The Second Hankel Determinant for k-symmetrical Functions

Fuad Alsarari, Satyanarayana Latha and Maslina Darus

Abstract. In this article, we find the upper bound of the second Hankel determinant $|a_2a_4 - a_3^2|$ for subclasses of starlike and convex functions with respect to k-symmetric points.

Mathematics subject classification: 30C45, 30C50.

Keywords and phrases: Hankel determinant problems, starlike function, k-symmetric points, subordination, coefficient bound.

1 Introduction

The work here is considering the class \mathcal{F} of functions analytic in $\widetilde{\mathcal{U}} = \{w : w \in \mathbb{C}, |w| < 1\}$, and of the form

$$f(w) = w + \sum_{n=2}^{\infty} a_n w^n, \tag{1}$$

and suppose $\widetilde{\mathcal{S}}$ denotes the subclass of \mathcal{F} consisting of all functions that are univalent in $\widetilde{\mathcal{U}}$. For $f,g\in\mathcal{F}$, we say that f is subordinate to g written as $f\prec g$ if there exists a holomorphic map h of the unit disk $\widetilde{\mathcal{U}}$ into itself with h(0)=0 such that $f=g\circ h$. Note that if $g\in\widetilde{\mathcal{S}}$, then $f\prec g$ is equivalent to the condition that f(0)=g(0) and $f(\widetilde{\mathcal{U}})\subset g(\widetilde{\mathcal{U}})$. Let \mathcal{P} be the family of analytic functions p in $\widetilde{\mathcal{U}}$ with $\Re\{p(w)\}>0$ which have the form $p(w)=1+q_1w+q_2w^2+\dots$ ($w\in\widetilde{\mathcal{U}}$). The class \mathcal{P} of functions with positive real part plays a crucial role in geometric function theory. Its significance can be seen from the fact that simple subclasses are class $\widetilde{\mathcal{S}}^*$ of starlike functions and class $\widetilde{\mathcal{K}}$ of convex functions.

Definition 1. [10] For $k \in \mathbb{N} = \{1, 2, ...\}$, let $\varepsilon = e^{\left(\frac{2\pi i}{k}\right)}$ denote the k^{th} root of unity for $f \in \mathcal{F}$. Its k-weighted mean function is

$$M_{f,k}(w) = \sum_{v=1}^{k-1} \varepsilon^{-v} f(\varepsilon^v w) \cdot \frac{1}{\sum_{v=1}^{k-1} \varepsilon^{-v}}.$$

A function f in \mathcal{F} is called k-symmetrical function for each $w \in \widetilde{\mathcal{U}}$ if $f(\varepsilon w) = \varepsilon f(w)$. The family of all k-symmetrical functions will be denoted by \mathcal{F}^k .

[©] F. Alsarari, S. Latha and M. Darus, 2023 DOI: https://doi.org/10.56415/basm.y2023.i2.p3

A function f in \mathcal{F} is said to belong to the class $\widetilde{\mathcal{S}}_k^*$ of functions starlike with respect to k-symmetric points if for every r close to 1, r < 1, the angular velocity of f about the point $M_{f_k}(w_0)$ is positive at $w = w_0$ as z traverses the circle |w| = r in the positive direction, that is $\Re\left(\frac{zf'(w)}{f(w) - M_{f,k}(w_0)}\right) > 0$ for $w = w_0$, $|w_0| = r$.

Definition 2. [27] For a positive integer k, let \mathcal{S}_k^* denote the family of starlike functions with respect to k-symmetric points $f \in \mathcal{F}$ which satisfy

$$\Re\left\{\frac{wf'(w)}{f_k(w)}\right\} > 0, \quad w \in \widetilde{\mathcal{U}},\tag{2}$$

where

$$f_k(w) = \frac{1}{k} [f(w) - M_{f,k}(w)].$$
 (3)

Remark 1. Equivalently, (3) can be written as

$$f_k(w) = \frac{1}{k} \sum_{v=0}^{k-1} \varepsilon^{-v} f(\varepsilon^v w), \tag{4}$$

or

$$f_k(w) = w + \sum_{n=2}^{\infty} \psi_n a_n w^n \quad \text{where} \quad \psi_n = \begin{cases} 1 & \text{if} \quad n = lk+1, \\ 0 & \text{if} \quad n \neq lk+1 \end{cases} \quad l \in \mathbb{N}_0. \tag{5}$$

Let $\widetilde{\mathcal{K}}_k$ denote the subclass of functions $f \in \mathcal{F}$ which satisfies

$$f \in \widetilde{\mathcal{K}}_k \Leftrightarrow wf' \in \widetilde{\mathcal{S}}_k^*.$$
 (6)

For more details, some interesting properties of the classes of functions with respect to k-symmetric points have been discussed by the authors in [1,2].

