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A REPUBLICII MOLDOVA. MATEMATICA
Number 2(102), 2023, Pages 19–35
ISSN 1024–7696, E-ISSN 2587–4322

Growth Properties of Solutions to Higher Order

Complex Linear Differential Equations with Analytic

Coefficients in the Annulus
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Abstract. In this paper, by using the Nevanlinna value distribution theory of
meromorphic functions on an annulus, we deal with the growth properties of solutions
of the linear differential equation f (k) +Bk−1 (z) f (k−1) + · · ·+B1 (z) f ′ +B0 (z) f = 0,
where k ≥ 2 is an integer and Bk−1 (z) , ..., B1 (z) , B0 (z) are analytic on an annulus.
Under some conditions on the coefficients, we obtain some results concerning the
estimates of the order and the hyper-order of solutions of the above equation. The
results obtained extend and improve those of Wu and Xuan in [16].
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1 Introduction and results

Throughout this article, we shall assume that the reader is familiar with the
standard notations and fundamental results of the Nevanlinna value distribu-
tion theory of meromorphic functions in the complex plane and in the unit disc
D = {z ∈ C : |z| < 1} , see [3, 4, 10,14,17].

Nevanlinna theory has appeared to be powerful tool in the field of complex
differential equations in the complex plane and in the unit disc which are simple
connected domains. In the year 2000, Heittokangas [5] firstly investigated the growth
and oscillation theory of second and higher order linear differential equations when
the coefficients are analytic functions in the unit disc D, by introducing the definition
of the function spaces. Recently, Wu [15], Long [11], Beläıdi [2], Zemirni and Beläıdi
[18] have obtained some results about the growth of analytic solutions of higher
order linear differential equations in a sector of the unit disc. It is well-known
that Nevanlinna theory of meromorphic functions in the complex plane and in the
unit disc can be extended in a modified form to multiply-connected plane domains,
in particular in the annulus [6–9, 12, 13] which is a doubly-connected domain. In
2005, Khrystiyanyn and Kondratyuk [6,7] gave an extension of the Nevanlinna value
distribution theory for meromorphic functions in annuli. In their extension the main
characteristics of meromorphic functions are one-parameter and possessing the same
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properties as in the classical case of a simply connected domain. From the doubly-
connected mapping theorem [1], we can get that each doubly-connected domain
is conformally equivalent to the annulus {z : r < |z| < R, 0 ≤ r < R ≤ +∞}. We
consider only two cases: r = 0, R = +∞ simultaneously and 0 ≤ r < R ≤ +∞. In
the latter case, the homothety z 7−→ z√

rR
reduces the given domain to the annulus

1
R0

< |z| < R0, where R0 =
√

R
r . Thus, every annulus is invariant with respect to

the inversion z 7−→ 1
z in two cases.

Before stating our main results, we give some notations and basic defini-

tions of meromorphic functions in the annulus A =
{

z : 1
R0

< |z| < R0

}

, where

1 < R0 ≤ +∞. Let f be a meromorphic function in the complex plane, we define

m (r, f) =
1

2π

∫ 2π

0
log+

∣

∣f
(

reiϕ
)
∣

∣ dϕ,

N (r, f) =

∫ r

0

n (t, f) − n (0, f)

t
dt + n (0, f) log r

and
T (r, f) = m(r, f) + N(r, f) (r > 0)

is the Nevanlinna characteristic function of f , where log+ x = max (0, log x) for
x ≥ 0, and n (t, f) is the number of poles of f lying in {z : |z| ≤ t} , counted ac-
cording to their multiplicity. Now, we give the Nevanlinna theory in the annulus

A =
{

z : 1
R0

< |z| < R0

}

, where 1 < R0 ≤ +∞. Set

N1 (r, f) =

∫ 1

1
r

n1 (t, f)

t
dt, N2 (r, f) =

∫ r

1

n2 (t, f)

t
dt,

m0 (r, f) = m (r, f) + m

(

1

r
, f

)

− 2m (1, f) ,

N0 (r, f) = N1 (r, f) + N2 (r, f) ,

where n1 (t, f) and n2 (t, f) are the counting functions of poles of f lying in
{z : t < |z| ≤ 1} and {z : 1 < |z| ≤ t} respectively, counted according to their mul-
tiplicity. The Nevanlinna characteristic of f in the annulus A is defined by

T0 (r, f) = m0 (r, f) + N0 (r, f) .

