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On the Existence of Stationary Nash Equilibria for

Mean Payoff Games on Graphs

Dmitrii Lozovanu, Stefan Pickl

Abstract. In this paper we extend the classical concept of positional strategies for
a mean payoff game to a general mixed stationary strategy approach, and prove the
existence of mixed stationary Nash equilibria for an arbitrary m-player mean payoff
game on graphs. Traditionally, a positional strategy represents a pure stationary
strategy in a classical mean payoff game, where a Nash equilibrium in pure stationary
strategies in general may not exist. Based on a constructive proof of the existence
of specific equilibria for an m-player mean payoff game we propose a new approach
for determining the optimal mixed stationary strategies. Additionally we characterize
and extend the general problem of the existence of pure stationary Nash equilibria for
some special classes of mean payoff games.

Mathematics subject classification: 90B15, 91A15, 91A43.
Keywords and phrases: mean payoff game, pure stationary strategy, mixed sta-
tionary strategy, stationary Nash equilibrium.

1 Introduction

In [3,5,11] the following game of two players on a graph has been considered: Let
G = (X,E) be a finite directed graph in which every vertex x ∈ X has at least one
outgoing directed edge e = (x, y) ∈ E. On the edge set E a function c : E → R is
given which assigns a value c(e) to each edge e ∈ E. Furthermore, the vertex set X
is divided into two disjoint subsets X1 and X2 (X = X1 ∪X2, X1 ∩X2 = ∅) which
are regarded as position sets of the two players. The game starts in a given position
x0 ∈ X. If x0 ∈ X1 then the move is done by the first player, otherwise it is done
by second one. Move means the passage from position x0 to a neighbor position x1

through the directed edge e0 = (x0, x1) ∈ E. After that if x1 ∈ X1 then the move is
done by the first player, otherwise it is done by the second one and so on indefinitely.

The first player has the aim to maximize lim
t→∞

inf
1

t

t−1
∑

τ=0

c(eτ ) while the second player

has the aim to minimize lim
t→∞

sup
1

t

t−1
∑

τ=0

c(eτ ). In [3] it has been proven that for this

game there exists a value v(x0) such that the first player has a strategy (of moves)

that insures lim
t→∞

inf
1

t

t−1
∑

τ=0

c(eτ ) ≥ v(x0) and the second player has a strategy that
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insures lim
t→∞

sup
1

t

t−1
∑

τ=0

c(eτ ) ≤ v(x0). Furthermore it has been shown that players in

this games can achieve the values v(x0) applying the strategies of moves which do
not depend on t but depend only on the vertex (position) from which the player is
able to move. Therefore, in [3,11] such strategies are called positional strategies and
the game sometimes is called positional game; in [5, 10] these strategies are called
stationary strategies. More precisely the stationary strategies can be specified as
pure stationary strategies because each move through a directed edge at a vertex of
the game is chosen from the set of feasible strategies of moves by the corresponding
player with the probability equal to 1 and in each position such a strategy does not
change in time.

A generalization of a zero-sum mean payoff game to a non-zero-sum m-player
positional game, where m ≥ 2, is now the following: Consider a finite directed
graph G = (X,E) in which every vertex has at least one outgoing directed edge.
Assume that the vertex set X is divided into m disjoint subsets X1,X2, . . . ,Xm

( X = X1 ∪X2 ∪ · · · ∪Xm; Xi ∩Xj = ∅, i 6= j) which we regard as position sets of
the m players. Additionally, we assume that on the edge set m functions ci : F →
R, i = 1, 2, . . . ,m, are defined that assign to each directed edge e = (x, y) ∈ E the
values c1e, c

2
e, . . . , c

m
e that are regarded as the rewards for the corresponding players

1, 2, . . . ,m.

