ(ϕ(τ, u, y))ρ(ϕ(t,Λr
µ−1ϕ(τ, u, y), σ(τ, y))) ≤

sup
(u,y)∈Sr,p×Y

ρ(ϕ(τ, u, y)) × sup
(u,y)∈Sr,p×Y

ρ(ϕ(t,Λr
µ−1ϕ(τ, u, y), σ(τ, y))) ≤ m(τ)m(t)

because

Λr
µ−1ϕ(τ, u, y) ∈ Sr,p

if µ = ρ(ϕ(τ, u, y)) and

sup
(u,y)∈Sr,p×Y

ρ(ϕ(t,Λr
µ−1ϕ(τ, u, y), σ(τ, y))) ≤ sup

(ũ,ỹ)∈Sr,p×Y
ρ(ϕ(t, ũ, ỹ)) = m(t).

By Lemma 3 there exist positive numbers N and ν such that m(t) ≤ N e−νt for
any t ∈ T+.

5 Asymptotic Stability of Nonautonomous Generalized Homoge-

neous Dynamical Systems: The Case of the Compact and Mini-

mal Phase Space of Driving System

In this Section we suppose that the complete metric space Y is compact and the
dynamical system (Y,T, σ) is minimal, i.e., every trajectory Σy := {σ(t, y) : t ∈ T}
is dense in Y (this means that H(y) = Y for all y ∈ Y , where H(y) := Σy).

Theorem 9. [6, Ch.II, pp.94-95] Let 〈Rn, ϕ, (Y,S, σ)〉 be a cocycle over two-sided
dynamical system (Y,S, σ) with the fibre R

n. Assume that the following conditions
are fulfilled:

1. the trivial motion u = 0 of the cocycle ϕ is uniformly stable;

2. there exist positive number δ0 and point y0 ∈ Y such that B(0, δ0) ⊂ W s
y0
,

where B(0, r) := {u ∈ R
n| |u| < r}.

Then the trivial motion u = 0 of the cocycle ϕ is asymptotically stable, i.e., there
exists a positive number β such that B(0, β) ⊂W s

y (0) for any y ∈ Y .

Theorem 10. Let 〈Rn, ϕ, (Y,S, σ)〉 be a cocycle over two-sided dynamical system
(Y,S, σ) with the fibre R

n. Assume that the following conditions are fulfilled:

1. the cocycle 〈Rn, ϕ, (Y,T, σ)〉 is r-homogeneous of the degree zero;

2. the trivial motion u = 0 of the cocycle ϕ is stable;

3. there exit a point y0 ∈ Y and positive number δy0 such that B(0, δy0) ⊂W s
y0

(0).



GLOBAL ASYMPTOTIC STABILITY OF HOMOGENEOUS DYNAMICAL SYSTEMS 71

Then the trivial motion u = 0 of the cocycle ϕ is globally uniformly asymptotically
stable, i.e., W s

y (0) = R
n for any y ∈ Y .

Proof. By Theorem 9 there exists a positive number δ0 such that B(0, δ0) ⊂W s
y (0)

for any y ∈ Y . According to Lemma 8 we have W s
y (0) = R

n for any y ∈ Y . Theorem
is proved.

Theorem 11. Let 〈Rn, ϕ, (Y,S, σ)〉 be an r-homogeneous cocycle of the degree zero
over two-sided dynamical system (Y,S, σ).

Then the following statements are equivalent:

1. the trivial motion u = 0 of the cocycle ϕ is uniformly stable and there exists a
point y0 ∈ Y and positive number δy0 such that B(0, δy0) ⊂W s

y0
(0);

2. there exist positive numbers N and ν such that ρ(ϕ(t, u, y)) ≤ N e−νtρ(u) for
any u ∈ R

n, y ∈ Y and t ≥ 0.

Proof. According to Theorem 10 under the conditions of Theorem 11 the trivial
motion u = 0 of the cocycle ϕ is (globally) uniformly asymptotically stable. To
finish tha proof of Theorem it is sufficient to Apply Theorem 8.