One of the most fundamental problems in geometric function theory is to find the coefficient bounds for a certain class of functions. In this work, we study the Hankel determinant $\widetilde{\mathcal{H}}_{\vartheta,n}(f)$ $(\vartheta,n\in\mathbb{N})$ for the well-known class of starlike functions $\widetilde{\mathcal{S}}^*$ which was introduced by Pommerenke [23,24], and is defined as follows:

$$\widetilde{\mathcal{H}}_{\vartheta,n}(f) = \begin{vmatrix} a_n & a_{n+1} & \dots & a_{n+\vartheta-1} \\ a_{n+1} & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ a_{n+\vartheta-1} & \dots & \dots & a_{n+2\vartheta-2} \end{vmatrix}.$$

We can easily note that $\widetilde{\mathcal{H}}_{2,1}(f) = a_3 - a_2^2$, $\widetilde{\mathcal{H}}_{2,2}(f) = a_2 a_4 - a_3^2$ and

$$\widetilde{\mathcal{H}}_{3,1}(f) = 2a_2a_3a_4 - a_3^3 - a_4^2 + a_3a_5 - a_2^2a_5.$$

Many authors have studied and investigated the Hankel determinants for various subclasses of \mathcal{F} . The famous problem solved by using the Loewner technique to determine the greatest value of the coefficient was investigated by Fekete and Szegö in [9], they generalized the estimate $|a_3 - \mu a_2^2|$ where μ is real and $f \in \widetilde{\mathcal{S}}^*$. Later, Jae Ho Choi et al.[6] provided a new method for solving the Fekete-Szegö problem which opened up a lot of new opportunities for research in the related fields. This determinant was studied for other classes of functions by many other authors like Noor [21], Ehrenborg [8], and Layman [15]. For some other related works for subclasses regarding symmetric points, one can look up Janteng et al.[11–13] who have considered the functional $|\widetilde{\mathcal{H}}_{2,2}(f)|$ and studied the second Hankel determinant and have shown that $|\widetilde{\mathcal{H}}_{2,2}(f)| \leq 4/9$, $|\widetilde{\mathcal{H}}_{2,2}(f)| \leq 1$, $|\widetilde{\mathcal{H}}_{2,2}(f)| \leq 1/8$ and $|\widetilde{\mathcal{H}}_{2,2}(f)| \leq 1$, $|\widetilde{\mathcal{H}}_{2,2}(f)| \leq 1/9$, respectively, for the classes of analytic, starlike, convex, close-to-starlike and close-to-convex functions concerning symmetric points.

The third-order Hankel determinant $|\widetilde{\mathcal{H}}_{3,1}(f)|$ for subclasses of \mathcal{F} was studied for the first time by Babalola [3]. In 2017, Zaprawa [28] improved the results of Babalola [3] by proving $|\widetilde{\mathcal{H}}_{3,1}(f)| \leq 1$, $|\widetilde{\mathcal{H}}_{3,1}(f)| \leq 49/540$, $|\widetilde{\mathcal{H}}_{3,1}(f)| \leq 41/60$ for the classes of starlike, convex and bounded turning functions respectively.

The estimation of the fourth Hankel determinant $|\widetilde{\mathcal{H}}_{4,1}(f)|$ for the bounded turning functions has been obtained by Arif et al.[16] and they proved $|\widetilde{\mathcal{H}}_{4,1}(f)| \leq 0.78050$.

Recently, Barukab et al.[4] obtained the sharp bounds of $|\widetilde{\mathcal{H}}_{3,1}(f)|$ for a collection of bounded turning functions associated with the petal-shaped domain. Khan et al.[14] investigated the third Hankel determinant for a class of starlike functions with respect to two symmetric points with a sine function. Other interesting topics have been discussed in 2021 and 2022; see [25, 26].

The aim of the present work is to determine the upper bound of the Hankel determinants of order two for the functions belonging to the classes $\widetilde{\mathcal{S}}_k^*$ and $\widetilde{\mathcal{K}}_k$.

