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A REPUBLICII MOLDOVA. MATEMATICA
Number 1(101), 2023, Pages 78–96
ISSN 1024–7696, E-ISSN 2587–4322

Counting configurations of limit cycles and centers
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Abstract. We present several results on the determination of the number and
distribution of limit cycles or centers for planar systems of differential equations. In
most cases, the study of a recurrence is one of the key points of our approach. These
results include the counting of the number of configurations of stabilities of nested
limit cycles, the study of the number of different configurations of a given number of
limit cycles, the proof of some quadratic lower bounds for Hilbert numbers and some
questions about the number of centers for planar polynomial vector fields.
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1 Introduction

In the qualitative study of differential systems in the plane, there are several
questions about topological configurations that naturally lead to enumeration and
combinatorial problems which, sometimes, can be approached by using recurrences.

This paper is devoted to study such type of questions for smooth planar differ-
ential systems,

ẋ = P (x, y), ẏ = Q(x, y). (1)

In some parts of the work, the functions P and Q defining these differential equations
will also be assumed to be polynomials.

After giving some definitions in Section 2, in Section 3 we will consider the growth
of the number of stability configurations of n nested limit cycles of (1) in terms of
their stability. We will show that this number of configurations can be explicitly
determined using expressions involving the Fibonacci numbers, F0 = F1 = 1 and
Fn+2 = Fn+1 + Fn. Although it may not be necessary to highlight the importance
and ubiquity of the Fibonacci sequence both in arithmetic and geometry problems,
and in some applied questions, we point out a couple of examples: their use in
graph theory ([33]) and their earliest appearance in Indian mathematics to count
the number of sums of 1 and 2 (taking into account the order of the addends) that
add up to n. For instance, if n = 4, there appear Fn+1 = F4+1 = 5 possibilities:

1 + 1 + 1 + 1, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 2 + 2.
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Our second result deals with planar systems having exactly n limit cycles. In
Section 4 we study the number of different configurations that these limit cycles can
exhibit regarding only its topological distribution. In Figure 1, we show a colored
illustration of the 20 different configurations of 5 limit cycles.

Figure 1. The 20 configurations in the case n = 5. The colors have a purely aesthetic
function and mean nothing to the dynamics.

In our classification we do not take into account dynamical considerations such
as the classification of the corresponding phase portraits. Notice that this point
of view is totally different of that of Section 3 where the stability of the different
periodic orbits is the key point to distinguish the different stability configurations.
This problem can be seen as the pure geometrical problem of counting the number of
ways of arranging n non-overlapping circles, which are in bijection with the different
cases of unlabeled rooted trees with n + 1 nodes, [37]. The problem of finding this
last number was studied by A. Cayley in his 1875’s paper, [7], where a recurrence
relation to compute this number is presented (see also [5, p. 43] or [15, p. 71]).
In Proposition 3, we will give another recurrent expression. Our approach is self-
contained and, to our knowledge, novel in the context of the study of limit cycles.

These two sections have no relation with existing literature where the number of
possible phase portraits of some families of planar polynomial differential equations,
modulo topological conjugacy (see for instance [3]) or modulo the existence of limit
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cycles (see for instance [14]), is studied in detail.

Section 5 deals with Hilbert numbers for polynomial systems. Recall that when
P and Q are arbitrary polynomials of degree at most n, the Hilbert number H(n)
is the maximum number of limit cycles that these differential equations (1) can
have, or infinity if there is no upper bound for the number of limit cycles. It is
well-known that H(0) = H(1) = 0 and H(2) ≥ 4, but even for n = 2 it is not
known whether H(2) is finite. Following [17], we present a very simple proof that
the Hilbert numbers increase at least quadratically with n; the proof is based on
the ideas of [9] and uses a very basic background on ordinary differential equations
(ODEs) and recurrences.

Finally, in Section 6 we collect several known results about the maximum number
of centers of planar polynomials systems of degree n, see also [16]. Special attention
is paid to Hamiltonian and holomorphic centers, following [2, 10,11,35].

2 Some definitions

In the theory of planar differential systems, a limit cycle is a periodic orbit such
that at least there is another trajectory that either spirals into it or from it as time
approaches infinity. In this paper we will deal with analytic systems, hence a limit
cycle is an isolated periodic orbit. Notice that even for C∞-systems limit cycles can
be non-isolated periodic orbits.