6 Applications

6.1 Ordinary Differential Equations

Let R
n be n-dimensional real or complex Euclidean space. Let us consider a

differential equation
u′ = f(t, u), (57)

where f ∈ C(R × R
n,Rn). Along with the equation (57) we consider its H-class

[4, 15,21,22], i.e., the family of the equations

v′ = g(t, v), (58)

where g ∈ H(f) := {f τ | τ ∈ R}, f τ (t, u) = f(t + τ, u) for any (t, u) ∈ R × R
n

and by bar we denote the closure in C(R × R
n,Rn). We will suppose also that

the function f is regular [20, ChIV], i.e., for every equation (58) the conditions of
existence, uniqueness (on the maximal interval of definition of the solutions) and
extendability on R+ are fulfilled. Denote by ϕ(t, v, g) the solution of equation (58),
passing through the point v ∈ R

n at the initial moment t = 0. Then from the general
properties of solutions of ordinary differential equations (ODEs) it follows that the
mapping ϕ : R+ × R

n × H(f) → R
n is well defined and it satisfies the following

conditions (see for example [4, ChIV] and [20, ChIV]):

1) ϕ(0, v, g) = v for any v ∈ R
n and g ∈ H(f);

2) ϕ(t, ϕ(τ, v, g), gτ ) = ϕ(t+ τ, v, g) for every v ∈ R
n, g ∈ H(f) and t, τ ∈ R+;

3) the mapping ϕ : R+ × R
n ×H(f) → R

n is continuous.
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Denote by Y := H(f) and (Y,R, σ) the dynamical system of translations on Y ,
induced by the dynamical system of translations (C(R × R

n,Rn),R, σ). The triplet
〈Rn, ϕ, (Y,R, σ)〉 is a cocycle over (Y,R+, σ) with the fibre R

n. Thus the equation
(57) generates a cocycle 〈Rn, ϕ, (Y,R, σ)〉 satisfying Condition (C).

Note that under the conditions listed above the equation (57) (respectively, H-
class (58)) can be written in the form (2). Indeed, let Y := H(f) and (Y,R, σ) be
the dynamical system of translations on Y . Denote by F the mapping from Y ×R

n

into Rn defined by the equality

F (g, u) := g(0, u). (59)

It is not difficult to check that the mapping F : H(f) × R
n → R

n is continuous.
Finally, note that we can rewrite the equation (58) as follows

u′ = F (σ(t, g), u) (g ∈ H(f)). (60)

Definition 13. A function f ∈ C(R × R
n,Rn) is said to be r homogeneous (r ∈

(0,+∞)n) of degree m ∈ R if f(t,Λr
εu) = λmΛr

εf(t, u) for any (ε, t, u) ∈ (0,+∞) ×
R × R

n.

Remark 5. If the function f ∈ C(R × R
n,Rn) is r homogeneous of a degree m ≥ 0,

then f(t, 0) = 0 for any t ∈ R.

Lemma 10. If the function f ∈ C(R × R
n,Rn) is r homogeneous of a degree m,

then the mapping F : Y × R
n → R

n (Y = H(f)) defined by the equality (59) is r
homogeneous of a degree m with respect to u ∈ R

n uniformly in y ∈ Y .

Proof. Let g ∈ H(f), then there exists a sequence {tk} ⊂ R such that

g(t, u) = lim
k→∞

f(t+ tk, u)

uniformly with respect to (t, u) on every compact subset from R × R
n. Notice that

F (g,Λr
εu) = lim

k→∞
f(t+ tk,Λ

r
εu) = λmΛr

ε lim
k→∞

f(t+ tk, u) = λmΛr
εF (g, u)

for any (ε, g, u) ∈ (0,+∞) ×H(f) × R
n. Lemma is proved.

Corollary 6. Assume that the function f ∈ C(R×Rn,Rn) is r homogeneous of the
degree zero, then the cocycle 〈Rn, ϕ, (H(f),R, σ)〉 generated by the equation (57) is
r homogeneous of the degree zero.

Proof. This statement follows from Lemmas 2 and 10.

Let f(t, 0) ≡ 0 and the function f ∈ C(R × R
n,Rn) be regular.