Definition 1. ([16]) Let f be a nonconstant meromorphic function in the annu-

lus A =
{

z : 1
R0

< |z| < R0

}

, where 1 < R0 ≤ +∞. The function f is called a

transcendental or admissible in A provided that

lim sup
r→+∞

T0 (r, f)

log r
= +∞ if 1 < r < R0 = +∞
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or

lim sup
r→R−

0

T0 (r, f)

log 1
R0−r

= +∞ if 1 < r < R0 < +∞

respectively. The order of f is defined as

ρA (f) = lim sup
r→+∞

log T0 (r, f)

log r
if 1 < r < R0 = +∞

or

ρA (f) = lim sup
r→R−

0

log T0 (r, f)

log 1
R0−r

if 1 < r < R0 < +∞

respectively. The hyper-order of f is defined as

ρ2,A (f) = lim sup
r→+∞

log log T0 (r, f)

log r
if 1 < r < R0 = +∞

or

ρ2,A (f) = lim sup
r→R−

0

log log T0 (r, f)

log 1
R0−r

if 1 < r < R0 < +∞

respectively.

Now, we introduce the concepts of lower order, hyper lower order, type and
lower type of a meromorphic function f in the annulus A.

Definition 2. Let f be a meromorphic function in A. The lower order of f is defined
as

µA (f) = lim inf
r→+∞

log T0 (r, f)

log r
if 1 < r < R0 = +∞

or

µA (f) = lim inf
r→R−

0

log T0 (r, f)

log 1
R0−r

if 1 < r < R0 < +∞

respectively. The hyper lower order of f is defined as

µ2,A (f) = lim inf
r→+∞

log log T0 (r, f)

log r
if 1 < r < R0 = +∞

or

µ2,A (f) = lim inf
r→R−

0

log log T0 (r, f)

log 1
R0−r

if 1 < r < R0 < +∞

respectively.

Definition 3. Let f be a meromorphic function in A with order 0 < ρA (f) < +∞.
Then, the type of f is defined by

τA (f) = lim sup
r→+∞

T0 (r, f)

rρA(f)
if 1 < r < R0 = +∞
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or

τA (f) = lim sup
r→R−

0

T0 (r, f)
(

1
R0−r

)ρA(f)
if 1 < r < R0 < +∞

respectively. Similarly, let f be a meromorphic function in A with lower order
0 < µA (f) < +∞. Then, the lower type of f is defined by

τA (f) = lim inf
r→R−

0

T0 (r, f)

rµA(f)
if 1 < r < R0 = +∞

or

τA (f) = lim inf
r→R−

0

T0 (r, f)
(

1
R0−r

)µA(f)
if 1 < r < R0 = +∞

respectively.

For k ≥ 2, we consider the linear differential equation

f (k) + Bk−1 (z) f (k−1) + · · · + B1 (z) f ′ + B0 (z) f = 0, (1)

where Bk−1 (z) , ..., B1 (z) and B0 (z) are analytic in the annulus

A =

{

z :
1

R0
< |z| < R0

}

(1 < R0 ≤ +∞) .

Recently in [16], Wu and Xuan have studied the growth of solutions of higher order
linear complex differential equations in A and obtained the following result.

Theorem 1. ([16]) Let Bk−1 (z) , ..., B1 (z), B0 (z) be analytic functions in the an-

nulus A =
{

z : 1
R0

< |z| < R0

}

(1 < R0 ≤ +∞) such that

max{ρA (Bj) : j = 1, 2, ..., k − 1} < ρA (B0) .

Then every solution f 6≡ 0 of equation (1) satisfies ρA (f) = +∞ and
ρ2,A (f) ≥ ρA (B0) .

Note that the result of Theorem 1 occurs when there exists only one dominant
coefficient. Thus, the following question arises naturally: Whether the results similar
to Theorem 1 can be obtained in A if there are more than one dominant coefficients?
In this paper, we give some answers to the above question. In fact, by using the
concepts of the type and the lower type, we obtain some results which indicate
growth estimate of every non-trivial analytic solution of equation (1) by the growth
estimate of the coefficient B0 (z) . We mainly obtain the following results.
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Theorem 2. Let Bk−1 (z) , ..., B1 (z), B0 (z) (k ≥ 2) be analytic functions in the

annulus A =
{

z : 1
R0

< |z| < R0

}

(1 < R0 ≤ +∞). Suppose that there exist three

positive real numbers α, β and µ with 0 ≤ (k − 1) β < α, µ > 0, such that we have

T0(r,B0) ≥ αrµ (2)

and

T0(r,Bj) ≤ βrµ, j = 1, . . . , k − 1 (3)

if 1 < r < R0 = +∞ as |z| = r → +∞ for r ∈ Er which satisfies
∫

Er

dr
r = +∞, or

T0 (r,B0) ≥
α

(R0 − r)µ
(4)

and

T0 (r,Bj) ≤
β

(R0 − r)µ
(j = 1, ..., k − 1) (5)

if 1 < r < R0 < +∞ as |z| = r → R−
0 for r ∈ Fr which satisfies

∫

Fr

dr
R0−r = +∞.