2 Preliminary Results

Lemma 1. [7] If $p \in \mathcal{P}$, then $|q_n| \leq 2, (n = 1, 2, ...)$.

Lemma 2. [17, 18] If $p \in \mathcal{P}$, then

$$2q_2 = q_1^2 + (4 - q_1^2)x,$$

$$4q_3 = q_1^3 + 2q_1(4 - q_1^2)x - q_1(4 - q_1^2)x^2 + 2(4 - q_1^2)(1 - |x|^2)w,$$

for some x and w satisfying $|x| \le 1$, $|w| \le 1$ and $p_1 \in [0,2]$.

3 Main Results

Theorem 1. Let $f \in \widetilde{\mathcal{S}}_k^*$, then

$$|a_2a_4 - a_3^2| \le \frac{4}{(3 - \psi_3)^2},\tag{7}$$

where ψ_n is defined by (5).

Proof. Since $f \in \widetilde{\mathcal{S}}_k^*$, then there exists $p \in \mathcal{P}$ such that

$$\frac{wf'(w)}{f_k(w)} = p(w),$$

or

$$\frac{1 + \sum_{n=2}^{\infty} n a_n w^{n-1}}{\sum_{n=1}^{\infty} \psi_n a_n w^{n-1}} = 1 + q_1 w + q_2 w^2 + q_3 w^3 + \dots$$
 (8)

Equating coefficients in (8) yields

$$\psi_1 = 1, \quad a_2 = \frac{q_1}{2 - \psi_2}, \quad a_3 = \frac{1}{3 - \psi_3} \left[q_2 + \frac{\psi_2 q_1^2}{2 - \psi_2} \right],$$
(9)

$$a_4 = \frac{1}{4 - \psi_4} \left[q_3 + \frac{\psi_2 q_1 q_2}{2 - \psi_2} + \frac{\psi_3 q_1}{3 - \psi_3} \left(q_2 + \frac{\psi_2 q_1^2}{2 - \psi_2} \right) \right]. \tag{10}$$

By (9) and (10) we get

$$|a_2a_4 - a_3^2| =$$

$$\left| \frac{q_1}{(2-\psi_2)(4-\psi_4)} \left[q_3 + \frac{\psi_2 q_1 q_2}{2-\psi_2} + \frac{\psi_3 q_1}{3-\psi_3} \left(q_2 + \frac{\psi_2 q_1^2}{2-\psi_2} \right) \right] - \frac{1}{(3-\psi_3)^2} \left[q_2 + \frac{\psi_2 q_1^2}{2-\psi_2} \right]^2 \right|.$$

Using Lemma (1) and Lemma (2) in the above equation we get

$$|a_2a_4 - a_3^2| =$$

$$\frac{q_1}{4(2-\psi_2)(4-\psi_4)} \left[q_1^3 + 2p_1(4-q_1^2)x - q_1(4-q_1^2)x^2 + 2(4-q_1^2)(1-|x|^2)w \right] + \frac{q_1}{(2-\psi_2)(4-\psi_4)} \left[\frac{\psi_2 q_1}{2(2\psi_2)} \left\{ q_1^2 + (4-q_1^2)x \right\} + \frac{\psi_3 q_1}{2(3-\psi_3)} \left\{ q_1^2 + (4-q_1^2)x + \frac{2\psi_2 q_1^2}{2-\psi_2} \right\} \right] - \frac{1}{(3-\psi_3)^2} \left[\frac{1}{4} \left\{ q_1^4 + 2q_1^2(4-q_1^2)x + (4-q_1^2)^2x^2 \right\} \right] - \frac{1}{(3-\psi_3)^2} \left[(q_1^2 + (4-q_1^2)x) \frac{\psi_2 q_1^2}{2-\psi_2} + \frac{\psi_2^2 q_1^4}{(2-\psi_2)^2} \right] \right] \\
= \left[\left[\frac{1}{2(2-\psi_2)(4-\psi_4)} \left\{ 1 + \frac{\psi_2}{2-\psi_2} + \frac{\psi_3}{3-\psi_2} \right\} - \frac{1}{2(3-\psi_2)^2} - \frac{\psi_2}{(2\psi_2)(3\psi_2)^2} \right] q_1^2(4-q_1^2)x \right] \right] + \frac{q_1}{4(2-\psi_2)(4-\psi_4)} \left\{ 1 + \frac{\psi_2}{2-\psi_2} + \frac{\psi_3}{3-\psi_2} \right\} - \frac{1}{2(3-\psi_2)^2} - \frac{\psi_2}{(2\psi_2)(3\psi_2)^2} \right] q_1^2(4-q_1^2)x \right\}$$