Consider an analytic planar differential system. Let γ be a limit cycle of this
differential system. We will say that it is stable, and denote it as γs, if it is locally
asymptotically stable. We say that it is unstable, and denote it by γu, if either it is a
repelle or semistable (in this last case, either the nearby external paths converge to
it and the nearby internal ones diverge from it, or the reciprocal situation is given).

We introduce some more preliminary definitions. Let c be a closed curve em-
bedded in R2. A configuration of cycles is a finite set C = {c1, ..., cn} of disjoint
simple closed curves. Following [29, 31] we say that two configurations of cycles
C and C′ are equivalent if there exists a homeomorphism φ : R2 → R2 such that
φ(C) = C′. Clearly the different configurations are characterized by the topology of
the set R2 \ C. It is also known that any configuration of cycles is homeomorphic to
a set of disjoint circles, see again [29].

When the closed curves defining a configuration correspond to the limit cycles
of a differential equation (1) we will say that it is a limit cycles configuration. If the
stability of the limit cycles is also taken into account we will say that it is a limit
cycles stability configuration.

If γ is a limit cycle, we will denote by Cγ the bounded open set with boundary γ.
Consider now a differential equation (1) with finitely many periodic orbits (so, all
them are limit cycles). We can introduce a natural partial order in the set P formed
by the union of all limit cycles by defining γ′ ≺ γ whenever γ′ ⊂ Cγ given γ′, γ ∈ P.
With this order, (P,≺) is a partially ordered set (poset) and the following concepts
can be introduced:
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P1 P2

Figure 2. Two different nests of limit cycles. One of level 2, surrounding the singular
point P2, and another one, included in the shaded region, of level 3 surrounding the
two singular points (and eventually others located in the white region). The level of
the maximal limit cycle is 5.

� A maximal element γ of the poset (P,≺) will be called maximal limit cycle.
In this case, Cγ will be called the domain of γ and the number of cycles γ′

such that γ′ ⊂ Cγ , the level of γ.

� We say that a subset N ⊆ P is a nest if all periodic orbits γ ∈ N are such that
all the corresponding Cγ sets contain the same singular points and moreover
it is the biggest set in P with this property. The level of the nest N is its
number of elements.

In Figure 2, we show a configuration of limit cycles forming two nests.

We also will use a common function in number theory, see [32]. The partition
function p : N −→ N assigns to each natural number n the number of combinations
of positive natural numbers that add up to n. We define p(0) = 1.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

p(n) 1 2 3 5 7 11 15 22 30 42 56 77 101 135

Table 1. Some values of the partition function p(n).

The partition function grows very fast with n; for example p(50) = 204 226,
p(100) = 190 569 292, p(1000) ≈ 2.4 × 1031, p(10000) ≈ 3.6 × 10106, . . . In fact,
Hardy and Ramanujan, and, independently, Uspensky proved that

p(n) ∼ 1

4n
√
3
exp

(√
π
2n

3

)
as n ∼ ∞.
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In Niven and Zuckerman’s book [32] some recurring expressions for the calculation
of p(n) are shown. We highlight, for instance,

p(n) =
∑

j∈Z\{0}

(−1)j+1p
(
n− 1

2
(3j2 − j)

)

= p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + · · · ,

where p(k) is taken to be zero when it is evaluated at negative values.

Finally, we also will use combinations with repetition. A combination with repe-
tition of k objects taken from a set with n elements is a way of selecting an object in
the set, k times in succession, without taking into account the order of the k choices
and “with replacement”, so the same object can be selected several times. It is well
known that there are

(
n+k−1

k

)
combinations with repetition, where

(
m
q

)
is the usual

combinatorial number.

3 Fibonacci numbers and limit cycles

In this section we will show how Fibonacci numbers appear when counting the
limit cycles stability configurations. Note that since the repelling limit cycles and the
semistable ones are both considered unstable, we will not be counting the number
of phase portraits when studying the stability configurations.

It is well known (in fact, it is an exercise that appears in some textbooks) that
the number of stability configurations of nested limit cycles satisfies the Fibonacci
sequence.

Lemma 1. Let cn denote the number of stability configurations of a nest of n limit
cycles for an analytic planar system (1). Then

cn = cn−1 + cn−2, with c0 = 1 and c1 = 2. (2)

Hence, cn = Fn+2, being Fi the i-th Fibonacci number.