On G we consider the following m-person dynamic game: The game starts at a
given position x0 ∈ X at the moment of time t = 0 where the player i ∈ {1, 2, . . . ,m}
who is the owner of the starting position x0 makes a move from x0 to a neighbor
position x1 ∈ X through the directed edge e0 = (x0, x1) ∈ E. After that players
1, 2, . . . ,m receive the corresponding rewards c1e0

, c2e0
, . . . , cme0

. Then at the moment
of time t = 1 the player k ∈ {1, 2, . . . ,m} who is owner of position x1 makes a move
from x1 to a position x2 ∈ V through the directed edge e1 = (x1, x2) ∈ E, players
1, 2, . . . ,m receive the corresponding rewards c1e1

, c2e1
, . . . , cme1

, and so on, indefinitely.
Such a play of the game onG produces the sequence of positions x0, x1, x2, . . . , xt, . . .

where each xt is the position at the moment of time t.

An m-player mean payoff game on G is the game with payoffs

ωi
xo

= lim
t→∞

inf
1

t

t−1
∑

τ=0

cieτ
, i = 1, 2, . . . ,m.

The positional game on graph G formulated above in the cas m = 2 and c1e =
−c2e = ce, ∀e ∈ E, is transformed into a a two-player zero-sum mean payoff game
on graph G for which Nash equilibria in pure stationary strategies exist. In general,
a non-zero-sum mean payoff game on a graph may have no Nash equilibrium in
pure stationary strategies. This fact has been shown in [5], where an example of
two-player non-zero-sum mean payoff game that has no Nash equilibria in pure
strategies is constructed. A pure stationary Nash equilibrium may exist only for
some special cases of non-zero mean payoff games (see [1, 5, 10]).
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In this contribution we consider the non-zero-sum positional games in mixed
stationary strategies. We define a mixed stationary strategy of moves in a position
x ∈ Xi for the player i ∈ {1, 2, . . . ,m}, as a probability distribution over the set
of feasible moves from x. We show that an arbitrary m-player mean payoff game
on a graph possesses a Nash equilibrium in mixed stationary strategies. Based on a
constructive proof of this result we propose an approach for determining the optimal
mixed stationary strategies of the players.

The paper is organized as follows: In Section 2 an average stochastic positional
game that generalizes non-zero-sum mean payoff games is formulated. Then in
Sections 3 the known results of the existence of stationary Nash equilibria for an
average stochastic positional game and an approach for determining the optimal
strategies of players in such a game are presented. In Sections 4, 5, based on results
from the Sections 3 the existence of Nash equilibria in mixed stationary strategies
for non-zero-sum mean payoff games is proven and an approach for determining the
optimal strategies of the players is proposed.

2 A Generalization of Mean Payoff Game on Graphs

to Average Stochastic Positional Games

The problem of determining Nash equilibria in mixed stationary strategies for
mean payoff games on graphs leads to a special class of stochastic games from [7–9]
called average stochastic positional games. In [8] it is shown that such class of games
possesses Nash equilibria in mixed stationary strategies. Therefore in the paper we
shall use the average stochastic positional games for studying the existence of mixed
stationary Nash equilibria in non-zero-sum mean payoff games. An m-player average
stochastic positional game consists of the following elements:

– a state space X (which we assume to be finite);

– a partition X = X1 ∪X2 ∪ · · · ∪Xm where Xi represents the position set
of player i ∈ {1, 2, . . . ,m};

– a finite set A(x) of actions in each state x ∈ X;

– a step reward f i(x, a) with respect to each player i ∈{1, 2, . . . ,m} in each
state x ∈ X and for an arbitrary action a ∈ A(x);

– a transition probability function p : X ×
∏

x∈X

A(x) ×X → [0, 1] that gives

the probability transitions pa
x,y from an arbitrary x ∈ X to an arbitrary

y ∈ X for a fixed action a ∈ A(x), where
∑

y∈X

pa
x,y = 1,∀x ∈ X,a ∈ A(x);

– a starting state x0 ∈ X.