Then every solution f 6≡ 0 of equation (1) satisfies ρA (f) = +∞ and ρ2,A (f) ≥ µ.

Theorem 3. Let Bk−1 (z) , ..., B1 (z), B0 (z) (k ≥ 2) be analytic functions in the

annulus A =
{

z : 1
R0

< |z| < R0

}

(1 < R0 ≤ +∞) such that

max{ρA (Bj) : j = 1, 2, ..., k − 1} ≤ ρA (B0) = ρ (0 < ρ < ∞)

and
∑

ρA(Bj)=ρA(B0)

τA (Bj) < τA (B0) = τ ( 0 < τ < ∞) .

Then every solution f 6≡ 0 of equation (1) satisfies ρA (f) = +∞ and ρ2,A (f) ≥
ρA (B0) .

Theorem 4. Let Bk−1 (z) , ..., B1 (z), B0 (z) (k ≥ 2) be analytic functions in the

annulus A =
{

z : 1
R0

< |z| < R0

}

(1 < R0 ≤ +∞) such that 0 < µA (B0) = µ ≤

ρA (B0) < ∞. Assume that

max{ρA (Bj) : j = 1, 2, ..., k − 1} ≤ µA (B0) = µ

and
∑

ρA(Bj)=µA(B0)

τA (Bj) < τA (B0) = τ ( 0 < τ < ∞) .

Then every solution f 6≡ 0 of equation (1) satisfies ρA (f) = µA (f) = +∞ and
ρ2,A (f) ≥ µ2,A (f) ≥ µA (B0) .
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Theorem 5. Let Bk−1 (z) , ..., B1 (z), B0 (z) (k ≥ 2) be analytic functions in the

annulus A =
{

z : 1
R0

< |z| < R0

}

(1 < R0 ≤ +∞) such that B0 (z) is admissible in

A and

lim sup
r→+∞

k−1
∑

j=1
m0 (r,Bj)

m0 (r,B0)
< 1 if 1 < r < R0 = +∞

or

lim sup
r→R−

0

k−1
∑

j=1
m0 (r,Bj)

m0 (r,B0)
< 1 if 1 < r < R0 < +∞.

Then every solution f 6≡ 0 of equation (1) satisfies ρA (f) = +∞ and ρ2,A (f) ≥
ρA (B0) .

2 Some Preliminary Lemmas

We need the following lemmas to prove our results.

Lemma 1. Let f be a meromorphic function with finite order 0 < ρA(f) < +∞
and finite type 0 < τA(f) < +∞. Then for any given η < τA(f), there exists a subset
Er of (1,+∞) with

∫

Er

dr
r = +∞ such that for all r ∈ Er

T0(r, f) > ηrρA(f) if 1 < r < R0 = +∞

holds or there exists a subset E
/
r of (1, R0) with

∫

E
/
r

dr
R0−r = +∞ such that for all

r ∈ E
/
r holds

T0(r, f) >
η

(R0 − r)ρA(f)
if 1 < r < R0 < +∞.

Proof. Case R0 = +∞ : By Definition 3, there exists an increasing sequence
{rm}∞m=1 (rm → +∞, m → +∞) satisfying (1 + 1

m)rm < rm+1 and

lim
m→+∞

T0(rm, f)

r
ρA(f)
m

= τA(f).

So, there exists a positive integer m0 such that for all m ≥ m0 and for any given
0 < ε < τA(f) − η, we have

T0(rm, f) > (τA(f) − ε)rρA(f)
m . (6)

Since

lim
m→+∞

(

m

m + 1

)ρA(f)

= 1,
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then for any given η < τA(f)− ε, there exists a positive integer m1 such that for all
m ≥ m1, we have

(

m

m + 1

)ρA(f)

>
η

τA(f) − ε
. (7)

Take m ≥ m2 = max{m1,m0}. By (6) and (7), for any r ∈
[

rm, (1 + 1
m)rm

]

T0(r, f) ≥ T0(rm, f) > (τA(f) − ε)rρA(f)
m

≥ (τA(f) − ε)

(

m

m + 1
r

)ρA(f)

> ηrρA(f).