Proof. Suppose that we have n nested limit cycles {γ1, . . . , γn} forming a nest
N ⊆ Cγn with level n. We consider that γ1 ≺ γ2 ≺ · · · ≺ γn. These limit cycles can

be stable or unstable. We write any stability configuration as γk11 ≺ γk22 ≺ · · · ≺ γknn
where ki ∈ {s, u} (below, we also use this notation to indicate the ordering of partial
configurations of 2 or 3 cycles).

Observe that if γn is unstable then γn−1 can be either stable or unstable, so the
following two partial configurations are possible

γun−1 ≺ γun and γsn−1 ≺ γun.

As a consequence there are as many stability configurations with γun as stability
configurations of n− 1 limit cycles.
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On the contrary, if γn is stable then γn−1 can only be unstable, hence we only
have the partial stability configuration γun−1 ≺ γsn. By using the preceding argument
we have that the only possible configurations are

γun−2 ≺ γun−1 ≺ γsn and γsn−2 ≺ γun−1 ≺ γsn,

so there are as many configurations with γsn as configurations of n− 2 limit cycles,
which proves the relation (2). The initial conditions are also clear: there is only one
way to have no limit cycles, so c0 = 1, and, if a unique limit cycle exists, then it can
be either stable or unstable and so c1 = 2.

We consider now the number of possible stability configurations of two nests of
limit cycles each of them surrounding only one of the two singular points P1 and P2

with index +1 (recall that any limit cycle of a smooth system surrounds at least one
singular point). In this case, there can be a nest with i limit cycles surrounding P1

and another one with j limit cycles surrounding P2. We denote this class of stability
configurations by (i, j). Observe that if there are only two singular points with
index +1, there cannot exist a nest enveloping both points because, otherwise, there
would exist an invariant disk containing only the two fixed points so that the sum
of indices would be 2, which would contradict the Poincaré-Hopf theorem, see [13].

Because of the definition of configuration, we identify, and only count as one,
the symmetric configurations in the (i, j) and the (j, i) classes, and we will write
(i, j) ∼ (j, i). More explicitly, consider a case in the class (i, j) such that the
stability configuration of the nest surrounding P1 is γk11 ≺ γk22 ≺ · · · ≺ γkii and

the stability configuration of the nest surrounding P2 is γ̄
ℓ1
1 ≺ γ̄ℓ22 ≺ · · · ≺ γ̄

ℓj
j , where

km, ℓm ∈ {s, u}. For reasons of economy, we will write this configuration as

(k1, k2, . . . , ki; ℓ1, ℓ2, . . . , ℓj). (3)

We will only count as one case the symmetric configurations (3) and

(ℓ1, ℓ2, . . . , ℓj ; k1, k2, . . . , ki),

which belong to the classes (i, j) and (j, i) respectively.

By using (2) we get the following result:

Proposition 1. The number of stability configurations of n limit cycles surrounding
only two singular points of index +1 for an analytic planar system (1) is

c∗n,2 =

⌊n−1
2

⌋∑

i=0

Fi+2Fn−i+2 + δ(n)

(
F⌊n/2⌋+2 + 1

2

)
, (4)

where δ(n) = (1 + (−1)n)/2 and ⌊ ⌋ is the floor function.

In Table 2, we present some of the values of c∗n,2:
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n 1 2 3 4 5 6 7 8 9 10 11 12

c∗n,2 2 6 11 24 44 86 155 287 510 916 1608 2833

Table 2. Some values of the number of stability configurations of limit cycles sur-
rounding only two points of index +1.

Proof of Proposition 1. It is easy to see that, by Lemma 1, the number of configu-
rations in the classes of the form (i, n− i) with i ̸= n− i, taking into account that
(i, n− i) ∼ (n− i, i), is

⌊n−1
2

⌋∑

i=0

cicn−i =

⌊n−1
2

⌋∑

i=0

Fi+2Fn−i+2.

If n is odd, there are no other cases and Equation (4) holds.
If n is even, we must add the configurations that belong to the class (n/2, n/2).

In this case, it is easy to see that if we did not take into account the identification
of symmetric cases we would have c2n/2 configurations. But, taking into account the
equivalence relation of symmetric cases, and by Lemma 1, we have only

(
cn/2 + 1

2

)
=

(
F⌊n/2⌋+2 + 1

2

)

configurations, which is precisely the number of combinations with repetition of cn/2
elements taken in groups of 2 elements.