The game starts at the moment of time t = 0 in the state x0 where the player
i ∈ {1, 2, . . . ,m} who is the owner of the state position x0 (x0 ∈ Xi) chooses an
action a0 ∈ A(x0) and determines the rewards f1(x0, a0), f

2(x0, a0),
. . . , fm(x0, a0) for the corresponding players 1, 2, . . . ,m. After that the game
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passes to a state y = x1 ∈ X according to a certain probability distribution {pa0
x0,y}.

At the moment of time t = 1 the player k ∈ {1, 2, . . . ,m} who is the owner of
the state position x1 (x1 ∈ Xk) chooses an action a1 ∈ A(x1) and players
1, 2, . . . ,m receive the corresponding rewards f1(x1, a1), f

2(x1, a1), . . . , f
m(x1, a1).

Then the game passes to a state y = x2 ∈ X according to a probability distribution
{pa1

x1,y} and so on indefinitely. Such a play of the game produces a sequence of
states and actions x0, a0, x1, a1, . . . , xt, at, . . . that defines a stream of stage rewards
f1(xt, at), f

2(xt, at), . . . , f
m(xt, at), t = 0, 1, 2, . . . .

The average stochastic positional game is the game with payoffs of the players

ωi
x0

= lim
t→∞

inf E

(1

t

t−1
∑

τ=0

f i(xτ , aτ )
)

, i = 1, 2, . . . ,m

where E is the expectation operator with respect to the probability measure in the
Markov process induced by actions chosen by players in their position sets and given
starting state x0.

In the following we will consider the stochastic positional game when the players
use pure and mixed stationary strategies of choosing the actions in the states.

3 Existence and Determining Mixed Stationary Nash Equilibria for

Average Stochastic Positional Games

In this section we present the main results concerned with the existence of sta-
tionary Nash equilibria for stochastic positional games with average payoffs. Note
that in general for an average stochastic game a stationary Nash equilibrium may
not exist (see [4]).

3.1 Stochastic Positional Games in Pure and Mixed Stationary

Strategies

A strategy of player i ∈ {1, 2, . . . ,m} in a stochastic positional game is a mapping
si that gives for every state xt ∈ Xi a probability distribution over the set of actions
A(xt). If these probabilities take only values 0 and 1, then si is called a pure strategy,
otherwise si is called a mixed strategy. If these probabilities depend only on the
state xt = x ∈ Xi (i.e. si does not depend on t), then si is called a stationary

strategy, otherwise si is called a non-stationary strategy.

Thus, we can identify the set of mixed stationary strategies S
i of player i with

the set of solutions of the system






∑

a∈A(x)

si
x,a = 1, ∀x ∈ Xi;

si
x,a ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x).

(1)

Each basic solution si of this system corresponds to a pure stationary strategy of
player i ∈ {1, 2, . . . ,m}. So, the set of pure stationary strategies Si of player i
corresponds to the set of basic solutions of system (1).
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Let s= (s1, s2, . . . , sm) ∈ S = S
1×S

2×· · ·×S
m be a profile of stationary strategies

(pure or mixed strategies) of the players. Then the elements of probability transition
matrix P s = (psx,y) in the Markov process induced by s can be calculated as follows:

psx,y =
∑

a∈A(x)

si
x,ap

a
x,y for x ∈ Xi, i = 1, 2, . . . ,m. (2)

If we denote by Qs = (qsx,y) the limiting probability matrix of matrix P s then the
average payoffs per transition ω1

x0
(s), ω2

x0
(s), . . . , ωm

x0
(s) for the players induced by

profile s are determined as follows

ωi
x0

(s) =

m
∑

k=1

∑

y∈Xk

qsx0,yf
i(y, sk), i = 1, 2, . . . ,m, (3)

where

f i(y, sk) =
∑

a∈A(y)

sk
y,af

i(y, a), for y ∈ Xk, k ∈ {1, 2, . . . ,m} (4)

expresses the average reward (step reward) of player i in the state y ∈ Xk when
player k uses the strategy sk.

