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Criteria for the nonexistence of periodic orbits in

planar differential systems
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Abstract. In this work we summarize some well-known criteria for the nonexistence
of periodic orbits in planar differential systems. Additionally we present two new
criteria and illustrate with examples these criteria.
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1 Introduction and statement of the main results

We consider a planar differential system that we write as

dx

dt
= ẋ = P (x, y),

dy

dt
= ẏ = Q(x, y), (1)

where P (x, y) and Q(x, y) are C1 real functions in the variables x and y, and t is
the independent variable.

The objective of this note is double, first we recall the more well-known results
for the nonexistence of periodic orbits of a differential system (1). Second we provide
two new criteria for the nonexistence of periodic orbits of system (1).

As far as we know one of the first criterium of nonexistence is the following one
due to Poincaré.

Theorem 1 (Poincaré Method of Tangential Curves). Consider a family of curves
F (x, y) = C, where F (x, y) is continuously differentiable. If in a region R the
quantity

dF

dt
= P

∂F

∂x
+ Q

∂F

∂y

has constant sign, and the curve

P
∂F

∂x
+ Q

∂F

∂y
= 0

(which represents the locus of points of contact between curves in the family and
the trajectories of (1), and is called a tangential curve) does not contain a whole
trajectory of (1) or any closed branch, then system (1) does not possess a periodic
orbit which is entirely contained in R.
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For a proof of Theorem 1 see either Theorem 1.9 of [8], or Proposition 7.9 of [3].

Theorem 2 (Bendixson’s Theorem). Assume that the divergence function ∂P/∂x+
∂Q/∂y of system (1) has constant sign in a simply connected region R, and is not
identically zero on any subregion of R. Then system (1) does not have a periodic
orbit which lies entirely in R.

For a proof of Theorem 2 see either Theorem 1.10 of [8], or Section 3.9 of [6], or
Proposition 1.133 of [2], or Theorem 7.10 of [3].

Theorem 3 (Dulac’s Theorem). If for system (1) there exists a C1 function B(x, y)
in a simply connected region R such that ∂(BP )/∂x + ∂(BQ)/∂y has constant sign
and is not identically zero in any subregion, then this system (1) does not have a
periodic orbit lying entirely in R.

For a proof of Theorem 3 see either Theorem 1.12 of [8], or Theorem 4.8 of [9],
or Section 3.9 of [6], or Exercise 1.136 of [2], or Theorem 7.12 of [3].

The well-know Liénard differential equation [4]

ẍ + f(x)ẋ + g(x) = 0,

where f(x) and g(x) are C1 functions in the open subset R of R
2, can be written as

the following first order differential system

ẋ = y, ẏ = −g(x) − f(x)y. (2)

Theorem 4 (Chen–Yang–Zhang–Zhang’s Theorem). Assume that the differential
system (2) satisfies the following conditions:

(i) g(x) = −g(−x) and xg(x) > 0 if x 6= 0;

(ii) f(x) = f1(x) + f2(x) with f1(x) = f1(−x), f2(x) = −f2(−x) and f1(x) 6= 0.

Then this system (2) has no periodic orbits in R.

Theorem 4 is a particular case of Theorem 1 of [1].
As far as we know the next two criteria for the nonexistence of periodic orbits

are new.
Let f(x, y) = 0 be a curve, then a point (x0, y0) of this curve is a contact point

with system (1) if it satisfies (P∂f/∂x + Q∂f/∂y)(x0, y0) = 0.

Theorem 5 (Transversal divergence criterium). Let D(x, y) = ∂P/∂x + ∂Q/∂y be
the divergence of system (1). If the curve D(x, y) = 0 has no contact points of even
multiplicity with the system (1), then this system has no periodic orbits.