Set Er =
+∞
⋃

m=m2

[rm, (1 + 1
m)rm]. Then there holds

∫

Er

dr

r
=

+∞
∑

m=m2

(1+ 1
m

)rm
∫

rm

dt

t
=

+∞
∑

m=m2

log(1 +
1

m
) = +∞.

Case R0 < +∞ : By Definition 3, there exists an increasing sequence {rm}∞m=1 ⊂
(1, R0) (rm → R−

0 , m → +∞) satisfying R0 −
(

1 − 1
m

)

(R0 − rm) < rm+1 and

lim
m→+∞

T0(rm, f)
(

1
R0−rm

)ρA(f)
= τA(f).

So, there exists a positive integer m3 such that for all m ≥ m3 and for any given
0 < ε < τA(f) − η, we have

T0(rm, f) > (τA(f) − ε)

(

1

R0 − rm

)ρA(f)

. (8)

Since

lim
m→+∞

(

1 −
1

m

)ρA(f)

= 1,

then for any given η < τA(f)− ε, there exists a positive integer m4 such that for all
m ≥ m4, we have

(

1 −
1

m

)ρA(f)

>
η

τA(f) − ε
. (9)

Take m ≥ m5 = max{m3,m4}. By (8) and (9), for any r ∈ [rm, R0 −
(

1 − 1
m

)

(R0 −
rm)], we obtain

T0(r, f) ≥ T0(rm, f) > (τA(f) − ε)

(

1

R0 − rm

)ρA(f)
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≥ (τA(f) − ε)

(

1 − 1
m

R0 − r

)ρA(f)

>
η

(R0 − r)ρA(f)
.

Set E
/
r =

+∞
⋃

m=m5

[rm, R0 −
(

1 − 1
m

)

(R0 − rm)]. Then there holds

∫

E
/
r

dr

R0 − r
=

+∞
∑

m=m5

R0−(1− 1
m)(R0−rm)
∫

rm

dt

R0 − t
=

+∞
∑

m=m5

log
m

m − 1
= +∞.

Lemma 2. ([7],[16]) (The lemma of the logarithmic derivative). Let f be a non-

constant meromorphic function in the annulus A =
{

z : 1
R0

< |z| < R0

}

, where

1 < r < R0 ≤ +∞, and k ≥ 1 be an integer. Then

m0

(

r,
f (k)

f

)

=























O (log r) , R0 = +∞ and ρA (f) < +∞,

O
(

log 1
R0−r

)

, R0 < +∞ and ρA (f) < +∞,

O (log r + log T0 (r, f)) , r /∈ ∆r, R0 = +∞,

O
(

log 1
R0−r + log T0 (r, f)

)

, r /∈ ∆′
r, R0 < +∞,

where ∆r and ∆′
r are sets with

∫

∆r

dr
r < +∞ and

∫

∆′
r

dr
R0−r < +∞ respectively.

Lemma 3. Let f be a meromorphic function with finite order ρA(f) < +∞. Then,
there exists a subset Er of (1,+∞) with

∫

Er

dr
r = +∞ such that for all r ∈ Er holds

ρA(f) = lim
r→+∞

log T0 (r, f)

log r
if 1 < r < R0 = +∞

or there exists a subset E
/
r of (1, R0) with

∫

E
/
r

dr
R0−r = +∞ such that for all r ∈ E

/
r

holds

ρA(f) = lim
r→R−

0

log T0 (r, f)

log 1
R0−r

if 1 < r < R0 < +∞.

Proof. Case R0 = +∞. The definition of ρA(f) implies that there exists a sequence
{rn}

∞
n=1 (rn → +∞, n → +∞) satisfying

(

1 + 1
n

)

rn < rn+1 and

lim
n→+∞

log T0 (rn, f)

log rn
= ρA(f).

Then, there exists an integer number n1 such that for all n ≥ n1 and for any
r ∈

[

rn,
(

1 + 1
n

)

rn

]

, we have

log T0 (rn, f)

log
(

1 + 1
n

)

rn
=

log T0 (rn, f)

log
(

1 + 1
n

)

+ log rn
≤

log T0 (r, f)

log r
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≤
log T0

((

1 + 1
n

)

rn, f
)

log rn
=

log T0

((

1 + 1
n

)

rn, f
)

log
(

1 + 1
n

)

rn
·
log
(

1 + 1
n

)

+ log rn

log rn
.