$$-\left[\frac{q_1^2}{4(2-\psi_2)(4-\psi_4)} + \frac{(4-q_1^2)}{4(3-\psi_3)^2}\right](4-q_1^2)x^2 + \frac{q_1(4-q_1^2)(1-|x|^2)w}{2(2-\psi_2)(4-\psi_4)} + \frac{q_1^4}{(2-\psi_2)(4-\psi_4)}\left\{\frac{1}{4} + \frac{\psi_2}{2(2-\psi_2)} + \frac{\psi_3}{2(3-\psi_3)} + \frac{\psi_2\psi_3}{(2-\psi_2)(3-\psi_3)}\right\} - \frac{q_1^4}{4((3-\psi_3)^2} - \frac{q_1^4\psi_2}{(2-\psi_2)(3-\psi_3)^2} - \frac{q_1^4\psi_2^2}{(2-\psi_2)^2(3-\psi_3)^2}\right|.$$

Let $q_1 = q$ and $0 \le q \le 2$, and utilizing the assumption $|w| \le 1$, we obtain

$$|a_2a_4 - a_3^2| \le \mathcal{R}_1(q) + \mathcal{R}_2(q)\mu + \mathcal{R}_3(q)\mu^2 = G(q, \mu), \tag{11}$$

where $\mu = |x| \le 1$ with

$$\begin{split} \mathcal{R}_1(q) &= q^4 \left[\frac{1}{(2-\psi_2)(4-\psi_4)} \left\{ \frac{1}{4} + \frac{\psi_2}{2(2-\psi_2)} + \frac{\psi_3}{2(3-\psi_3)} + \frac{\psi_2\psi_3}{(2-\psi_2)(3-\psi_3)} \right\} \right] \\ &\quad + q^4 \left[\frac{\psi_2}{(2\psi_2)(3-\psi_3)^2} - \frac{1}{4(3-\psi_3)^2} - \frac{\psi_2^2}{(2-\psi_2)^2(3-\psi_3)^2} \right] + \frac{q(4-q^2)}{2(2-\psi_2)(4-\psi_4)}, \\ \mathcal{R}_2(q) &= \left[\frac{1}{2(2-\psi_2)(4-\psi_4)} \left\{ 1 + \frac{\psi_2}{2-\psi_2} + \frac{\psi_3}{3-\psi_3} \right\} + \frac{\psi_2}{(2-\psi_2)(3-\psi_3)^2} - \frac{1}{2(3-\psi_3)^2} \right] q^2 (4-q^2), \\ \mathcal{R}_3(q) &= \left[\frac{q(q+2)}{4(2-\psi_2)(4-\psi_4)} + \frac{(4-q^2)}{4(3-\psi_3)^2} \right] (4-q^2). \end{split}$$

Now, we have to maximize $G(q, \mu)$ on the closed square $[0, 2] \times [0, 1]$. By taking partial derivative of $G(q, \mu)$ in (11) with respect to μ , we get

$$\frac{\partial G(q,\mu)}{\partial \mu} = \left[\frac{q(q+2)}{4(2-\psi_2)(4-\psi_4)} + \frac{(4-q^2)}{4(3-\psi_3)^2} \right] 2(4-q^2)\mu$$

$$+ \frac{q^2(4-q^2)}{2(2-\psi_2)(4-\psi_4)} \left\{ 1 + \frac{\psi_2}{2-\psi_2} + \frac{\psi_3}{3-\psi_3} \right\}$$

$$+ \frac{q^2(4-q^2)\psi_2}{(2-\psi_2)(3-\psi_3)^2} - \frac{q^2(4-q^2)}{2(3-\psi_3)^2}.$$
(12)