Notice that, even though the term F⌊n/2⌋+2 in the formula (4) makes sense for n
odd, it does not apply in this case because δ(n) = 0.

Now we consider the case in which, apart from the nests surrounding P1 and P2

with levels i and j, there is a third (outer) nest consisting of k cycles surrounding
both P1 and P2. In this case we say that the system is of class (i, j; k). For instance,
the class of the configuration shown in Figure 2 is (0, 2; 3). Again we must identify
the symmetric cases in the classes (i, j; k) and (j, i; k). Observe that, from the
Poincaré-Hopf Theorem, if k > 0 there must be other singular points enveloped by
the limit cycles of the outer nest. Moreover, if there are finitely many singular points
inside the outer nest, the total sum of their indices must be +1 or, equivalently, the
sum of the indices out of the nests P1 and P2 must be −1.

Proposition 2. The number of stability configurations of n limit cycles, with con-
figuration (i, j; k) such that i+ j + k = n, is

cn,2 =
n∑

k=0




⌊ k−1
2

⌋∑

i=0

Fi+2Fk−i+2 + δ(k)

(
F⌊k/2⌋+2 + 1

2

)
Fn−k+2.
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n 1 2 3 4 5 6 7 8 9 10 11

cn,2 4 13 34 82 184 396 821 1659 3277 6362 12163

Table 3. Some values of the number of stability configurations of limit cycles sur-
rounding only two singular points of index +1 and some other singular points with
total sum of their indices equal to −1.

Some of the values of cn,2 are given in Table 3.

Proof of Proposition 2. If we have n limit cycles, we must study the stability con-
figurations of all the classes of the form (i, k − i;n − k) for each k = 0, . . . , n and
i = 0, . . . , k, taking into account that (i, k − i;n− k) ∼ (k − i, i;n− k).

By Proposition 1, for each k ∈ {0, . . . , n}, the contribution of the nests that
surround P1 and P2 to the number of stability configurations is c∗k,2. On the other
hand, by using Lemma 1, the contribution of the outer nest is cn−k = Fn−k+2.
Therefore the number of configurations for each k is c∗k,2cn−k. Adding all the cases
we get

cn,2 =

n∑

k=0

c∗k,2cn−k,

so the result follows.

Obviously, the stability configurations in other nest arrangements can be treated
analogously.

4 Number of configurations of ODEs with n limit cycles

In contrast with Section 3, where the stability of the limit cycles plays a key
role, in this section we study the maximum number of configurations of limit cycles
regarding only its topological distribution. We consider a planar system with exactly
n limit cycles. As mentioned in the introduction, the different configurations are in
bijection with the different cases of unlabeled rooted trees with n + 1 nodes which
were studied by Cayley in 1875. Our approach is independent of those we have
found in the literature and self-contained. The results that we present are extracted
from [21].

We will use some of the notations introduced in Section 2. In particular, recall
that if γ is a periodic orbit of our planar system, Cγ denotes the bounded open set
with boundary γ. If γ is maximal, Cγ is the domain of γ and the number of limit
cycles in Cγ is the level of γ.

We will first address a simple question such as the number of maximal limit
cycles configurations (see thicker cycles in Figures 3 and 4). We can state our first
result in terms of the partition function introduced in Section 2.
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Lemma 2. Consider a system of differential equations in the plane with exactly n
limit cycles. Then, the maximal limit cycles of this system can be distributed in p(n)
different ways.

Proof. The level of every maximal cycle γ is a positive integer given by the number
of limit cycles contained in Cγ . Since the domains of the maximal limit cycles are
disjoint, the total number of ways to arrange them in order to have exactly n limit
cycles coincides with the number of ways to get the sum of their levels to be n, i.e.
p(n).

1 + 1 + 1 + 1 + 1 1 + 1 + 1 + 2
1 + 2 + 2 1 + 1 + 3 (*)

1 + 4 (*)
2 + 3 (*) 5 (*)

Figure 3. The p(5) = 7 different distributions of maximal limit cycles for n = 5.
Thicker limit cycles are the maximal ones. Maximal limit cycle configurations with
(*) give rise to different limit cycle configurations, see Figure 4.