Setting Er =
+∞
∪

n=n1

[

rn,
(

1 + 1
n

)

rn

]

, then for any r ∈ Er, we get

lim
r→+∞

log T0 (r, f)

log r
= lim

n→+∞
log T0 (rn, f)

log rn
= ρA(f),

where

∫

Er

dr

r
=

+∞
∑

n=n1

(1+ 1
n)rn
∫

rn

dt

t
=

+∞
∑

n=n1

log

(

1 +
1

n

)

= +∞.

Case R0 < +∞ : By definition of ρA(f), there exists an increasing sequence
{rn}

∞
n=1 ⊂ (1, R0) (rn → R−

0 , n → +∞) satisfying R0 −
(

1 − 1
n

)

(R0 − rn) < rn+1

and

lim
n→+∞

log T0 (rn, f)

log 1
R0−rn

= ρA(f).

So, there exists a positive integer n2 such that for all n ≥ n2 and for any r ∈
[

rn, R0 −
(

1 − 1
n

)

(R0 − rn)
]

, we have

log T0 (rn, f)

log 1

(1− 1
n)(R0−rn)

≤
log T0 (r, f)

log 1
R0−r

≤
log T0

(

R0 −
(

1 − 1
n

)

(R0 − rn), f
)

log 1
R0−rn

.

It follows that
log T0 (rn, f)

log n
n−1 + log 1

R0−rn

≤
log T0 (r, f)

log 1
R0−r

≤
log T0

(

R0 −
(

1 − 1
n

)

(R0 − rn), f
)

log 1

(1− 1
n )(R0−rn)

·
log 1

(1− 1
n)(R0−rn)

log 1
R0−rn

.

Set E
/
r =

+∞
⋃

n=n2

[rn, R0 −
(

1 − 1
n

)

(R0 − rn)]. Then for any r ∈ E
/
r , we get

lim
r→R−

0

log T0 (r, f)

log 1
R0−r

= lim
n→+∞

log T0 (rn, f)

log 1
R0−rn

= ρA(f),

where

∫

E
/
r

dr

R0 − r
=

+∞
∑

n=n2

R0−(1− 1
n )(R0−rn)
∫

rn

dt

R0 − t
=

+∞
∑

n=n2

log
n

n − 1
= +∞.
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3 Proofs of the Theorems

Proof of Theorem 2

Proof. Let f 6≡ 0 be a solution of (1). We divide through equation (1) by f to get

−B0 (z) =
f (k) (z)

f (z)
+

k−1
∑

j=1

Bj (z)
f (j) (z)

f (z)
. (10)

By (10) and Lemma 2, it follows that

m0 (r,B0) = T0 (r,B0) ≤

k−1
∑

j=1

m0 (r,Bj) +

k
∑

j=1

m0

(

r,
f (j)

f

)

+ O (1)

≤

k−1
∑

j=1

m0 (r,Bj) +

{

O (log r + log T0 (r, f)) , R0 = +∞, r /∈ ∆r

O
(

log 1
R0−r + log T0 (r, f)

)

, R0 < +∞, r /∈ ∆′
r

=

k−1
∑

j=1

T0 (r,Bj) +

{

O (log r + log T0 (r, f)) , R0 = +∞, r /∈ ∆r,

O
(

log 1
R0−r + log T0 (r, f)

)

, R0 < +∞, r /∈ ∆′
r,

(11)

where ∆r and ∆′
r are sets with

∫

∆r

dr
r < +∞ and

∫

∆′
r

dr
R0−r < +∞ respectively.

Case R0 = +∞. By substituting (2) and (3) into (11), we conclude for r ∈ Er\∆r

sufficiently large

αrµ ≤ (k − 1) βrµ + O(log r + log T0(r, f)). (12)

From (12), we obtain

(α − (k − 1) β) rµ ≤ O(log r + log T0(r, f))

and since α > (k − 1) β, this leads to ρA (f) = +∞ and ρ2,A (f) ≥ µ.