For $\mu \in (0,1)$ and for fixed $q \in (0,1)$, from (12), we observe that $\frac{\partial G(q,\mu)}{\partial \mu} > 0$, and then $G(q,\mu)$ is increasing in μ , for fixed $p \in [0,2]$, the maximum of $G(q,\mu)$ occurs at $\mu = 1$ and

$$\max_{0 \le \mu \le 1} G(q, \mu) = G(q, 1) = F(q). \tag{13}$$

From (11) and (13), upon simplification, we get

$$F(q) = G(q,1) = \frac{\psi_2 \psi_3 q^4}{(2 - \psi_2)^2 (3 - \psi_3)(4 - \psi_4)} + \frac{q^4}{2(3 - \psi_3)^2} - \frac{\psi_2^2 q^4}{(2 - \psi_2)^2 (3 - \psi_3)^2} - \frac{q^4}{2(2 - \psi_2)(4 - \psi_4)} - q^3 + \frac{2q^2}{4 - \psi_4} \left\{ 1 + \frac{\psi_2}{2 - \psi_2} + \frac{\psi_3}{3 - \psi_3} \right\} - \frac{q^2}{(3 - \psi_3)^2}$$
(14)

$$+\frac{4q^2\psi_2}{(2-\psi_2)(3-\psi_3)^2}+\frac{q^2}{(2-\psi_2)(4-\psi_4)}+\frac{4}{(2-\psi_2)(4-\psi_4)}q+\frac{4}{(3-\psi_3)^2}.$$

Suppose that F(q) has a maximum value at $q \in (0,2)$. Now by differentiating with respect to q and after some simple calculations we find

$$F'(q) = \frac{4\psi_2\psi_3q^3}{(2-\psi_2)^2(3-\psi_3)(4-\psi_4)} + \frac{4q^3}{2(3-\psi_3)^2} - \frac{4q^3\psi_2^2}{2-\psi_2)^2(3-\psi_3)^2}$$
$$-\frac{4q^3}{2(2-\psi_2)(4-\psi_4)} - 3q^2 + \frac{4q}{(2-\psi_2)(4-\psi_4)} \left\{ 1 + \frac{\psi_2}{2-\psi_2} + \frac{\psi_3}{3-\psi_3} \right\}$$
$$-\frac{2q}{(3-\psi_3)^2} + \frac{8q\psi_2}{(2-\psi_2)(3-\psi_3)^2} + \frac{2q}{(2-\psi_2)(4-\psi_4)} + \frac{4}{(2-\psi_2)(4-\psi_4)}.$$

Clearly, F'(q) = 0 has no optimal solutions in (0,2). Thus, F(q) achieves its maximum value outside the interval, which contradicts our assumption of having the maximum value at the interior point of $q \in [0,2]$. Thus any maximum point of F must be on the boundary of [0,2].

It is clear that F(0) > F(2). Hence the maximum is achieved at q = 0. Therefore the upper bound for (11) corresponds to $\mu = 1$ and q = 0. Hence from (11) we obtain (7).

For k = 1 in Theorem 7, we have the following result proved by Janteng [12].

Corollary 1. If $f(w) \in \widetilde{\mathcal{S}}^*$, then

$$|a_2a_4 - a_3^2| \le 1.$$

We can prove on similar lines the following theorem.

Theorem 2. Let $f \in \widetilde{\mathcal{K}}_k$, then

$$|a_2a_4 - a_3^2| \le \frac{4}{9(3 - \psi_3)^2},\tag{15}$$

where ψ_n is defined by (5).

Replacing k by 1 in Theorem 2, we have the following result proved by Janteng [12].

