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A REPUBLICII MOLDOVA. MATEMATICA
Number 2(102), 2023, Pages 36–40
ISSN 1024–7696, E-ISSN 2587–4322

On T -nilpotence of a matrix set

Yu. P. Maturin

Abstract. Let R be a ring and I be an arbitrary right T -nilpotent subset of R. In
the paper it is proved that in this case the set of all n×n-matrices with entries in I is
a right T -nilpotent subset of the ring of n×n-matrices with entries in R, where n ∈ N.
It is also showed that it is impossible to generalize this result for rings of matrices of
infinite dimension.
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1 Introduction

All rings are considered to be associative with 1 6= 0. The category of left K-
modules is denoted by K −Mod. The set of all n× n-matrices with entries in a set
I will be denoted by Mn(I), where n ∈ N.

Definition 1. ([5, p. 291]) A set A of elements of a ring R is called left (resp. right)
T -nilpotent, if for every family

(a1, a2, a3, ...), ai ∈ A

a k ∈ N exists with
akak−1...a1 = 0, (a1a2...ak = 0).

(See also [1, p. 313].)

The notion of T -nilpotence has the important applications in certain areas of the
Ring and Module Theory, especially in theory of perfect and semiartinian rings, but
not only (for example, see [8, p. 183–184, 189], [6, p. 60], [7, p. 67], [3, p. 86, 87]).

Recall the definition of the equivalence. Let C and D be categories. A functor
S : C → D is an equivalence if there exist a functor T : D → C and natural
equivalences TS → 1C and ST → 1D. (See [8, p. 82].)

In the paper [4] the following corollaries are obtained:

Corollary 1. (See Corollary 11 [4, p. 52]) Let R,S be equivalent rings, via an
equivalence F : R − Mod → S − Mod. If I is a right T -nilpotent two-sided ideal of
R, then so is the two-sided ideal {s ∈ S |∀x ∈ F (R/I) : sx = 0} of S.
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Corollary 2. (See Corollary 12 [4, p. 52]) Let R be a ring and let n ∈ N. If I is a
right T -nilpotent ideal of R, then Mn(I) is a right T -nilpotent ideal of Mn(R).

The aim of our paper is to obtain the stronger statement than Corollary 2.
Indeed, in this corollary an arbitrary subset of a ring instead of a two-sided ideal
can be considered.

2 Preliminaries

Lemma 1. (König’s Graph Lemma, [2, p. 40]) Start with a countable sequence
{Fn |n = 1, 2, ...}of finite sets, and for each n, assume that there is a map Φn of Fn

into Pow(Fn+1). In order to simplify notation, denote Φn by Φ, ∀n, and the union
of the given family of finite sets by F . A path in (the ordered pair) (F,Φ) is a finite
or infinite sequence of elements b1, ..., bn, ... of F such that bi ∈ Fi and bi+1 ∈ Φ(bi),
i = 1, 2, .... The length of a finite path b1, b2, ..., bm is m; the length of the infinite
path b1, b2, ...is infinite. Then if (F,Φ) has paths of ever greater length, then it has
a path of infinite length.

3 Main result

Theorem 1. Let R be a ring and I be a right T -nilpotent subset of R. Then Mn(I)
is a right T -nilpotent subset of Mn(R), where n ∈ N.

Proof. Let I be a right T -nilpotent subset of R and n ∈ N.

Assume Mn(I) is not right T -nilpotent. Then there is an infinite sequence of
matrices

||a
(1)
ij ||, ||a

(2)
ij ||, . . . , ||a

(k)
ij ||, . . .

belonging to Mn(I) such that for each k ∈ N

Ak 6= O, (1)

where Ak = ||a
(1)
ij ||||a

(2)
ij ||...||a

(k)
ij ||.

Let Ak = ||A
(k)
ij || for each k ∈ N.

Then it is obvious that

A
(1)
ij = a

(1)
ij and A

(k)
ij =

n
∑

t1=1

n
∑

t2=1

...
n

∑

tk−1=1

a
(1)
it1

a
(2)
t1t2

...a
(k)
tk−1j for k ≥ 2. (2)

Consider the sets F1, F2, ..., Fk , ... defined as follows:

F1 = {(λ1, λ2)|λ1, λ2 ∈ {1, 2, ..., n}, a
(1)
λ1λ2

6= 0},

F2 = {(λ1, λ2, λ3)|λ1, λ2, λ3 ∈ {1, 2, ..., n}, a
(1)
λ1λ2

a
(2)
λ2λ3

6= 0},
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...
...