Case R0 < +∞. Let f 6≡ 0 be a solution of (1). By substituting (4) and (5) into
(11), we conclude for r ∈ Fr\∆

′
r, r → R−

0

α

(R0 − r)µ
≤ (k − 1)

β

(R0 − r)µ
+ O(log

1

R0 − r
+ log T0(r, f)). (13)

Then by (13), we obtain

α − (k − 1) β

(R0 − r)µ
≤ O(log

1

R0 − r
+ log T0(r, f))

and since α > (k − 1) β, this leads to ρA (f) = +∞ and ρ2,A (f) ≥ µ.
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Proof of Theorem 3

Proof. Let f 6≡ 0 be a solution of (1). If ρA (Bj) < ρA (B0) for all 1, 2, ..., k − 1,
then Theorem 3 reduces to Theorem 1. Thus, we assume that at least one of Bj

(1, 2, ..., k−1) satisfies ρA (Bj) = ρA (B0) = ρ. So, there exists a set J ⊆ {1, 2, ..., k−
1} such that for j ∈ J, we have ρA (Bj) = ρA (B0) = ρ with

∑

j∈J

τA (Bj) < τA (B0) = τ

and for j ∈ {1, 2, ..., k − 1}\J, we have ρA (Bj) < ρA (B0) = ρ. Hence, we can choose
α1, α2 satisfying

∑

j∈J
τA (Bj) < α1 < α2 < τ such that for sufficiently large r and any

given ε
(

0 < ε < α2−α1
k−1

)

, we have

T0 (r,Bj) = m0 (r,Bj) ≤ (τA (Bj) + ε) rρA(Bj) = (τA (Bj) + ε) rρ, j ∈ J (14)

and
T0 (r,Bj) = m0 (r,Bj) ≤ rρ0, j ∈ {1, 2, ..., k − 1} \J, (15)

where 0 < ρ0 < ρ. For r → R−
0 and any given ε

(

0 < ε < α2−α1
k−1

)

, we obtain

T0 (r,Bj) = m0 (r,Bj) ≤ (τA (Bj) + ε)

(

1

R0 − r

)ρA(Bj)

= (τA (Bj) + ε)

(

1

R0 − r

)ρ

, j ∈ J (16)

and

T0 (r,Bj) = m0 (r,Bj) ≤

(

1

R0 − r

)ρ0

, j ∈ {1, 2, ..., k − 1} \J, (17)

where 0 < ρ0 < ρ. By applying Lemma 1, there exists a subset Er of (1,∞) with
∫

Er

dr
r = +∞ such that for all r ∈ Er, we have

T0 (r,B0) = m0 (r,B0) > α2r
ρ if 1 < r < R0 = +∞ (18)

or there exists a subset E
/
r of (1, R0) with

∫

E
/
r

dr
R0−r = +∞ such that for all r ∈ E

/
r

holds

T0 (r,B0) = m0 (r,B0) > α2

(

1

R0 − r

)ρ

if 1 < r < R0 < +∞. (19)

Case R0 = +∞ : By substituting the assumptions (14), (15) and (18) into (11), for

all sufficiently large r ∈ Er\∆r and any given ε
(

0 < ε < α2−α1
k−1

)

, we obtain

α2r
ρ ≤

∑

j∈J

(τA (Bj) + ε) rρ +
∑

j∈{1,...,k−1}\J
rρ0 + O (log r + log T0 (r, f))

≤ (α1 + (k − 1) ε) rρ + (k − 1) rρ0 + O (log r + log T0 (r, f)) .
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It follows that

(α2 − α1 − (k − 1) ε) rρ ≤ (k − 1) rρ0 + O (log r + log T0 (r, f)) . (20)

Since ε
(

0 < ε < α2−α1
k−1

)

, then from (20), we get ρA (f) = +∞ and ρ2,A (f) ≥

ρA (B0) = ρ.

Case R0 < +∞ : By substituting the assumptions (16), (17) and (19) into (11),

for all r ∈ E′
r\∆

′
r with r → R−

0 and any given ε
(

0 < ε < α2−α1
k−1

)

, we obtain

α2

(

1

R0 − r

)ρ

≤
∑

j∈J

(τA (Bj) + ε)

(

1

R0 − r

)ρ

+
∑

j∈{1,...,k−1}\J

(

1

R0 − r

)ρ0

+ O

(

log
1

R0 − r
+ log T0 (r, f)

)

≤ (α1 + (k − 1) ε)

(

1

R0 − r

)ρ

+ (k − 1)

(

1

R0 − r

)ρ0

+O

(

log
1

R0 − r
+ log T0 (r, f)

)

.

It follows that

(α2 − α1 − (k − 1) ε)

(

1

R0 − r

)ρ

≤ (k − 1)

(

1

R0 − r

)ρ0

+O

(

log
1

R0 − r
+ log T0 (r, f)

)

. (21)

Since ε
(

0 < ε < α2−α1
k−1

)

, then from (21), we obtain ρA (f) = +∞ and ρ2,A (f) ≥

ρA (B0) = ρ.