Corollary 2. If $f(w) \in \widetilde{\mathcal{K}}$, then

$$|a_2a_4 - a_3^2| \le \frac{1}{9}.$$

References

- [1] F. AL-SARARI, S. LATHA, B. A. FRASIN, A note on starlike functions associated with symmetric points, Afrika Matematika, 29(2018), 945–953.
- [2] F. AL-SARARI, S. LATHA, M. DARUS, A few results on Janowski functions associated with k-symmetric points, Korean Journal of Mathematics, 25(3) (2017), 389–403.
- [3] K. O. BABALOLA, On $\widetilde{\mathcal{H}}_3(1)$ Hankel determinant for some classes of univalent functions, Inequal. Theory Appl., 6 (2010), 1–7.
- [4] O. BARUKAB, M. ARIF, M. ABBAS, S. K. KHAN, Sharp bounds of the coefficient results for the family of bounded turning functions associated with petal shaped domain, J. Function Spaces, (2021), 9 pages, ID 5535629.
- [5] L. CAIRO, J. LLIBRE, Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 2, Nonlinear Analysis, 67 (2007), 327–348.
- [6] J. H. CHOI, Y. C. KIM, T. SUGAWA, A general approach to the Fekete-Szegö problem, J. Math. Soc. Japan, 59 (2007), No. 3, 707–727.
- [7] P. L. Duren, Univalent functions. In Grundlehren der Mathematschen Wissenschaften, Springer New York, NY, USA, 259 (1983),116.
- [8] R. EHRENBORG, The Hankel determinant of exponential polynomials, American Mathematical Monthly, 107 (2000), 557–560.
- [9] M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc., 8 (1933), 85–89.
- [10] A. W. GOODMAN, Univalent Functions, Mariner Publishing Company, Florida, USA, I-II, (1983).
- [11] A. Janteng, S. A. Halim, M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., 7(2) (2006), 1–5.
- [12] A. JANTENG, S. A. HALIM, M. DARUS, Hankel Determinant for starlike and convex functions, Int. J. Math. Anal., 13(1) (2007), 619–625.
- [13] A. Janteng, S. A. Halim, M. Darus, Hankel Determinant for functions starlike and convex with respect to symmetric points, Journal of Quality Measurement and Analysis, 7(2) (2006), 37–43.
- [14] M. G. Khan, B. Ahmad, G. Murugusundaramoorthy, W. K. Mashwani, S. Yalcin, T. G. Shaba, Z. Salleh, Third Hankel determinant and Zalcman functional for a class of starlike functions with respect to symmetric points related with sine function, J. Math. Comp. Sci., 25 (2022), 29–36.
- [15] J. W. LAYMAN, The Hankel transform and some of its properties. J. Integer Sequences, 4 (2001), 1–11.
- [16] M. Arif, L. Rani, M. Raza, P. Zaprawa, Fourth hankel determinant for the family of functions with bounded turning, Bulletin of the Korean Mathematical Society, 55(6) (2018), 1703–1711.

- [17] R. J. LIBERA, E. J. ZLOTKIEWICZ, Early coefficients of the inverse of a regular convex function, Amer. Math. Soc., 85 (1982), 225–230.
- [18] R. J. LIBERA, E. J. ZLOTKIEWICZ, Coefficient bounds for the inverse of a function with derivative in P, Amer. Math. Soc., 87(2) (1983), 251–257.
- [19] W. MA, D. MINDA, Proceedings of the Conference on complex Analysis, Z. Li, F Ren, L Lang, and S. Zhang (Eds), International press Boston, Mass, USA, Soc., (1994), 157–169.
- [20] J. W. NOONAN AND, D. K. THOMAS, On the second Hankel determinant of a reallymean p-valent functions, Trans. Amer. Math. Soc., 223(2) (1976), 337–346.
- [21] K. I. NOOR, Hankel determinant problem for the class of functions with bounded boundary rotations, Rev. Roum. Math. Pures. Et. Appl., 28(8) (1983), 731–739.
- [22] S. OWA, H. SRIVASTAVA, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39(5) (1987), 1057–1077.
- [23] C. POMMERENKE, On the Hankel determinants of univalent functions, Mathematika, 14 (1967), 108–112.
- [24] C. POMMERENKE, On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., 41 (1966), 111–122.
- [25] A. RIAZ, M. RAZA, D. K. THOMAS, Hankel determinants for starlike and convex functions associated with sigmoid functions, Forum Math., 34 (1) (2022), 137–156.
- [26] L. Shi, M. Shutaywi, N. Alreshidi, M. Arif, S. M. Ghufran The Sharp Bounds of the Third-Order Hankel Determinant for Certain Analytic Functions Associated with an Eight-Shaped Domain, Fractal and Fractional, 6 (2022), 223, 1-21.
- [27] R. SINGH, M. TYGEL, On some univalent functions in the unit disc, Indian. J. Pure. Appl. Math., 12 (1981), 513–520.
- [28] P. ZAPRAWA, Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math., 14(1) (2017), 10-19.

Fuad Alsarari

Received June 5, 2017 Revised October 6, 2022

Department of Mathematics and statistics, College of Science, Yanbu, Taibah University, Saudi Arabia.

E-mail: alsrary@gmail.com

SATYANARAYANA LATHA

Department of Mathematics, Yuvaraja's College, University of Mysore, Mysore 570 005, INDIA

E-mail: drlatha@gmail.com

Maslina Darus

Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM

Bangi 43600, Selangor, MALAYSIA E-mail: maslina@ukm.edu.my*

*Corresponding author