The functions ω1
x0

(s), ω2
x0

(s), . . . , ωm
x0

(s) on S = S
1 × S

2 × · · · × S
m, de-

fined according to (10), (11), determine a game in normal form that we denote
by 〈{Si}i=1,m, {ωi

x0
(s)}i=1,m 〉. This game corresponds to the average stochas-

tic positional game in mixed stationary strategies that in extended form is deter-
mined by the tuple ({Xi}i=1,m, {A(x)}x∈X , {f i(x, a)}i=1,m, p, x0). The func-

tions ω1
x0

(s), ω2
x0

(s), . . . , ωm
x0

(s) on S = S1 × S2 × · · · × Sm, determine the game
〈{Si}i=1,m, {ω

i
x0

(s)}i=1,m 〉 that corresponds to the average stochastic positional

game in pure strategies. In the extended form this game is also determined by
the tuple ({Xi}i=1,m, {A(x)}x∈X , {f

i(x, a)}i=1,m, p, x0).

A stochastic positional game can be considered also for the case when the starting
state is chosen randomly according to a given distribution {θx} on X. So, for a
given stochastic positional game we may assume that the play starts in the state
x ∈ X with probability θx > 0 where

∑

x∈X

θx = 1. If the players use mixed

stationary strategies then the payoff functions

ψi
θ(s) =

∑

x∈X

θxω
i
x(s), i = 1, 2, . . . ,m

on S define a game in normal form 〈{Si}i=1,m, {ψ
i
θ(s)}i=1,m 〉 that in extended form

is determined by ({Xi}i=1,m, {A(x)}x∈X , {f i(x, a)}i=1,m, p, {θx}x∈X). In the case
θx = 0,∀x ∈ X \{x0}, θxo

= 1 the considered game becomes a stochastic positional
game with a fixed starting state x0.
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3.2 Stationary Nash Equilibria for an Average Stochastic Positional

Game and Determining the Optimal Strategies of the Players

We present a Nash equilibria existence result and an approach for determining
the optimal mixed stationary strategies of the players for the average stochastic
positional game when the starting state of the game is chosen randomly according
to a given distribution {θx} on the set of states X. In this case for the game
in normal form 〈{Si}i=1,m, {ψi

θ(s)}i=1,m 〉, the set of strategies S
i and the payoff

functions ψi
θ(s), i = 1, 2, . . . ,m, can be specified as follows:

Let S
i, i ∈ {1, 2, . . . m} be the set of solutions of the system







∑

a∈A(x)

si
x,a = 1, ∀x ∈ Xi;

si
x,a ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x).

(5)

On S = S
1 × S

2 × · · · × S
m we define m payoff functions

ψi
θ(s

1, s2, . . . , sm) =
m

∑

k=1

∑

x∈Xk

∑

a∈A(x)

sk
x,af

i(x, a)qx, i = 1, 2, . . . ,m, (6)

where qx for x ∈ X are determined uniquely from the following system of linear
equations























qy −
m
∑

k=1

∑

x∈Xk

∑

a∈A(x)

sk
x,a p

a
x,y qx = 0, ∀y ∈ X;

qy + wy −
m
∑

k=1

∑

x∈Xk

∑

a∈A(x)

sk
x,a p

a
x,y wx = θy, ∀y ∈ X

(7)

for an arbitrary fixed profile s = (s1, s2, . . . , sm) ∈ S.

