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Time-Reversibility and Ivariants

of Some 3-dim Systems
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Abstract. We study time-reversibility and invariants of the group of transformations
x → x, y → αy, z → α

−1
z for three-dimensional polynomial systems with 0 : 1 : −1

resonant singular point at the origin. An algorithm to find the Zariski closure of the set
of time-reversible systems in the space of parameters is proposed. The interconnection
of time-reversibility and invariants of the group mentioned above is discussed.
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1 Introduction

Let k be a field, let G be a multiplicative group of invertible n×n matrices with
elements in k and, for A ∈ G and x = (x1, x2, . . . , xn) ∈ kn, let A · x denote the
usual action of G on kn. A polynomial f ∈ k[x1, . . . , xn] is invariant under G if
f(x) = f(A · x) for every x ∈ kn and every A ∈ G. The polynomial f is also called
an invariant of G.

Consider two-dimensional systems of the form

ẋ = x−
∑

(p,q)∈S

apqx
p+1yq,

ẏ = −y +
∑

(p,q)∈S

bqpx
qyp+1 ,

(1)

where the variables x and y and the coefficients of (1) are complex, and
S ⊂ ({−1} ∪ N0) × N0 is a finite set, of which every element (p, q) satisfies
p + q ≥ 1. Let ℓ be the cardinality of the set S. Then, C2ℓ is the parameter
space of (1), which we denote by E(a, b). The set of polynomials in ordered vari-
ables ap1,q1, . . . , apℓ,qℓ , bqℓ,pℓ

, . . . , bq1,p1 with coefficients in the field k will be denoted
by k[a, b].
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After the transformation

x′ = e−iϕx, y′ = eiϕy (2)

(such transformations form a one-parametric group of the parameter ϕ), we obtain
the system

ẋ′ = x′ −
∑

(p,q)∈S

a(ϕ)pqx
′p+1y′

q
, ẏ′ = −y′ +

∑

(p,q)∈S

b(ϕ)qpx
′qy′

p+1
,

where the coefficients of the transformed system are

a(ϕ)pq = apqe
i(pj−qj)ϕ, b(ϕ)qp = bqpe

−i(pj−qj)ϕ, (3)

for (p, q) ∈ S. For any fixed ϕ the equations in (3) determine an invertible linear
mapping Uϕ of the space E(a, b) of parameters of (1) onto itself.

The group Uϕ of family (1) acts on E(a, b) = C2ℓ. The set of polynomial in-
variants of this group action has been for the first time studied by Sibirsky [12,13].
Actually, Sibirsky considered the case of the ”real” system (1), that is, the case
where both equations on the right-hand side of (1) are multiplied by i and the
first equation of (1) is the complex conjugate of the second one (such systems are
complexifications of real systems, see e.g. [9, Chapter 3]). However, as it is shown
in [8] and [9, Chapter 5], the theory for general systems (1) is similar to the theory
developed by Sibirsky.

Before we proceed, we fix some notations. For any n-tuple s = (s1, s2, . . . , sn),
n ≥ 1, let ŝ be the permutation ŝ = (sn, sn−1, . . . , s1). For two n-tuples
r = (r1, r2, . . . , rn), s = (s1, s2, . . . , sn) we define the ”dot”-product as
r · s = r1s1 + r2s2 + · · · + rnsn. Given n-tuples r, s, let the ordered pair (r, s)
denote the 2n-tuple generated in the obvious way. Furthermore, we will use a short
form of monomial writing as (a1, a2, . . . , an)

(ν1,ν2,...,νn) := aν11 a
ν2
2 . . . aνn

n = aν , where
a = (a1, . . . , an) and ν = (ν1, . . . , νn).