Definition 14. The trivial solution of the equation (57) is said to be:

1. uniformly stable if for any positive number ε there exists a number δ = δ(ε)
(δ ∈ (0, ε)) such that |x| < δ implies |ϕ(t, x, f τ )| < ε for any t ∈ R+ and τ ∈ R;
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2. attracting (respectively, uniformly attracting) if there exists a positive number
a such that

lim
t→+∞

|ϕ(t, x, f τ )| = 0

for any |x| ≤ a and τ ∈ R (respectively, uniformly with respect to |x| ≤ a and
t ∈ R);

3. asymptotically stable (respectively, uniformly asymptotically stable, if it is uni-
formly stable and attracting (respectively, uniformly attracting).

Remark 6. If the function f ∈ C(R × R
n,Rn) is regular and f(t, 0) = 0 for any

t ∈ R, then it is easy to show that the trivial solution of equation (57) is uniformly
attracting if and only if there exists a positive number a such that

lim
t→+∞

sup
|x|≤a, g∈H(f)

|ϕ(t, u, g)| = 0. (61)

Remark 7. 1. Note that from the results given in the works [1, 19] it follows the
equivalence of standard definition (see, for example,[12, Ch.V]) of the uniform sta-
bility (respectively, global uniform asymptotically stability) and of the one given
above for the equation (57) with regular right hand side.

2. From the results of G. Sell [19,20] it follows that for the differential equations
(57) with the regular and Lagrange stable right hand side f the following statements
are equivalent:

1. the trivial solution of equation (57) is uniformly asymptotically stable;

2. the trivial motion of the cocycle 〈Rn, ϕ, (H(f),R, σ)〉 generated by (57) is
uniformly asymptotically stable.

Theorem 12. Let f ∈ C(R × R
n,Rn). Assume that the following conditions are

fulfilled:

1. the function f is regular and f(t, 0) = 0 for any t ∈ R;

2. the function f is r homogeneous of the degree zero.

Then the following statements are equivalent:

1. the trivial solution of the equation (57) is uniformly asymptotically stable;

2. there exit positive numbers N and ν such that

ρ(ϕ(t, u, g)) ≤ N e−νtρ(u)

for any u ∈ R
n, g ∈ H(f) and t ≥ 0, where ρ(u) = |u|r,p.
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Proof. Let Y := H(f) and (Y,R, σ) be the shift dynamical system on Y = H(f).
Denote by 〈Rn, ϕ, (H(f),R, σ)〉 (shortly ϕ) the cocycle generated by the differential
equation (57). Since the function f is r homogeneous of the degree zero, then by
Corollary 6 the cocycle ϕ generated by the equation (57) is r homogeneous of the
degree zero. To finish the proof of Theorem 12 it is sufficient to take into account
Remarks 6–7 and apply Theorem 3.

Theorem 13. Let f ∈ C(R × R
n,Rn) be a regular function. Assume that the

following conditions are fulfilled:

1. f(t, 0) = 0 for any t ∈ R;

2. the function f is r homogeneous of the degree zero and Lagrange stable.

Then the following statements are equivalent:

1. the trivial solution of the equation (57) is asymptotically stable;

2. there exit positive numbers N and ν such that

ρ(ϕ(t, u, g)) ≤ N e−νtρ(u)

for any u ∈ R
n, g ∈ H(f) and t ≥ 0.

Proof. Let Y := H(f) and (Y,R, σ) be the shift dynamical system on Y = H(f).
Note that the space Y is compact because the function f is Lagrange stable. Since
the function f is r homogeneous of the degree zero, then by Corollary 6 the cocycle
〈Rn, ϕ, (H(f),R, σ)〉 generated by the equation (57) is r homogeneous of the degree
zero. To finish the proof of Theorem 13 it suffices to take into account Remark 7
and apply Theorem 8.

Remark 8. 1. If the function f is τ -periodic, then the equivalence of the conditions
(i) and (ii) was established in the work [17].

