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1 Introduction

_ The work here is considering the class F of functions analytic in
U={w:weC,|lwl <1}, and of the form

fw)=w+ Z apw", (1)
n=2

and suppose S denotes the subclass of F consisting of all functions that are univalent
in 4. For f,g € F, we say that f is subordinate to g written as f < g if there exists
a holomorphic map h of the unit disk ¢/ into itself with A(0) = 0 such that f = goh.
Note that if g € S, then f < g is equivalent to the condition that f(0) = ¢(0) and
F(U) C gU). Let P be the family of analytic functions p in U with R{p(w)} > 0
which have the form p(w) = 14+qiw+gw?+... (w € U). The class P of functions with
positive real part plays a crucial role in geometric function theory. Its significance
can be seen from the fact that simple subclasses are class S* of starlike functions
and class K of convex functions.

2mi

Definition 1. [10] For k e N={1,2,...}, let ¢ = ¢*F") denote the k™ root of unity
for f € F. Its k-weighted mean function is

k—1
1
Mypp(w) => e f(e"w). 75—
v=1 1€

A function f in F is called k-symmetrical function for each w € U if
f (ew) = ef(w). The family of all k-symmetrical functions will be denoted by F*.
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A function f in F is said to belong to the class §Z of functions starlike with respect
to k-symmetric points if for every r close to 1, » < 1, the angular velocity of f about
the point Mjy, (wg) is positive at w = wg as z traverses the circle |w| = 7 in the
2f'(w)
fw) = My (wo)

Definition 2. [27] For a positive integer k, let S denote the family of starlike
functions with respect to k-symmetric points f € F which satisfy

positive direction, that is R < ) > 0 for w = wy, |wo| = r.

wf'(w) ~
%{fk(w)}>0’ weEU, (2)
where )
folw) = £ [f(w) = My (w)]. (3)

Remark 1. Equivalently, (3) can be written as

or

fr(w) =w+ Z Yna,w"  where 1, =

n=2

1 if n=1lk+1, €N,
0 if nAlk+1

Let Izk denote the subclass of functions f € F which satisfies

fekiewf €S (6)
For more details, some interesting properties of the classes of functions with

respect to k-symmetric points have been discussed by the authors in [1,2].

One of the most fundamental problems in geometric function theory is to find
the coefficient bounds for a certain class of functions. In this work, we study the
Hankel determinant Hy ,(f) (¥, n € N) for the well-known class of starlike functions

S* which was introduced by Pommerenke [23,24], and is defined as follows:

Qn an4+1 -+ An49-1
v an+1
Hﬂ,n(f) =
Ap+9—1 co An429-2

We can easily note that ﬁg,l(f) = as — a3, ﬁzg(f) = agas — a3 and

~ ) )
H371(f) = 2asa3a4 — ag —ay + azas — asas.
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Many authors have studied and investigated the Hankel determinants for various
subclasses of F. The famous problem solved by using the Loewner technique
to determine the greatest value of the coefficient was investigated by Fekete and
Szegd in [9], they generalized the estimate |ag — pua3| where u is real and f € S*.
Later, Jae Ho Choi et al.[6] provided a new method for solving the Fekete-Szegd prob-
lem which opened up a lot of new opportunities for research in the related fields.
This determinant was studied for other classes of functions by many other authors
like Noor [21], Ehrenborg [8], and Layman [15]. For some other related works for
subclasses regarding symmetric points, one can look up Janteng et al.[11-13] who
have considered the functional ‘ﬁg,g( f)| and studied the second Hankel determi-
nant and have shown that |Haso(f)| < 4/9, [Hao(f)| < 1, [Hao(f)| < 1/8 and
|'F[272(f)\ <1, \ﬁg,g(f)| < 1/9, respectively, for the classes of analytic, starlike,
convex, close-to-starlike and close-to-convex functions concerning symmetric points.

The third-order Hankel determinant \7?{3,1( f)| for subclasses of F was studied
for the first time by Babalola [3]. In 2017, Zaprawa [28] improved the results of
Babalola [3] by proving [Hs31(f)| <1, |H31(f)| < 49/540, |H31(f)| < 41/60 for the
classes of starlike, convex and bounded turning functions respectively.

The estimation of the fourth Hankel determinant \7?{4,1( f)] for the bounded turn-
ing functions has been obtained by Arif et al.[l16] and they proved
|Ha1(f)| < 0.78050.

Recently, Barukab et al.[4] obtained the sharp bounds of \7?{3,1( f)| for a collection
of bounded turning functions associated with the petal-shaped domain. Khan et
al.[14] investigated the third Hankel determinant for a class of starlike functions
with respect to two symmetric points with a sine function. Other interesting topics
have been discussed in 2021 and 2022; see [25,26].

The aim of the present work is to determine the upper bound of the Hankel
determinants of order two for the functions belonging to the classes S; and K.

2 Preliminary Results
Lemma 1. [7] If p € P, then |¢n] <2,(n=1,2,...).
Lemma 2. [17,18] If p € P, then

2q2 = i + (4 - qi)u,

A3 =g +2q1(4 — gDz — 1 (4 — gD)z® +2(4 — ¢}) (1 — |z[P)w,

for some x and w satisfying |x| <1, |w| <1 and p; € [0,2].
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3 Main Results

Theorem 1. Let f € §,’€", then

4
jazas — a3| < ——— (7)

(3 —13)*
where 1y, is defined by (5).