A configuration of maximal limit cycles with αj domains of level qj , j = 1, . . . , s
and qk ̸= ql if k ̸= l, will be denoted by (qα1

1 , qα2
2 , . . . , qαs

s ). Obviously, for a differ-
ential system with the above configuration and exactly n limit cycles it holds that
n = α1q1 + · · ·+ αsqs. Notice that, given n there are p(n) different ways of writing
n as

n = α1,kq1,k + · · ·+ αsk,kqsk,k, k = 1, 2, . . . , p(n),

with qu,v ≥ 1 and αu,v ≥ 1 integer numbers.

Proposition 3. Consider a system of differential equations in the plane with exactly
n limit cycles. Then the maximum number of configurations of limit cycles is given
by the recurrent formula

C(n) =

p(n)∑

k=1

sk∏

i=1

(
C(qi,k − 1) + αi,k − 1

αi,k

)
, (5)

with C(0) = 1 for the sake of notation, and n =
∑sk

i=1 αi,kqi,k for each
k = 1, 2, . . . , p(n).

The first values of C(n) are given in Table 4. For instance, in Table 4, the value
C(5) = 20 is obtained by using Proposition 3, by adding the 3 configurations in
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Figure 3 without the (*) symbol with the 17 ones given in Figure 4. The whole list
of cases is depicted in Figure 1.

n 1 2 3 4 5 6 7 8 9 10

C(n) 1 2 4 9 20 48 115 286 719 1842

Table 4. First values of C(n), the number of different configurations of n limit cycles.

Note that, as a consequence of the fact that the sequence C(n) also counts the
number of unlabeled rooted trees with n + 1 nodes, it is a shifted version of the
sequence A000081 in OEIS, [38]. This sequence has been widely studied in connec-
tion with other problems (see the comments and references in the above citation).
Among the results in the literature, we highlight that the asymptotic expression
of this sequence and other properties of its generating function have been studied
among others by Pólya in 1937 (see this and other references in [15, p. 72] and [19]).

1 + 1 + 3 [2 config.] 2 + 3 [2 config.]

1 + 4 [4 config.]

5 [9 config.]

Figure 4. Unfolding of configurations in the case n = 5 that have an (∗) in Figure 3.

Proof of Proposition 3. We will use the notations and results stated in Lemma 2.
Let (qα1

1 , qα2
2 , . . . , qαs

s ) be a partition of n. Since the formula of C(n) is recurrent, it
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suffices to see how to calculate C(n) knowing C(j), j = 1, . . . , n− 1.
We take a domain with level q. Let γ be its maximal limit cycle. In Cγ there

will be exactly q− 1 limit cycles and hence each domain of level q supports C(q− 1)
different configurations.

To obtain the total number, we will study how many of them are produced when
considering different domains simultaneously. We will distinguish two cases:

(a) Domains have different levels qA and qB. In this case, considering them simul-
taneously we will obtain C(qA − 1)C(qB − 1) configurations.

(b) There are α domains of level q. In this case, similarly to Section 3, the total
number of configurations cannot be computed simply as (C(q− 1))α, since we
would count many repetitions. For instance, if we had α = 2 nests of level
q = 4, see Figure 5, then C(q−1) = C(3) = 4. Counting all the possible pairs,
we would obtain the (C(3))2 = 16 configurations {AA,AB,AC,AD, . . . ,DD}
while 6 of them are repeated. The correct number of configurations turns out
to be

(
4+1
2

)
=
(
5
2

)
= 10.

In general, this is a purely combinatorial problem and the number of config-
urations obtained by joining α domains of level q corresponds to the number
of combinations with repetition of C(q − 1) elements taken in groups of α
elements: (

C(q − 1) + α− 1

α

)
.

A B C D

Figure 5. Possible configurations of a domain of level 4 (q = 4).

Cases (a) and (b) give us a complete final description: for each partition
(qα1

1 , qα2
2 , . . . , qαs

s ), the number of configurations will be given by

s∏

i=1

(
C(qi − 1) + αi − 1

αi

)
;

if we now add all the partitions of n, we arrive to the formula of the statement.

To end this section we want to make a couple of remarks: (i) any configuration of
limit cycles can be realized by a polynomial vector field (with a computable degree),
see [29,31]. In [29] the n limit cycles are hyperbolic while in [31] the limit cycles can
also be chosen with any given desired stability and multiplicity; (ii) the extended
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Bendixson–Dulac Theorem ([8, 18, 30, 41]) gives, under some conditions, an upper
bound of the number of limit cycles of a smooth planar differential system (1) and
sometimes even the exact number, allowing to ensure that we are under our main
hypothesis: the system (1) has exactly a given number of limit cycles.