2. If the function f is homogeneous of the degree zero (in the classical sense,
i.e., f(t, εx) = εf(t, x) for any ε > 0 and (t, x) ∈ R × R

n), then the equivalence
of the uniform asymptotically stability and exponential stability was established
in the work [12, Ch.VII]. If the function f is r homogeneous of the degree zero
the equivalence of the uniform asymptotic stability and exponential stability was
established in the work [9]

Recall that the function f ∈ C(T×R
n,Rn) is said to be recurrent in time if the

motion σ(t, f) generated by f in the shift dynamical system (C(T × R
n,Rn),T, σ)

is recurrent.

Remark 9. Note that the function f is recurrent in time if and only if its hull H(f)
is a compact and minimal set of the shift dynamical system (C(T × R

n,Rn),T, σ)
(see for example [8, Ch.I]).

Theorem 14. Let f ∈ C(R × R
n,Rn) be a regular function. Assume that the

following conditions are fulfilled:
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1. the function f is recurrent in time and f(t, 0) = 0 for any t ∈ R;

2. the function f is r homogeneous of the degree zero.

Then the following statements are equivalent:

1. the trivial solution of equation (57) is uniformly stable and there exists a pos-
itive number a such that

lim
t→+∞

|ϕ(t, u, f)| = 0 (62)

for any u ∈ B[0, a] := {u ∈ R
n| |u| ≤ a};

2. there exit positive numbers N and ν such that

ρ(ϕ(t, u, g)) ≤ N e−νtρ(u)

for any u ∈ R
n, g ∈ H(f) and t ≥ 0.

Proof. Let Y := H(f) and (Y,R, σ) be the shift dynamical system on Y = H(f).
Note that the space Y is a compact and minimal set because the function f is
recurrent in time (see Remark 9). Since the function f is r homogeneous of the
degree zero, then by Corollary 6 the cocycle 〈Rn, ϕ, (H(f),R, σ)〉 generated by the
equation (57) is r homogeneous of the degree zero. To finish the proof of Theorem
14 it is sufficient to take into account Remark 7 and to apply Theorem 11.

Here is an example illustrating the theorems proved in this subsection.

Example 2. Denote by C(R,R) the space of all continuous functions ψ : R → R

equipped with the compact-open topology and (C(R,R),R, σ) the shift dynamical
system on C(R,R). Consider the system of differential equations

{
ẋ1 = −x1 + p(t)

√
|x2|

ẋ2 = −x2
, (63)

where p ∈ C(R,R).
Note that the function F ∈ C(R×R

2,R2), where F (t, x) := (−x1+p(t)
√

|x2|,−x2)
and x := (x1, x2), is r = (1, 2) homogeneous. This means that F (t,Λµx)) =
ΛµF (t, x) for any (t, µ, x) ∈ R × (0,+∞) × R

n, where Λµx = (µx1, µ
2x2).

Recall that the function p is called Lagrange stable if the set H(p) := {ph| h ∈ R}
(ph(t) := p(t+ h) for any t ∈ R) is a compact subset of C(R,R).

Along this the system (63) we consider its H-class, i.e., the family of systems of
differential equations

{
ẋ1 = −x1 + q(t)

√
|x2|

ẋ2 = −x2
(q ∈ H(p)). (64)

Denote by Y := H(p), (Y,R, σ) the shift dynamical system on Y = H(p) and
ϕ(t, u, q) the unique solution of the system (64) passing through the point u ∈ R2

at the initial moment t = 0. Then 〈R2, ϕ, (Y,R, σ) is a cocycle over (Y,R, σ) with
the fibre R

2.



76 DAVID CHEBAN

Lemma 11. Assume that the function p is Lagrange stable, then the skew-product
dynamical system (X,R+, π) generated by the cocycle ϕ (X := R

2 × Y and π =
(ϕ, σ)) is pontwise dissipative.