Proof of Theorem 4

Proof. Let f 6≡ 0 be a solution of (1). First, we suppose that b = max{ρA (Bj) : j =
1, 2, ..., k−1} < µA (B0) = µ. Then, for any given ε (0 < 2ε < µ− b) and sufficiently
large r, we have

T0 (r,B0) = m0 (r,B0) ≥ rµ−ε (22)

and

T0 (r,Bj) = m0 (r,Bj) ≤ rb+ε, j = 1, 2, ..., k − 1. (23)

For r → R−
0 and any given ε (0 < 2ε < µ − b) , we obtain

T0 (r,B0) = m0 (r,B0) ≥

(

1

R0 − r

)µ−ε

(24)
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and

T0 (r,Bj) = m0 (r,Bj) ≤

(

1

R0 − r

)b+ε

, j = 1, 2, ..., k − 1. (25)

Case R0 = +∞ : By substituting the assumptions (22) and (23) into (11), for any
given ε (0 < 2ε < µ − b) and sufficiently large r /∈ ∆r, we obtain

rµ−ε ≤ (k − 1) rb+ε + O (log r + log T0 (r, f)) . (26)

Since ε
(

0 < ε < µ−b
2

)

, then from (26) we get ρA (f) = µA (f) = +∞ and

ρ2,A (f) ≥ µ2,A (f) ≥ µA (B0) = µ.

Case R0 < +∞ : By substituting the assumptions (24) and (25) into (11), for
any given ε (0 < 2ε < µ − b) and r → R−

0 , r /∈ ∆′
r we obtain

(

1

R0 − r

)µ−ε

≤ (k − 1)

(

1

R0 − r

)b+ε

+ O

(

log
1

R0 − r
+ log T0 (r, f)

)

. (27)

Since ε
(

0 < ε < µ−b
2

)

, then from (27) we have ρA (f) = µA (f) = +∞ and

ρ2,A (f) ≥ µ2,A (f) ≥ µA (B0) = µ.

Assume

max{ρA (Bj) : j = 1, 2, ..., k − 1} = µA (B0) = µ

and τ1 =
∑

ρA(Bj)=µA(B0)

τA (Bj) < τA (B0) = τ . Then, there exists a set J ⊆

{1, 2, ..., k − 1} such that for j ∈ J, we have ρA (Bj) = µA (B0) = µ with
τ1 =

∑

j∈J
τA (Bj) < τA (B0) = τ and for j ∈ {1, 2, ..., k − 1}\J, we have ρA (Bj) <

µA (B0) = µ. Hence, we can choose β1, β2 satisfying
∑

j∈J
τA (Bj) < β1 < β2 < τ such

that for sufficiently large r and any given ε
(

0 < ε < β2−β1

k−1

)

, we have

T0 (r,Bj) = m0 (r,Bj) ≤ (τA (Bj) + ε) rρA(Bj) = (τA (Bj) + ε) rµ, j ∈ J (28)

and

T0 (r,Bj) = m0 (r,Bj) ≤ rρ1, j ∈ {1, 2, ..., k − 1} \J, (29)

where 0 < ρ1 < µ. By the definition of lower type for sufficiently large r, we have

T0 (r,B0) = m0 (r,B0) ≥ β2r
µ. (30)

For r → R−
0 and any given ε

(

0 < ε < β2−β1

k−1

)

, we obtain

T0 (r,Bj) = m0 (r,Bj) ≤ (τA (Bj) + ε)

(

1

R0 − r

)ρA(Bj)
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= (τA (Bj) + ε)

(

1

R0 − r

)µ

, j ∈ J (31)

and

T0 (r,Bj) = m0 (r,Bj) ≤

(

1

R0 − r

)ρ1

, j ∈ {1, 2, ..., k − 1} \J, (32)

where 0 < ρ1 < µ. By the definition of lower type, for r → R−
0 , we have

T0 (r,B0) = m0 (r,B0) ≥ β2

(

1

R0 − r

)µ

. (33)

Case R0 = +∞ : By substituting the assumptions (28), (29) and (30) into (11), for

all sufficiently large r /∈ ∆r any given ε
(

0 < ε < β2−β1

k−1

)

, we obtain

β2r
µ ≤

∑

j∈J

(τA (Bj) + ε) rµ +
∑

j∈{1,...,k−1}\J
rρ1 + O (log r + log T0 (r, f))

≤ (β1 + (k − 1) ε) rµ + (k − 1) rρ1 + O (log r + log T0 (r, f)) .