The proof of Theorem 5 is given in Section 2.
Working in polar coordinates (r, θ) where x = r cos θ and y = r sin θ system (1)

writes

ṙ =
xP + yQ
√

x2 + y2

∣

∣

∣

(x,y)=(r cos θ,r sin θ)
, θ̇ =

xQ − yP

x2 + y2

∣

∣

∣

(x,y)=(r cos θ,r sin θ)
.
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Theorem 6 (Angular velocity criterium). Assume that the origin of coordinates
is an equilibrium point of a system (1), and that the component γ of the curve
xQ− yP = 0 passes through the origin of coordinates and locally on one side of this
curve we have xQ − yP > 0 and on the other side xQ − yP < 0. Then system (1)
has no periodic orbits surrounding the origin crossing the component γ at a point
with odd mutiplicity.

Theorem 6 is proved in Section 3.

2 Proof of Theorem 5

By the Bendixson Theorem any periodic orbit of system (1) must intersect the
curve D(x, y) = 0. But under the assumptions of Theorem 5 the flow of this system
is transversal at all the point of the curve except at its possible contact points of
odd multiplicity, but also at these points the flow crosses the curve D(x, y) = 0.
Hence clearly a periodic orbit cannot intersect the divergence curve D(x, y) = 0 and
consequently it does not exists. This completes the proof of Theorem 5.

Now we present an application of Theorem 5. We consider the Selkov-Higgins
system which is relevant in the study of the glycolysis. This system when one of its
parameters is equal to 2 writes

ẋ = 1 − xy2 = P (x, y), ẏ = ay(xy − 1) = Q(x, y). (3)

The divergence of this system is D(x, y) = −a + 2axy − y2. Now we study the
transversality of the flow of system (1) on the curve D(x, y) = 0, that is

p(y) :=
∂D

∂x
P +

∂D

∂x
Q

∣

∣

∣

D=0
=

1

2
(−a2 + 4ay − 3y4).

Using the formulas of Lu Yang [7] for this quartic polynomial we have

D2 = 0, D3 = −2592a2, D4 = 6912a4(a2 − 9).

When |a| > 3 then D4 > 0 and D3 ≤ 0 or D2 ≤ 0, and the polynomial p(y) has no
real roots. Consequently by Theorem 5 system (3) has no periodic orbits.

If a = ±3 then D4 = 0 and D3 < 0, and the polynomial p(y) has one double real
root. So system (3) again by Theorem 5 has no periodic orbits.

If a = 0 then D4 = D3 = D2 = 0 and the polynomial p(y) has one quadruple
real root. Hence by Theorem 5 system (3) has no periodic orbits.

Finally if a ∈ (−3, 0) ∪ (0, 3) then D4 < 0, and the polynomial p(y) has two
real simple roots. In this case we cannot apply Theorem 5 and system (3) could
have periodic orbits for some of these values of a. Indeed in the work [5] values of
a ∈ (−3, 0) ∪ (0, 3) are given for which system (3) has periodic orbits.
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3 Proof of Theorem 6

Assume that there exists a periodic orbit Γ surrounding the origin which crosses
the component γ at a point p with odd multiplicity. Then on this periodic orbit Γ in
a neighborhood of p and on one side of γ we have θ̇ > 0 and on the other side θ̇ < 0,
this provides a contradiction because in a small neighborhood of p the periodic orbit
must be either θ̇ ≥ 0, or θ̇ ≤ 0. This completes the proof of Theorem 6.

Now we present one application of Theorem 6. Consider the differential system

ẋ = −x(2 + f(x, y)) + y = P (x, y), ẏ = −y(2 + f(x, y)) + x = Q(x, y), (4)

where the C1 function f is such that it, its first and second derivatives vanish at the
origin of coordinates. Then the origin of coordinates is a stable node with eigenvalues
−1 and −3, and xQ − yP = x2 − y2, and consequently θ̇ = 0 is formed by the two
straight lines y = ±x. So by Theorem 6 system (4) cannot have periodic orbits
surrounding the origin.
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Departament de Matemàtica, Universitat de Lleida, Avda.
Jaume II, 69; 25001 Lleida, Catalonia, Spain
E-mail: jaume.gine@udl.cat

Jaume Llibre
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