Proof. Consider a function V : R
2 × Y → R+ defined by the equality

V (u1, u2, q) := u2
1 + u2

2

for any (u1, u2, q) ∈ R
2 ×H(p). Note that

dV

dt

∣∣
t=0

:= lim
t→0+

V (π(t, x)) − V (x)

t
= −2(u2

1 + u2
2) + 2q(0)u1

√
|u2|. (65)

Since the function p is bounded, then there exists a positive number R0 such
that

−2(u2
1 + u2

2) + 2q(0)u1

√
|u2| ≤ −u1

2 − u2
2 (66)

for any |u| := (u2
1 + u2

2)
1/2 ≥ R0. From (65) and (66) we obtain

dV

dt

∣∣
t=0

≤ −u2
1 − u2

2

for any |u| := (u2
1 + u2

2)
1/2 ≥ R0. According to Theorem 5.3 from [7, Ch.V] the

skew-product dynamical system (X,R+, π) generated by the cocycle ϕ is pointwise
dissipative. Lemma is proved.

Corollary 7. The trivial motion u = 0 of the cocycle ϕ generated by the system
(63) is attracting.

Proof. This statement follows from Lemma 11 and Theorem 4.

Corollary 8. If the function p is Lagrange stable, then there are positive numbers
N and ν such that

ρ(ϕ(t, u, q)) ≤ N e−νtρ(u)

for any (t, u, q) ∈ R+ × R
2 ×H(p), where ρ(u) := (u4

1 + u2
2)

1/4.

Proof. This statement follows from Corollary 7 and Theorems 13 and 7.

6.2 Difference Equations

6.2.1 Discrete Nonautonomous Dynamical Systems

Definition 15. Let T ⊆ Z and (Rn,T, λ) be a discrete linear dynamical system on
R

n. A function F ∈ C(Y × R
n,Rn) is said to be λ-homogeneous if

F (y, λ(τ, w)) = λ(τ, F (y,w)) (or equivalently F (y, λτw) = λτF (y,w))

for any (y, τ, w) ∈ Y × T × R
n.
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Consider the difference equation

u(t+ 1) = F (σ(t, y), u(t)), (y ∈ Y ) (67)

where F ∈ C(Y × R
n,Rn). We will suppose also that the function F is regu-

lar, i.e., for every equation (67) the conditions of existence and uniqueness (on
the maximal interval of definition of solutions) are fulfilled. Denote by ϕ(t, u, y)
the unique solution of the equation (67) with the initial data ϕ(0, u, y) = u,
then the continuous mapping ϕ : Z+ × R

n × Y → R
n satisfying the condition

ϕ(t + τ, u, y) = ϕ(t, ϕ(τ, u, y), σ(τ, y)) for any t, τ ∈ Z+ and (u, y) ∈ R
n × Y is

well defined. Then the triplet 〈Rn, ϕ, (Y,Z, σ)〉 is a cocycle generated by (67) and
satisfying Condition (C).

Lemma 12. Assume that the function F ∈ C(Y × R
n,Rn) is λ-homogeneous, then

the cocycle 〈Rn, ϕ, (Y,Z, σ)〉 generated by the equation (67) is λ-homogeneous.

Proof. To prove this statement we consider the function ψ(t) := λτϕ(t, u, y). It is
easy to check that

ψ(t+ 1) = λτϕ(t+ 1, u, y) = λτF (σ(t, y), ϕ(t, u, y)) =

F (σ(t, y), λτϕ(t, u, y)) = F (σ(t, y), ψ(t))

for any t ∈ Z+. Since ψ(0) = λτu, then we obtain ψ(t) = ϕ(t, λτu, y), i.e.,
λτϕ(t, u, y) = ϕ(t, λτu, y) for any t, τ ∈ Z+ and (u, y) ∈ R

n × Y . Lemma is
proved.

6.2.2 Homogeneous Difference Equations

Let us consider a difference equation

u(t+ 1) = f(t, u(t)), (68)

where f ∈ C(Z × R
n,Rn). Along with equation (68) we consider its H-class [4, 15,