...

Fk = {(λ1, λ2, ..., λk+1)|λ1, λ2, ..., λk+1 ∈ {1, 2, ..., n}, a
(1)
λ1λ2

a
(2)
λ2λ3

...a
(k)
λkλk+1

6= 0},

...
...

...

(1)-(2) imply
∀k ∈ N : Fk 6= ∅.

Hence for each k ∈ N it is possible to consider the following mapping:

Φk :

{

Fk → Pow(Fk+1),

(λ1, λ2, ..., λk+1) 7→ {(λ1, λ2, ..., λk+1, λk+2)|a
(1)
λ1λ2

...a
(k+1)
λk+1λk+2

6= 0}.

Let u be an arbitrary integer greater than 0. Then Au 6= O. It follows from

this that for some i, j ∈ {1, 2, ..., n} A
(u)
ij 6= 0. It follows from (2) that for some

t1, ..., tu−1 ∈ {1, 2, ..., n}

a
(1)
it1

a
(2)
t1t2

...a
(u)
tu−1j 6= 0. (3)

Whence

a
(1)
it1

6= 0,

a
(1)
it1

a
(2)
t1t2

6= 0,

...
...

...

a
(1)
it1

a
(2)
t1t2

...a
(u−1)
tu−2tu−1

6= 0.

(4)

Put

b1 = (i, t1),

b2 = (i, t1, t2),

...
...

...

bu−1 = (i, t1, t2, ..., tu−1),

bu = (i, t1, t2, ..., tu−1, j).

(3)-(4) imply that b1 ∈ F1, b2 ∈ F2, . . . , bu ∈ Fu.
It is clear that

b2 ∈ Φ1(b1),

b3 ∈ Φ2(b2),

...
...

...

bu ∈ Φu−1(bu−1).
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The length of the path b1, b2, ..., bu is u. Since u is an arbitrary integer greater
than 0, we have paths of ever greater length. Therefore, by König’s Graph Lemma,
there exists a path of infinite length.

It means that there exists an infinite sequence of numbers λ1, λ2, ..., λp, ... be-
longing to {1, 2, ..., n} satisfying the following conditions:

(λ1, λ2) ∈ F1,

(λ1, λ2, λ3) ∈ F2,

...
...

...

(λ1, λ2, ..., λp+1) ∈ Fp,

...
...

...

(5)

Consider the sequence

a
(1)
λ1λ2

, a
(2)
λ2λ3

, ..., a
(s)
λsλs+1

, ... .

It follows from (5) that for an arbitrary p ∈ N

a
(1)
λ1λ2

a
(2)
λ2λ3

...a
(p)
λpλp+1

6= 0.

Hence I is not right T -nilpotent, which is a contradiction.

Now we will see that it is impossible to generalize our result for rings of matrices
of infinite dimension.

Example 1. Let K be a ring and S be a subset of K. Let RFMN(S) be the set
of all mappings f : N × N → S, where for each α ∈ N the set {f(α, β) 6= 0|β ∈ N}
is finite. Then RFMN(K) is a natural generalization of the matrix rings Mn(K)
(see [1, p. 19]).

Let k be a field. Consider the polynomial ring k[x1, x2, ..., xn, ...] in a countable
number of variables. Let M be the ideal of this ring spanned by the following
elements: x2

1, x3
2, ..., xn+1

n , ..., xixj, where i 6= j and i, j ∈ N. Denote the elements
a + M of the factor ring K := k[x1, x2, ..., xn, ...]/M by ā.

And now let I be the ideal of K spanned by the elements x̄1, x̄2,..., x̄n,... . It is
obvious that I is right T -nilpotent.

Define a function g : N × N → K as follows:

g(i, i) = x̄i, g(i, j) = 0̄,

for all i, j ∈ N, where i 6= j. It is clear that g ∈ RFMN(I), but g is not nilpotent.

Therefore RFMN(I) is not right T -nilpotent, although I is right T -nilpotent.
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