It follows that

(β2 − β1 − (k − 1) ε) rµ ≤ (k − 1) rρ1 + O (log r + log T0 (r, f)) . (34)

From (34), since ε
(

0 < ε < β2−β1

k−1

)

, we have ρA (f) = µA (f) = +∞ and ρ2,A (f) ≥

µ2,A (f) ≥ µA (B0) = µ.

Case R0 < +∞ : By substituting the assumptions (31), (32) and (33) into (11),

for all r /∈ ∆′
r with r → R−

0 and any given ε
(

0 < ε < β2−β1

k−1

)

, we obtain

β2

(

1

R0 − r

)µ

≤
∑

j∈J

(τA (Bj) + ε)

(

1

R0 − r

)µ

+
∑

j∈{1,...,k−1}\J

(

1

R0 − r

)ρ1

+ O

(

log
1

R0 − r
+ log T0 (r, f)

)

≤ (β1 + (k − 1) ε)

(

1

R0 − r

)µ

+ (k − 1)

(

1

R0 − r

)ρ1

+O

(

log
1

R0 − r
+ log T0 (r, f)

)

.

It follows that

(β2 − β1 − (k − 1) ε)

(

1

R0 − r

)µ

≤ (k − 1)

(

1

R0 − r

)ρ1

+O

(

log
1

R0 − r
+ log T0 (r, f)

)

. (35)

From (35), since ε
(

0 < ε < β2−β1

k−1

)

, we get ρA (f) = µA (f) = +∞ and ρ2,A (f) ≥

µ2,A (f) ≥ µA (B0) = µ.
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Proof of Theorem 5

Proof. Let f 6≡ 0 be a solution of (1). Suppose that

lim sup
r→+∞

k−1
∑

j=1
m0 (r,Bj)

m0 (r,B0)
< 1 if 1 < r < R0 = +∞ (36)

or

lim sup
r→R−

0

k−1
∑

j=1
m0 (r,Bj)

m0 (r,B0)
< 1 if 1 < r < R0 < +∞. (37)

Then for sufficiently large r or r → R−
0 , we have

k−1
∑

j=1

m0 (r,Bj) < γm0 (r,B0) , 0 < γ < 1. (38)

Thus, by substituting (38) into (11), we obtain for sufficiently large r or r → R−
0

m0 (r,B0) ≤ γm0 (r,B0) +

{

O (log r + log T0 (r, f)) , R0 = +∞, r /∈ ∆r,

O
(

log 1
R0−r + log T0 (r, f)

)

, R0 < +∞, r /∈ ∆′
r.

(39)
From (39), it follows that

(1 − γ) m0 (r,B0) = (1 − γ) T0 (r,B0)

≤

{

O (log r + log T0 (r, f)) , R0 = +∞, r /∈ ∆r,

O
(

log 1
R0−r + log T0 (r, f)

)

, R0 < +∞, r /∈ ∆′
r.

(40)

Case R0 = +∞ : By (40), we obtain for r sufficiently large

(1 − γ)
T0 (r,B0)

log r
≤ O

(

1 +
log T0 (r, f)

log r

)

, r /∈ ∆r (41)

and

log (1 − γ)

log r
+

log T0 (r,B0)

log r
≤

log log r

log r
+

log log T0 (r, f)

log r
+

O (1)

log r
, r /∈ ∆r. (42)

Since B0 (z) is an admissible analytic function in the annulus A, then from (41) and
(42), we get ρA (f) = +∞ and ρ2,A (f) ≥ ρA (B0).

Case R0 < +∞ : By (40), we have for r → R−
0

(1 − γ)
T0 (r,B0)

log 1
R0−r

≤ O

(

1 +
log T0 (r, f)

log 1
R0−r

)

, r /∈ ∆′
r (43)
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and

log (1 − γ)

log 1
R0−r

+
log T0 (r,B0)

log 1
R0−r

≤
log log 1

R0−r

log 1
R0−r

+
log log T0 (r, f)

log 1
R0−r

+
O (1)

log 1
R0−r

, r /∈ ∆′
r.

(44)
Since B0 (z) is an admissible analytic function in the annulus A, then from (43) and
(44), we obtain ρA (f) = +∞ and ρ2,A (f) ≥ ρA (B0).
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