5 Lower bounds for Hilbert numbers

Consider now real planar polynomial systems of ordinary differential equations
(1) with P and Q polynomials of degree at most n. We are concerned about the
maximum number of limit cycles, H(n). The knowledge of H(n) is one of the most
elusive problems of the famous Hilbert’s list and constitutes the second part of
Hilbert’s sixteenth problem.

As we have already explained, here we prove the existence of quadratic lower
bounds for H(n) that are obtained following the ideas of [9] and by using very
simple background on ODEs and recurrences. The results, as they are presented
here, are also developed in [16].

Proposition 4. There exists a sequence of values nk tending to infinity and a con-
stant K > 0 such that H(nk) > Kn2k.

Proof. The construction of the ODE that gives this lower bound is a recurrent
process. Let X0 = (P0, Q0) be a given polynomial vector field of degree n0 with
c0 > 0 limit cycles. Since this number of limit cycles is finite, there exists a compact
set containing all of them. Therefore, doing a translation if necessary, we can assume
that all of them are in the first quadrant. By simplicity we continue calling X0 this
new translated vector field. From it, we construct a new vector field, by using the
(non-invertible) transformation

x = u2, y = v2.

The differential equation associated to X0 is ẋ = P0(x, y), ẏ = Q0(x, y) and it writes
in these new variables as

u̇ =
P0(u

2, v2)

2u
, v̇ =

Q0(u
2, v2)

2v
.

By introducing a new time s, defined as dt/ds = 2uv, we get that this ODE is
transformed into

u′ = v P0(u
2, v2), v′ = uQ0(u

2, v2).

Since each point lying in the first quadrant (x, y) has four preimages (±√
x,±√

y),
the new ODE has, at each quadrant, a diffeomorphic copy of the positive quadrant
of the vector field X0. Hence this new vector field, which we call X1, has degree
n1 = 2n0 + 1 and at least c1 = 4c0 limit cycles. By repeating this process, starting
now with X1 and so on, we get a sequence of vector fields Xk, with respective degrees
nk, having at least ck limit cycles, where

nk+1 = 2nk + 1, ck+1 = 4ck,
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see Figure 6.
Solving the above linear difference equation we get that

nk = 2k(n0 + 1)− 1, ck = 4kc0. (6)

Hence, since

2k =
nk + 1

n0 + 1
and 4k =

ck
c0
,

we obtain that
ck
c0

=

(
nk + 1

n0 + 1

)2

>
1

(n0 + 1)2
n2k.

Consequently,

H(n) >
c0

(n0 + 1)2
n2 and n = 2k(n0 + 1)− 1, k ∈ N,

as we wanted to prove.20 Armengol Gasull i Embid

X0 X1 X2

Figura 7: Dos passos del procés, començant amb camp X0 amb un únic

cicle ĺımit. Els camps X1 i X2 tenen quatre i setze cicles ĺımit, respectiva-

ment.

Les dues equacions en diferències anteriors són lineals i es poden resoldre exac-
tament. Obtenim

nk = 2k(n0 + 1)− 1, ck = 4kc0. (16)

Per tant, com que

2k =
nk + 1

n0 + 1
i 4k =

ck
c0
,

tenim que

ck
c0

=

(
nk + 1

n0 + 1

)2

>
1

(n0 + 1)2
n2
k.

En conseqüència,

H(n) >
c0

(n0 + 1)2
n2 per n = 2k(n0 + 1)− 1, k ∈ N,

com voĺıem demostrar. ✷

Observeu que la mateixa prova de la proposició ja fa pensar que la constant
K pot ser escollida de moltes maneres. Per exemple, com a camp X0 podem triar
l’exemple trivial de camp cúbic que apareix a molts llibres, i que en coordenades
polars s’escriu com

ṙ = r(1 − r2), θ̇ = 1.

És clar que només té un cicle ĺımit, r = 1. Aleshores c0 = 1 i n0 = 3. Per tant,
K = 1/16 i nk = 2k+2−1. Per altra banda, si triem el sistema quadràtic que permet
veure que H(2) ≥ 4, aleshores c0 = 4 i n0 = 2. Usant aquesta llavor, K = 4/9 i
nk = 2k3− 1. Se sap que H(3) ≥ 11, H(4) ≥ 20, H(5) ≥ 28, H(6) ≥ 35, vegeu [28].
Usant els respectius camps com a llavors s’obtenen valors de K, 11/16, 4/5, 7/9,
5/7, respectivament. La millor K obtinguda per aquest mètode i amb aquestes
llavors és 4/5.