Let L1, L2 : N2ℓ
0 → Z be homomorphisms of the additive monoid N2ℓ

0 defined
with respect to the ordered set S by

L1(ν) = p1ν1 + · · · + pℓνℓ + qℓνℓ+1 + · · · + q1ν2ℓ

= (p, q̂) · ν,

L2(ν) = q1ν1 + · · · + qℓνℓ + pℓνℓ+1 + · · · + p1ν2ℓ)

= (q, p̂) · ν,

(4)

where p := (p1, . . . , pℓ), q := (q1, . . . , qℓ) and ν := (ν1, . . . , ν2ℓ). Furthermore, the
map

L := L1 − L2 : N2ℓ
0 → Z (5)

is a monoid-homomorphism as well, hence the kernel,

M̃ := kerL = {ν : L(ν) = 0} (6)
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is also a monoid. Since Uϕ changes only the coefficients of polynomials, a polynomial
f ∈ C[a, b] is an invariant of the group Uϕ if and only if each of its terms is an
invariant (see Lemma 3.4 of [12]). Therefore, for the description of polynomial
invariants of Uϕ, it suffices to find the invariant monomials. By (3), for ν ∈ N2ℓ

0 ,
a = (ap1,q1 . . . apℓ,qℓ), b = (bq1,p1 . . . aqℓ,pℓ

), we denote by [ν] ∈ C[a, b] the monomial

[ν] := aν1p1q1 · · · a
νℓ
pℓqℓ

b
νℓ+1
qℓpℓ

· · · bν2ℓ
q1p1 = (a, b̂)ν . (7)

The image of ν under the group action Uϕ is the monomial

Uϕ([ν]) = (a(ϕ), b̂(ϕ))ν

= a(ϕ)ν1p1q1 · · · a(ϕ)νℓ
pℓqℓ

b(ϕ)
νℓ+1
qℓpℓ

· · · b(ϕ)ν2ℓ
q1p1

= aν1p1q1e
iϕν1(p1−q1) · · · aνℓ

pℓqℓ
eiϕνℓ(pℓ−qℓ)b

νℓ+1
qℓpℓ

eiϕνℓ+1(qℓ−pℓ) · · · bν2ℓ
q1p1e

iϕν2ℓ(q1−p1)

= eiϕ[ν1(p1−q1)+···+νℓ(pℓ−qℓ)+νℓ+1(qℓ−pℓ)+···+ν2ℓ(q1−p1)]aν1p1q1 · · · a
νℓ
pℓqℓ

b
νℓ+1
qℓpℓ

· · · bν2ℓ
q1p1

= eiϕ(L1−L2)(ν) [ν]

= eiϕL(ν) [ν] .
(8)

From (8) we see that the monomial [ν] defined by (7) is invariant under the

group action Uϕ, for system (1) if and only if L(ν) = 0, that is, if and only if ν ∈ M̃.
Since, for any ν ∈ N2ℓ

0 ,
L(ν) = (p− q, q̂ − p̂) · ν

= (q − p, p̂− q̂) · ν̂

= −L(ν̂),

(9)

we have ν ∈ M̃ if and only if ν̂ ∈ M̃, hence the monomial [ν] is invariant under the
group action Uϕ if and only if its so-called conjugate

[ν̂] = aν2ℓ
p1q1 · · · a

νℓ+1
pℓqℓ

bνℓ
qℓpℓ

· · · bν1q1p1

= (a, b)ν̂
(10)

is also invariant.
Sibirsky found some important properties of the monoid M̃. One of them is the

fact that the set {[ν] : ν ∈ M̃} is closed under multiplication. From his results one

can see that a basis of the monoid M̃ (a basis of the invariants of the group Uϕ) can
be found by sorting, since Sibirsky got a bound for the degree of basis invariants. A
simple algorithm to compute generators of M̃ based on the Gröbner bases theory
was proposed in [4].

With system (1) and the monoind M̃ we associate the ideal

ĨS = 〈[ν] − [ν̂] : ν ∈ M̃〉.

This ideal was called in [4] the Sibirsky ideal of system (1). It was shown by Sibirsky
[12, Chapter 3] that in the ”real” case if the parameters of the system belong to the
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variety V(IS), then the vector field of the system is symmetric with respect to a
line passing through the origin (after reversion of time), that is, it is time-reversible,
and, therefore, admits an analytic local first integral in a neighborhood of the origin.
Later on the result was generalized to general systems (1) in [7,8], where it was shown
that for family (1) not all systems from V(IS) are time-reversible, but V(IS) is the
Zariski closure of the set of time-reversible systems and, therefore, all systems from
V(IS) admit an analytic first integral in a neighborhood of the origin.