21,22], i.e., the family of equations

v(t+ 1) = g(t, v(t)), (69)

where g ∈ H(f) := {f τ | τ ∈ Z}, f τ (t, u) = f(t + τ, u) for any (t, u) ∈ Z × R
n

and by bar we denote the closure in C(Z × R
n,Rn). Assume that the function

f ∈ C(Z × R
n,Rn) is regular, that is, for any u ∈ R

n and g ∈ H(f) the equation
(69) has a unique (on the maximal domain of definition) solution ϕ(t, v, g) passing
through the point v ∈ R

n at the initial moment t = 0. Then from the general
properties of solutions of difference equations (DEs) it follows that the mapping
ϕ : Z+ × R

n × H(f) → R
n is well defined and it satisfies the following conditions

(see for example [4, ChIV] and [20, ChIV]):

1) ϕ(0, v, g) = v for any v ∈ R
n and g ∈ H(f);
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2) ϕ(t, ϕ(τ, v, g), gτ ) = ϕ(t+ τ, v, g) for every v ∈ R
n, g ∈ H(f) and t, τ ∈ Z+;

3) the mapping ϕ : Z+ × R
n ×H(f) → R

n is continuous.

Denote by Y := H(f) and (Y,Z, σ) the dynamical system of translations on Y
induced by the dynamical system of translations (C(Z × R

n,Rn),Z, σ). The triplet
〈Rn, ϕ, (Y,Z, σ)〉 is a cocycle over (Y,Z, σ) with the fibre R

n. Thus equation (68)
generates a cocycle 〈Rn, ϕ, (Y,Z, σ)〉. Note that under the conditions listed above
the equation (68) (respectively, H-class (69)) can be written in the form

u(t+ 1) = F (σ(t, y), u(t)) (y ∈ Y = H(f)). (70)

Indeed, let Y := H(f) and (Y,Z, σ) be the dynamical system of translations on Y .
Denote by F the mapping from Y × R

n into R
n defined by the equality

F (g, u) := g(0, u). (71)

It is easy to check that the mapping F : H(f) × R
n → R

n is continuous.

Definition 16. A function f ∈ C(Z × R
n,Rn) is said to be r homogeneous (r ∈

(0,+∞)n) of the degree zero if f(t,Λr
µu) = Λr

µf(t, u) for any (µ, t, u) ∈ (0,+∞) ×
Z × R

n.

Remark 10. If the function f ∈ C(Z×R
n,Rn) is r homogeneous of the degree zero,

then f(t, 0) = 0 for any t ∈ Z.

Lemma 13. If the function f ∈ C(Z×R
n,Rn) is r homogeneous of the degree zero,

then the mapping F : Y × R
n → R

n (Y = H(f)) defined by the equality (70) is r
homogeneous of the degree zero with respect to u ∈ R

n uniformly in y ∈ Y .

Proof. This statement can be proved using the same arguments as in the proof of
Lemma 10.

Corollary 9. Assume that the function f ∈ C(Z×R
n,Rn) is r homogeneous of the

degree zero, then the cocycle 〈Rn, ϕ, (H(f),Z, σ)〉 generated by the equation (68) is
r homogeneous of the degree zero.

Proof. This statement follows from Lemmas 12 and 13.

6.2.3 Asymptotic Stability of Nonautonomous Difference Equations

Let f ∈ C(Z × R
n,Rn) and f(t, 0) ≡ 0 for any t ∈ Z.

Definition 17. The trivial solution of equation (68) is said to be:

1. uniformly stable if for any positive number ε there exists a number δ = δ(ε)
(δ ∈ (0, ε)) such that |x| < δ implies |ϕ(t, x, fτ )| < ε for any (t, τ) ∈ Z+ × Z;
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2. attracting (respectively, uniformly attracting) if there exists a positive number
a such that

lim
t→+∞

|ϕ(t, x, fτ )| = 0 (72)

for any |x| ≤ a and τ ∈ Z;

3. asymptotically stable if it is uniformly stable and attracting (respectively, the
equality (72) holds uniformly with respect to |u| ≤ a and τ ∈ Z).

Remark 11. If the function f ∈ C(Z × R
n,Rn) is regular and f(t, 0) = 0 for any

t ∈ Z, then it is easy to show that the trivial solution of the equation (68) is uniformly
attracting if and only if there exists a positive number a such that

lim
t→+∞

sup
|x|≤a, g∈H(f)

|ϕ(t, u, g)| = 0. (73)

Remark 12. 1. By slight modifications of the reasoning from the works [1,19] we can
establish the equivalence of the standard definition (see for example [11, Ch.V] and
[14, Ch.IV]) of uniform stability (respectively, global uniform asymptotic stability)
and of the one given above for the difference equation (68).