La prova de que H(n) ≥ K n2 log(n) donada a [9] té també en compte els cicles
ĺımit que poden sorgir en un entorn dels eixos uv = 0 quan es fa el procés descrit
a la prova de la proposició anterior. De fet, es pot veure fàcilment que l’ED (15)
presenta diversos centres sobre els eixos. Els nous cicles ĺımit apareixen fent una

Figure 6. Two steps of the construction of the vector fields Xk, starting from a vector
field X0 with a unique limit cycle (c0 = 1, n0 = 3).

Notice that the proof of Proposition 4 shows that the constant K depends on
the seed of the procedure. Let us give some examples:

1. Consider X0 to be the trivial system of ODEs with one limit cycle that, in
polar coordinates, writes as

ṙ = r(1− r2), θ̇ = 1.

Clearly, the limit cycle is r = 1 and, thus, c0 = 1 and n0 = 3. Hence, K = 1/16
and nk = 2k+2 − 1.

2. ConsiderX0 to be any quadratic system that reveals the lower boundH(2) ≥ 4.
Then, c0 = 4 and n0 = 2 and, therefore, we get K = 4/9 and nk = 2k · 3− 1.
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n 3 4 5 6 7 8 9 10

hn 13 28 37 53 74 96 120 142

K 13/16 28/25 37/36 53/49 37/32 32/27 6/5 142/121

Table 5. Lower bounds hn of H(n) and the corresponding values of K, for
n ∈ {3, . . . , 10}.

3. Consider X0 to be a system attaining any of the best lower bounds hn of H(n)
known in the literature, for n ∈ {3, . . . , 10}, see [22–24, 26, 28, 34, 40]. In the
third row of Table 5, we get the values of K obtained by this procedure. We
remark that the highest K value obtained is 6/5.

We notice that better bounds can be obtained by using finer arguments. Indeed,
it is known that H(n) ≥ Ln2 log(n), which is currently the best general result on
by lower bounds for H(n), see again [9] or [1, 26, 27]. In fact, our proof is totally
inspired by that of [9], where the authors find additional limit cycles at each step
that appear by perturbing the centers created by the method on the axes uv = 0.
They obtain that, instead of (6), it holds that

nk+1 = 2nk + 1, ck+1 = 4ck + (2k − 2)2 + (2k − 1)2.

By studying these new difference equations they get the improved lower bounds of
type Ln2 log(n).

6 Maximum number of centers

In this section, following [17], we collect some known results about the maximum
number of centers of planar polynomial systems of degree n and we propose an open
problem.

The classification of centers for polynomial differential systems started with the
quadratic ones with the works of Dulac, Kapteyn at the beginning of the 20th
century. It continued with the works of Bautin [4] during the 50’s and Sibirskii [36]
in the 60’s about the cubic systems with homogeneous nonlinearities, including also
the study of the cyclicity of the centers.

Proposition 5. Let Cn be the maximum number of centers of polynomial differential
systems (1) of degree n. Then C1 = 1 and for n ≥ 2 it holds that

⌊n2 + 1

2

⌋
≤ Cn ≤ n2 + n

2
− 1.

Proof. It is clear that C1 = 1. Observe that, using Bezout’s theorem, a planar
polynomial differential system of degree n > 0, with finitely many equilibrium points,
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has at most n2 equilibrium points. Moreover, at most (n2 + n)/2 can have index
+1, see for instance [12,25].

Therefore, since all centers have index +1, it holds that Cn ≤ (n2 + n)/2. The
case with infinitely many critical points follows similarly and has a smaller upper
bound.

We can refine this upper bound by using the beautiful Euler–Jacobi formula,
which asserts, for the planar case, that if a polynomial system P (x, y) = 0,
Q(x, y) = 0, with P and Q having degrees n and m, respectively, has exactly nm
solutions (hence all them are finite and simple), then

∑

{(u,v) :P (u,v)=Q(u,v)=0}

R(u, v)

det(D(P,Q))(u, v)
= 0,

for any polynomial R(x, y) of degree smaller than n +m − 2, see for instance [20].
Here, D(P,Q) denotes the differential of the map (P,Q). As consequence of the
Euler–Jacobi formula, one obtains that, for n ≥ 2, if all points with index +1 lie on
a single algebraic curve, then the curve must have degree strictly greater than n−1,
see [10]. Having into account that all centers lie on the algebraic curve div(P,Q) = 0,
which has at most degree n− 1, we get that Cn ≤ (n2 + n)/2− 1.