We recall (see e.g. [5]) that in the higher-dimensional case a system of ordinary
differential equations

ẋ = X (x), (11)

where X (x) is a vector function defined on some domain D of Rn or Cn, is time-
reversible on D if there exists an involution ψ : D → D (the involution means that
ψ is smooth and ψ ◦ ψ = idD) such that

D−1
ψ X ◦ ψ = −X .

It is said that a system (11) is completely integrable on D if it admits n − 1
functionally independent analytic first integrals on D. The problem of complete
integrability can be also considered as a natural generalization of the center problem
for two-dimensional systems to higher dimensions, see e.g. [6, 11,14].

In this paper we study three-dimensional systems of the form

ẋ = P1(x, y, z),

ẏ = y + P2(x, y, z),

ż = −z + P3(x, y, z),

(12)

where Pj , j ∈ {1, 2, 3}, are polynomial functions on C3 which vanish together with
its first partial derivatives at the origin and present some generalizations of the above
mentioned results of Sibirsky and those of [7, 8] to the case of system (12).

2 Time-reversibility

The following statement is easily derived from a general result of [6] (see also [10]).

Theorem 1. If under the interchange of the last two variables a system (12) is
transformed to a system of the same form but with the right-hand side multiplied by
−1, then it admits two analytic local first integrals of the form

Ψ1(x, y, z) = x+ · · ·

and

Ψ2(x, y, z) = yz + · · · .
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In the other words, the statement means that if a system (12) is time-reversible
with respect to the linear involution defined on C3

x 7→ x, y 7→ z, z 7→ y, (13)

then it is completely integrable in a neighborhood of the origin.
Without loss of generality we can write a polynomial system (12) in the form

ẋ =
∑

(P,Q,R)∈T

aPQRx
P yQzR,

ẏ = y −
∑

(p,q,r)∈S

bpqrx
pyq+1zr,

ż = −z +
∑

(p,q,r)∈S

cprqx
pyrzq+1,

(14)

where S ⊂ N0×(N0∪{−1})×N0 is a set of ℓ triplets, all satisfying 1 ≤ p+q+r ≤ N ,
and T ⊂ N0 × N0 × N0 is a set of triplets, all satisfying 2 ≤ P +Q+R ≤ N , where
N is the degree of (14). Note that the indexing set T is symmetric with respect to
the second and third coordinates, i.e. (P,Q,R) ∈ T if and only if (P,R,Q) ∈ T .

The correctness of the following statement can be verified by straightforward
computations, see also (20).

Lemma 2. Let α 6= 0. If a system (14) is time-reversible with respect to the invo-
lution

ψ(x, y, z) = (x, αz, α−1y), (15)

then aPQQ = 0 for every (P,Q,Q) ∈ T .

Due to the above lemma, we a priori assume that in (14)

aPQQ = 0 for all (P,Q,Q) ∈ T

or, equivalently, we exclude these parameters from the parameter space. By enu-
meration we fix an arbitrary order in the indexing set S

S = {(p1, q1, r1), . . . , (pℓ, qℓ, rℓ)}. (16)

Further we split the indexing set T in a disjoint union T = T1 ∪ T2 with
T1 = {(P,Q,R) : Q > R} and T2 = {(P,Q,R) : Q < R}. Note that T1 and T2

have the property that for every (P,Q,R) ∈ T1 we have (P,R,Q) ∈ T2, thus both T1

and T2 have the same number of elements, say m elements. Then we fix an arbitrary
order in T1:

T1 = {(P1, Q1, R1), . . . , (Pm, Qm, Rm)}. (17)

In a natural way, this order induces the order in the set T2

T2 = {(P1, R1, Q1), . . . , (Pm, Rm, Qm)}.
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The ring of polynomials with ordered coefficients

aP1Q1R1 , · · · aPmQmRm , aPmRmQm, · · · aP1R1Q1, bp1q1r1 , · · · bpℓqℓrℓ , cpℓrℓqℓ, · · · cp1r1q1
(18)

as indeterminates and coefficients in a field k (typically C or Q) will be denoted by
k[a, b, c]. Along with the latter ring we will work also with its extension k[a, b, c, α,w]
where α and w are variables.