The functions ψi
θ(s

1, s2, . . . , sm), i = 1, 2, . . . ,m, represent the payoff func-
tions for the average stochastic game in normal form 〈{Si}i=1,m, {ψi

θ(s)}i=1,m 〉

determined by the tuple ({Xi}i=1,m, {A(x)}x∈X , {f i(x, a)}i=1,m, p, {θy}y∈X )
where θy for y ∈ X are given positive values such that

∑

y∈X θy = 1. If
θy = 0, ∀y ∈ X \ {x0} and θx0 = 1, then we obtain an average stochastic game
in normal form 〈{Si}i=1,m, {ωi

x0
(s)}i=1,m 〉 when the starting state x0 is fixed, i.e.

ψi
θ(s

1, s2, . . . , sm) = ωi
x0

(s1, s2, . . . , sm), i = 1, 2, . . . ,m. So, in this case the game
is determined by ({Xi}i=1,m, {A(x)}x∈X , {f

i(x, a)}i=1,m, p, x0).

In [8] it has been shown that if θx > 0,∀x ∈ X,
∑

x∈X = 1 then each pay-
off function ψi

θ(s), i ∈ {1, 2, . . . ,m} in the game 〈{Si}i=1,m, {ψi
θ(s)}i=1,m 〉 is

quasi-monotonic (quasi-convex and quasi-concave) with respect to s
i on a con-

vex and compact set S
i for fixed s

1, s2, . . . , si−1, si+1, . . . , sm. Moreover for the
game 〈{Si}i=1,m, {ψi

θ(s)}i=1,m 〉 it has been shown that each payoff function

ψi
θ(s), i ∈ {1, 2, . . . ,m}, is graph-continuous in the sense of Dasgupta and

Maskin [2]. Based on these properties in [8] the following theorem is proved.
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Theorem 1. The game 〈{Si}i=1,m, {ψ
i
θ(s)}i=1,m〉 with θx > 0,∀x ∈ X,

∑

x∈X = 1

possesses a Nash equilibrium s
∗= (s1

∗
, s2

∗
, . . . , sm∗) ∈ S which is a Nash equilibrium

in mixed stationary strategies for the average stochastic positional game determined

by the tuple ({Xi}i=1,m, {A(x)}x∈X , {f
i(x, a)}i=1,m, p, {θy}y∈X). Moreover, s

∗ =

(s1
∗
, s2

∗
, . . . , sm∗) is a Nash equilibrium in mixed stationary strategies for the average

stochastic positional game 〈{Si}i=1,m, {ω
i
y(s)}i=1,m 〉 with an arbitrary starting state

y ∈ X.

Thus, for an average stochastic positional game a Nash equilibrium in mixed
stationary strategies can be found using the noncooperative static game model
〈{Si}i=1,m, {ψ

i
θ(s)}i=1,m〉, where S

i and ψi
θ(s), i = 1, 2, . . . ,m, are determined

according to (5)–(7). In the case m = 2, f(x, a) = f1(x, a) = −f2(x, a), ∀x ∈
X, ∀a ∈ A(x) this game corresponds to a two-player zero-sum average stochastic
positional game. In [7] it is shown that for a two-player zero-sum average stochastic
game there exist pure stationary equilibria. The proof of this results is similar to
the proof of the existence of pure stationary equilibria for two-player zero-sum mean
payoff games from [5]. Algorithms for determining the optimal stationary strategies
in such games are proposed in [5, 6, 9, 11].

4 Formulation of Mean Payoff Games in Mixed Stationary strate-

gies

Let us consider an m-player mean payoff game determined by the tuple
(G, {Xi}i=1,m, {c

i}i=1,m, x0), where G = (X,E) is a finite directed graph with a
vertex set X and an edge set E, X = X1 ∪ X2 ∪ · · · ∪ Xm (Xi ∩ Xj = ∅, i 6= j)
is a partition of X that determines the corresponding position sets of players and
ci : E → R1, i = 1, 2, . . . ,m, are the real functions that determine the rewards on
edges of graph G and x0 is the starting position of the game.