2. Using the same ideas as in the works of G. Sell [19, 20] we can prove that
for the difference equations (68) with the Lagrange stable right hand side f the
following statements are equivalent:

1. the trivial solution of the equation (68) is uniformly asymptotically stable;

2. the trivial motion of the cocycle 〈Rn, ϕ, (H(f),Z, σ)〉 generated by (68) is
uniformly asymptotically stable.

Theorem 15. Let f ∈ C(Z × R
n,Rn). Assume that the following conditions are

fulfilled:

1. the function f is regular and f(t, 0) = 0 for any t ∈ Z;

2. the function f is r homogeneous of the degree zero.

Then the following statements are equivalent:

1. the trivial solution of the equation (68) is uniformly asymptotically stable;

2. there exit positive numbers N and ν such that

ρ(ϕ(t, u, g)) ≤ N e−νtρ(u)

for any u ∈ R
n, g ∈ H(f) and t ∈ Z+.

Proof. Let Y := H(f) and (Y,Z, σ) be the shift dynamical system on Y = H(f).
Denote by 〈Rn, ϕ, (H(f),Z, σ)〉 the cocycle generated by the difference equation (68).
Since the function f is r homogeneous of the degree zero, then by Corollary 6 the
cocycle ϕ generated by the equation (68) is r homogeneous of the degree zero. To
finish the proof of Theorem 15 it suffices to take into account Remarks 11 – 12 and
apply Theorem 3.
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Theorem 16. Let f ∈ C(Z × R
n,Rn). Assume that the following conditions are

fulfilled:

1. f(t, 0) = 0 for any t ∈ Z;

2. the function f is r homogeneous of the degree zero and Lagrange stable.

Then the following statements are equivalent:

1. the trivial solution of the equation (68) is uniformly asymptotically stable;

2. the trivial solution of the equation (68) is globally uniformly asymptotically
stable;

3. there exit positive numbers N and ν such that

ρ(ϕ(t, u, g)) ≤ N e−νtρ(u) (74)

for any u ∈ R
n, g ∈ H(f) and t ≥ 0, where ρ(u) = |u|r,p.

Proof. Let Y := H(f) and (Y,Z, σ) be the shift dynamical system on Y = H(f).
Since the function f is Lagrange stable, then the set Y is compact. Denote by
〈Rn, ϕ, (H(f),Z, σ)〉 the cocycle generated by the difference equation (68). Since
the function f is r homogeneous of the degree zero, then by Corollary 9 the cocycle
ϕ generated by equation (68) is r homogeneous of the degree zero. To finish the
proof of Theorem 16 it suffices to take into account Remark 12 and apply Theorem
8.

Theorem 17. Let f ∈ C(Z × R
n,Rn) be a regular function. Assume that the

following conditions are fulfilled:

1. the function f is recurrent in time and f(t, 0) = 0 for any t ∈ Z;

2. the function f is r homogeneous of the degree zero.

Then the following statements are equivalent:

1. the trivial solution of the equation (68) is uniformly stable and there exists a
positive number a such that

lim
t→+∞

|ϕ(t, u, f)| = 0 (75)

for any u ∈ B[0, a];

2. there exit positive numbers N and ν such that

ρ(ϕ(t, u, g)) ≤ N e−νtρ(u)

for any u ∈ R
n, g ∈ H(f) and t ≥ 0.

Proof. Let Y := H(f) and (Y,Z, σ) be the shift dynamical system on Y = H(f).
Note that the space Y is a compact and minimal set because the function f is
recurrent in time (see Remark 9). Since the function f is r homogeneous of the
degree zero, then by Corollary 6 the cocycle 〈Rn, ϕ, (H(f),Z, σ)〉 generated by the
equation (68) is r homogeneous of the degree zero. To finish the proof of Theorem
17 it suffices to take into account Remark 12 and apply Theorem 8.
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