Proposition 3. 1) The Zariski closure of the set of systems in family (14) which
are time-reversible with respect to involution (15) is the variety V(IR) of the ideal

IR = H ∩ C[a, b, c],

where H is the following ideal in C[a, b, c, α,w]

H = 〈aPQRα
Q+aPRQα

R, bpqrα
q+1 − cprqα

r+1, αw− 1 : (P,Q,R) ∈ T, (p, q, r) ∈ S〉.
(19)

2) If the parameters of a system (14) belong to the variety V(IR), then the system
is completely integrable.

Remark 4. Notice that the above ideal H remains the same if we replace the in-
dexing set T by only T1 or by T2.

Proof of Prop. 3. Let X be the vector field (14). Equating to zero the coefficients
of the monomials of the polynomial Dψ · X + X ◦ ψ we obtain the system

aPQR = −αR−QaPRQ, bpqr = αr−qcprq, (P,Q,R) ∈ T, (p, q, r) ∈ S.

That means, system (14) is time-reversible with respect to involution (15) if and
only if there is a nonzero α such that

aPQRα
Q + αRaPRQ = 0, bpqrα

q − αrcprq = 0, (P,Q,R) ∈ T, (p, q, r) ∈ S (20)

or, equivalently, avoiding the possibly negative exponent q ≥ −1

aPQRα
Q + αRaPRQ = 0, bpqrα

q+1 − αr+1cprq = 0, (P,Q,R) ∈ T, (p, q, r) ∈ S.

By the Elimination theorem (see e.g. [2, 9]) this is the case when the coefficients of
(14) belong to the variety of the ideal IR defined by (3).

2) By the construction V(IR) is the Zariski closure of systems which are time-
reversible with respect to (15). We observe that if a system (14) is time-reversible
with respect to (15) then, after the change of coordinates x1 = x, x2 = α−1y,
x3 = αz, we obtain the system which is time-reversible with respect to involution
(13). By Theorem 1 the obtained system is completely integrable. Thus, V(IR) is
the Zariski closure of a set of completely integrable systems. By the results of [11]
the set of completely integrable systems is an algebraic set. Therefore systems from
V(IR) are completely integrable. �
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3 Invariants

Recalling the fixed order (18) in our polynomial indeterminates, we write each
monomial in the polynomial ring with these coefficients as indeterminates in the
form

aµ1

P1Q1R1
· · · aµn

PmQmRm
aPmRmQm

µn+1 · · · aµ2m

P1R1Q1
bν1p1q1r1 · · · b

νℓ
pℓqℓrℓ

c
νℓ+1
pℓrℓqℓ · · · c

ν2ℓ
p1r1q1.

(21)
Introducing the notations

a =(aP1Q1R1 , . . . , aPmQmRm),

a′ =(aP1R1Q1, . . . , aPmRmQm),

b =(bp1q1r1 , . . . , bpℓqℓrℓ),

c =(cp1r1q1, . . . , cpℓrℓqℓ),

we set up the monomial (21)

[µ; ν] =[µ1, . . . , µ2m; ν1, . . . , ν2ℓ]

=(a, â′)µ(b, ĉ)ν .
(22)

In particular,
[µ; 0] = (a, â′)µ (23)

and
[0; ν] = (b, ĉ)ν . (24)

With systems (14) and the fixed enumeration (17), (16) of indices (P,Q,R) ∈ T1

and (p, q, r) ∈ S we associate vectors

K =(Q1 −R1, . . . , Qm −Rm) = (K1, . . . ,Km),

κ =(q1 − r1, . . . , qℓ − rℓ) = (κ1, . . . , κℓ)

and the map L : N2m
0 × N2ℓ

0 → Z, defined by

L(µ, ν) = (K,−K̂) · µ+ (κ,−κ̂) · ν, µ ∈ N2m
0 , ν ∈ N2ℓ

0 .