The pure and mixed stationary strategies in the mean payoff game on G can be
defined in a similar way as for the average stochastic positional game. We identify
the set of mixed stationary strategies Si of player i ∈ {1, 2, . . . ,m} with the set of
solutions of the system







∑

y∈X(x)

si
x,y = 1, ∀x ∈ Xi;

si
x,y ≥ 0, ∀x ∈ Xi, y ∈ X(x)

(8)

where X(x) represents the set of neighbor vertices for the vertex x, i.e. X(x) = {y ∈
X|e = (x, y) ∈ E}.

Let s = (s1, s2, . . . , sm) be a profile of stationary strategies (pure or mixed
strategies) of the players. This means that the moves in the mean payoff game from
an arbitrary x ∈ X to y ∈ X induced by s are made according to probabilities of
the stochastic matrix P s = (sx,y), where

sx,y =

{

si
x,y if e = (x, y) ∈ E, x ∈ Xi, y ∈ X; i = 1, 2, . . . ,m;

0 if e = (x, y) 6∈ E.
(9)
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Thus, for a given profile s we obtain a Markov process with the probability tran-
sition matrix P s = (sx,y) and the corresponding rewards cix,y, i = 1, 2, . . . ,m, on
edges (x, y) ∈ E. Therefore, if Qs = (qsx,y) is the limiting probability matrix of P s

then the average rewards per transition ω1
x0

(s), ω2
x0

(s), . . . , ωm
x0

(s) for the players
can be determined as follows

ωi
x0

(s) =

m
∑

k=1

∑

y∈Xk

qsx0,yµ
i(y, sk), i = 1, 2, . . . ,m, (10)

where
µi(y, sk) =

∑

z∈X(y)

sk
y,zc

i(y, z), for y ∈ Xk, k ∈ {1, 2, . . . ,m} (11)

expresses the average step reward of player i in the state y ∈ Xk when player k
uses the mixed stationary strategy sk. The functions ω1

x0
(s), ω2

x0
(s), . . . , ωm

x0
(s) on

S = S
1×S

2×· · ·×S
m, defined according to (10), (11), determine a game in normal

form that we denote by 〈{Si}i=1,m, {ω
i
x0

(s)}i=1,m 〉. This game corresponds to the
mean payoff game in mixed stationary strategies on G with a fixed starting position
x0. So this game is determined by the tuple (G, {Xi}i=1,m, {c

i}i=1,m, x0).
In a similar way as for an average stochastic game here we can consider the mean

payoff game on G when the starting state is chosen randomly according to a given
distribution {θx} on X. So, for such a game we will assume that the play starts
in the states x ∈ X with probabilities θx > 0 where

∑

x∈X

θx = 1. If the players

in such a game use mixed stationary strategies of moves in their positions then the
payoff functions

ψi
θ(s) =

∑

x∈X

θxω
i
x(s), i = 1, 2, . . . ,m

on S define a game in normal form 〈{Si}i=1,m, {ψ
i
θ(s)}i=1,m 〉 that is determined

by the following tuple (G, {Xi}i=1,m, {ci}i=1,m, {θx}x∈X). In the case θx = 0,
∀x ∈ X \ {v0}, θv0 = 1 this game becomes a mean payoff game with fixed
starting state x0.

5 Nash Equilibria in Mixed Stationary Strategies for Mean Payoff

Games and Determining the Optimal Strategies of the Players

In this section we show how the results from the previous sections can be applied
for determining Nash equilibria and the optimal mixed stationary strategies of the
players for mean payoff games.