Proof. Since f € g;:, then there exists p € P such that

w f'(w)
= plw),
Jr(w) w)
or 5 .
1+ 20:2 na,w" = 9 3
=1 8
S ] + qw + qu” + gzw” + (8)
Equating coefficients in (8) yields
qQ 1 Y2}
=1 = = 9
¢1 , a2 2_1/}27 as 3_¢3 [92+2_¢2 ) ()
1 Yaqiqe V3 < Vog} ﬂ
as = + + + . 10
YT 4y [qg 2—1pp 3 —13 o 2 — 9 (10)
By (9) and (10) we get
lagay — a§| =
q Yoqiqe V3 Vaq? 1 a2} ?
+ + + s g+ .
(2 — 4p2)(4 — tha) [qg 2=y 3—13 <q2 2—¢2>} (3 —1h3)? [qQ 2—1/12}

Using Lemma (1) and Lemma (2) in the above equation we get

Jasas — a| =
‘4(2 — ¢2q)1(4 — [+ 24— aDe — e - aDa® + 24— g (1 — o] +
{0 Yoqi | o _ 2 Ysq 2 2 20t ]
T [ e g e - e 2
o [l 2 e+ (4 ]
1 P oy gt 5q1 ]
(3 —13)? [(ql S ql)x)? ) " (2 —99)?

— 1 o )3 B 1 B 9 204 0P\
a ‘ |:2(2 —h2)(4 —1ba) {1 * 2 — 9 * 3— 77b3} 2(3 —13)? (2¢2)(3¢3)2] qi(4—q7)
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a (4—d7) 2, @t =) —|a[Pw

=)o) T 16- %)J =) e )=o)
qi 1 L V3 Y1)
@— o) (d—0n) { " }

_l’_

1722 00) 2B-93)  @— 12— vs)
o 412 B i3
4((B—=13)2  (2—12)(B3—13)2 (2 —12)%(3 —13)?

Let ¢ = ¢ and 0 < ¢ < 2, and utilizing the assumption |w| < 1, we obtain

|azaq — a3 < Ri(q) + Ra(q)u + Ra(q)u® = Glq, n), (11)
where p = |z| < 1 with
R0 = [gmmame 1 2o F5e e e )
+d sz?)(?— T e i wffé = W} i 3%(?2 )’
R0 = | rr e L T T | Y E e~ T T
R0 = [+ T )

Now, we have to maximize G(g, ;) on the closed square [0, 2] x [0, 1].
By taking partial derivative of G(q, ) in (11) with respect to u, we get

0G(q, ) q(q+2) (4-4° o
T [4(2 — o)A —o) TG ¢3>2} 2= (12)
(4 —q¢?) o )3
+2(2—¢2)(4—¢4) {1+ 2 — 19 * 3—1/13}
(4 — @) (4 —q%)

TR Bt 2B

For p € (0,1) and for fixed g € (0,1), from (12), we observe that %}qj“) > 0, and
then G(q, u) is increasing in p, for fixed p € [0,2], the maximum of G(g, u) occurs
at © =1 and

onax, G(g, 1) = G(g.1) = F(q). (13)

From (11) and (13), upon simplification, we get

B B Yatpsq? ¢t B V3q*
@) =0 )= GG ua—vy) 28— @ =023 = 0s)?
B q' s 27 { Py Vs }_ q°
2=y ¢ Timm ' Timm 3= G W
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4¢1s ' 4 4

@B 05 2t —d) e B

Suppose that F(q) has a maximum value at ¢ € (0,2). Now by differentiating
with respect to ¢ and after some simple calculations we find

_|_

'y Apapag® 4 4g°3
PO = GG - e —un T 36- 05~ 2= 00 — vaP?
B 4¢° a2 4q { o V3 }
22—y Tt e a3
% n 8qipo N 2q N 4

(B—13)%  (2—92)(3—13)?  (2— )4 —ta)  (2—92)(4—s)

Clearly, F'(q) = 0 has no optimal solutions in (0,2). Thus, F(q) achieves its
maximum value outside the interval, which contradicts our assumption of having
the maximum value at the interior point of ¢ € [0,2]. Thus any maximum point of
F must be on the boundary of [0, 2].

It is clear that F'(0) > F'(2). Hence the maximum is achieved at ¢ = 0. Therefore
the upper bound for (11) corresponds to 4 = 1 and ¢ = 0. Hence from (11) we
obtain (7).

]
For k =1 in Theorem 7, we have the following result proved by Janteng [12].
Corollary 1. If f(w) € S*, then
lagay — a3 < 1.
We can prove on similar lines the following theorem.
Theorem 2. Let f € lzk, then
o201 = ) < gy (15)

where 1y, is defined by (5).

Replacing & by 1 in Theorem 2, we have the following result proved by Janteng
[12].

Corollary 2. If f(w) € K, then

—_

lagay — a3 < 9
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