On the other hand, in [11] it is also proved that planar polynomial Hamilto-
nian differential systems of degree n have at most ⌊(n2 + 1)/2⌋ centers and, hence,
Cn ≥ ⌊(n2 + 1)/2⌋. Moreover, this upper bound is attained: consider, for instance,

ẋ = F (y), ẏ = −F (x), with F (u) =
n∏

j=1

(u− j);

for these systems, centers and saddles are placed like white and black squares on a
n× n chessboard. This concludes the proof.

From Proposition 5, then, we know that C2 = 2, C3 = 5, and 8 ≤ C4 ≤ 9.
Therefore, it is natural to consider the following open problem:

Determine the maximum number of centers, Cn, for planar polynomial
differential systems of degree n ≥ 4.

Once the number Cn is obtained, it is also interesting to know the different
possible phase portraits that systems having these maximal number of centers can
have, see for instance [6], where the Hamiltonian case when n = 3 is studied. One
of the reasons is that perturbations of these systems are good candidates to have
different configurations of limit cycles.

We end this section with some comments for another family, the planar polyno-
mial holomorphic systems of degree n, for which the full classification of the different
phase portraits with the maximum number of centers is known. Recall that these
systems are the ones that in complex coordinates z = x + iy write as ż = pn(z),
being pn a complex polynomial of degree n. For them, the maximum number of
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centers is n and, in this case, also the maximum number N(n) of different topolog-
ical phase portraits on the Poincaré disc can be computed, see [2, 35]. It turns out
that N(n) coincides with the number of labeled projective planar trees with n nodes
and is given by the sequence A006082 in the OEIS’ web page [39]. In particular,
N(4) = 2, N(5) = 3 and N(6) = 6, see the 6 different classes of phase portraits for
n = 6 in Figure 7. In these phase portraits each point is a center and the connected
component where this point lies is filled of periodic orbits surrounding it.

in the following order: Figure 2(a) is fulfilled by equation (4), Figure 2(b) by equation (5)

and Figure 2(c) by equation (6).

For n ¼ 6, there are six possible topological configuration of separatrices. See Figure 3.

Using analogous symmetry arguments, as before, and Theorem 2.1, we get the three

differential equations that fulfill the phase portraits plotted in Figure 3(a)–(c),

_z ¼ izðz2 1Þðz2 2Þðz2 4Þðzþ 4Þðz2 8Þ; ð7Þ

_z ¼ zðz5 2 i=5Þ; ð8Þ

_z ¼ iðz2
ffiffiffi
6

p
Þðzþ

ffiffiffi
6

p
Þðz2 z3Þðz2 �z3Þðzþ z3Þðzþ �z3Þ; ð9Þ

with z3 ¼ 3 þ i, respectively.

Observe that equations (7) and (9) are invariant under the change of variables ðz; tÞ!
ð�z;2tÞ and then their phase portraits are symmetric with respect to the axis ImðzÞ ¼ 0.

Moreover, equation (9) is also invariant under ðz; tÞ! ð2�z;2tÞ: Because of that, together

(a) (b) (c)

Figure 2. The three topologically different phase portraits for n ¼ 5.

Figure 3. The six topologically different phase portraits for n ¼ 6.
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Figure 7. The six different phase portraits with six centers for holomorphic vector
fields of degree 6.
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COUNTING CONFIGURATIONS OF LIMIT CYCLES AND CENTERS 95

[22] M. Han, J. Li. Lower bounds for the Hilbert number of polynomial systems. J. Differential
Equations 252 (2012), 3278–3304.

[23] T. Johnson. A quartic system with twenty-six limit cycles. Exp. Math. 20 (2011), 323–328.

[24] T. Johnson, W. Tucker. An improved lower bound on the number of limit cycles bifurcating
from a Hamiltonian planar vector field of degree 7. Internat. J. Bifur. Chaos Appl. Sci. Engrg.
20 (2010), 1451–1458.
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EPSEB. Av. Dr. Marañón 44–50, 08028 Barcelona, Spain.
E-mail: antoni.guillamon@upc.edu

V́ıctor Mañosa(3,5)
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