Let 〈{Si}i=1,m, {ψ
i
θ(s)}i=1,m〉 be the game in normal form for the mean payoff

game determined by (G, {Xi}i=1,m, {ci}i=1,m, {θx}x∈X). We show that S
i and

ψi
θ(s) for i ∈ {1, 2, . . . ,m} can be defined as follows: S

i represents a set of the
solutions of the system







∑

y∈X(x)

si
x,y = 1, ∀x ∈ Xi;

si
x,y ≥ 0, ∀x ∈ Xi, y ∈ X(x)

(12)
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and

ψi
θ(s

1, s2, . . . , sm) =
m

∑

k=1

∑

y∈Xk

∑

y∈X(x)

sk
x,yc

i(x, y)qx, (13)

where qx for x ∈ X are determined uniquely (via sk
x,y) from the following system of

equations


















qy −
m
∑

k=1

∑

x∈Xk

sk
x,y qx = 0, ∀y ∈ X;

qy +wy −
m
∑

k=1

∑

x∈Xk

sk
x,y wx = θy, ∀y ∈ X.

(14)

Here θy for y ∈ X represent arbitrary fixed positive values where
∑

y∈X

θy = 1.

Using Theorem 1 we can prove now the following result.

Theorem 2. For a mean payoff game on graph G the corresponding game

in normal form 〈{Si}i=1,m, {ψ
i
θ(s)}i=1,m〉 possesses a Nash equilibrium s

∗ =

(s1
∗
, s2

∗
, . . . , sm∗) ∈ S which is a Nash equilibrium in mixed stationary strate-

gies for the mean payoff game on G with an arbitrary starting position x0 ∈ X.

Proof. To prove the theorem it is sufficient to show that the functions ψi
θ(s),

i ∈ {1, 2, . . . ,m}, defined according to (13), (14) represent the payoff functions
for the mean payoff game determined by (G, {Xi}i=1,m, {c

i}i=1,m, {θx}x∈X). This

is easy to verify because if we replace in (6) the rewards f i(x, a) for x ∈ X

and a ∈ A(x) by rewards cix,y for (x, y) ∈ E and in (6), (7) we replace the
probabilities pa

x,y, x ∈ Xk, a ∈ A(x) for the corresponding players k = 1, 2, . . . , m

by pk
x,y ∈ {0, 1} according to the structure of graph G then we obtain that (6),

(7) are transformed into (13), (14). If we apply Theorem 1 after that then obtain
the proof of the theorem.

So, the optimal mixed stationary strategies of the players in a mean payoff game
can be found if we determine the optimal stationary strategies of the players for the
game 〈{Si}i=1,m, {ψi

θ(s)}i=1,m〉 where S
i and ψi

θ(s) for i ∈ {1, 2, . . . , m}

are defined according to (12)–(14). If m = 2, cx,y = c1x,y = −c2x,y, ∀(x, y) ∈ E

then we obtain a game-theoretic model in normal form for the zero-sum two-player
mean payoff on graph G. In this case the equilibrium exists in pure stationary
strategies and the considered game model allows us to determine the optimal pure
stationary strategies of the players. The results from [9] related to antagonistic
average stochastic positional games can be also extended to antagonistic mean payoff
games on graphs if we take into account the transformations mentioned above in the
proof of Theorem 2, i.e. we should change the rewards f i(x, a) for x ∈ X, a ∈ A(x)
by rewards cix,y for (x, y) ∈ E and replace the probabilities pa

x,y, x ∈ Xk, a ∈

A(x), k = 1, 2, . . . ,m by probabilities pk
x,y ∈ {0, 1} according to the structure of

the graph G.
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6 Conclusion

The considered m-player non-zero mean payoff games on graphs generalize the
zero-sum two-player mean payoff games on graphs considered in [3, 5, 11]. For zero-
sum two-player mean payoff games on graphs there exist Nash equilibria in pure
stationary strategies that can be determined based on results from [5, 11]. For the
case of non-zero-sum mean payoff games on graphs Nash equilibria in pure station-
ary strategies may not exist, however there exist Nash equilibria in mixed stationary
strategies. Such equilibria can be determined and characterized as Nash equilibria
for the noncooperative static game models from Sections 5, 6.

The first author was supported by the State Program of the Republic of Moldova
”Deterministic and stochastic methods for solving optimization and control problems
(grant No.20.80009.5007.13)”.
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