It is easy to see that L is a homomorphism of the Abelian monoid
N2m

0 ×N2ℓ
0 into the Abelian monoid Z and consequently, the kernel of L, denoted by

M := {(µ, ν) : L(µ, ν) = 0} is a submonoid in N2m
0 × N2ℓ

0 .
A simple computation gives that for every µ ∈ N2m

0 , ν ∈ N2ℓ
0

L(µ, ν) = −L(µ̂, ν̂),

easily providing the following statement.

Lemma 5. (µ, ν) ∈ M if and only if (µ̂, ν̂) ∈ M.

Let
x→ x, y → αy, z → α−1z (25)

be the one-parametric group Uα of invertible linear transformations of the phase
space of systems (14). Similarly to the two-dimensional case in Section 1, we denote
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the coefficients of the new systems as aPQR(α), bpqr(α), cprq(α). The straightforward
computation gives

aPQR(α) = αR−QaPQR,

bpqr(α) = αr−qbpqr,

cprq(α) = αq−rcprq,

(26)

for all (P,Q,R) ∈ T , (p, q, r) ∈ S.

Proposition 6. The monomial [µ; ν] is invariant under the action of group (25) if
and only if (µ, ν) ∈ M.

Proof. The action of the group (25) induces the change of coefficients of (14) ac-
cording to (26). Recalling (23) and (24) and performing this substitution in [µ, ν]
we obtain

Uα([µ; ν]) =[µ; ν]α(Q−R,R̂−Q̂)·µ+(q−r,r̂−q̂)·ν

=[µ, ν]α(K,−K̂)·µ+(κ,−κ̂)·ν

=[µ, ν]αL(µ,ν)

wherefrom the claim easily follows. �

We now define a generalized version of the Sibirsky ideal. For any µ ∈ N2m
0

denote |µ| =
∑2m

j=1 µj.

Definition 7. The ideal

IS = 〈(−1)|µ|[µ; ν] − [µ̂; ν̂] : (µ, ν) ∈ M̃〉

is called the Sibirsky ideal of systems (14).

For the proof of our main theorem, we will apply the following theorem ([1],
Theorem 2.4.10).

Theorem 8. Let J be an ideal of k[y1, . . . , ym], I be an ideal of k[x1, . . . xn] and let
K = 〈I, y1 − f1, . . . , ym − fm〉 ⊆ k[y1, . . . , ym, x1, . . . xn].
Let φ : k[y1, . . . , ym]/J → k[x1, . . . xn]/I be the homomorphism defined by

yi + J 7→ fi + I.

Then ker φ = K ∩ k[y1, . . . , ym](modJ). That is, if ker φ = 〈g1 + J, . . . , gp + J〉, then
K ∩ k[y1, . . . , ym] = 〈g1, . . . , gp〉.

The statement below is our main result and it generalizes a result obtained in [7]
for the case of systems (1) to the case of systems (14).

Theorem 9. IR = IS.
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Proof. Recall that the ideal H is defined by (19) and the ideal, which we are inter-
ested in, is IR = H ∩ C(a, b, c). Let I = 〈αw − 1〉, s = (s1, . . . , sm), t = (t1, . . . , tℓ).
We define a homomorphism φ : C[a, b, c] → C[s, t, α,w]/I by

aPnQnRn 7→ sn + I,

aPnRnQn 7→ −αQn−Rnsn + I,

bpjqjrj 7→ tj + I,

cpjrjqj 7→ αqj−rj tj + I, if qj ≥ rj ,

cpjrjqj 7→ wrj−qj tj + I, if rj > qj,

n = 1, 2, . . . ,m, j = 1, 2, . . . , ℓ.

Recalling the shorthand notation Kn = Qn − Rn > 0, n = 1, 2, . . . ,m, and
κj = qj − rj , j = 1, 2, . . . , ℓ, let

H̃ = 〈I, aPnQnRn − sn, aPnRnQn − (−αKnsn), bpjqjrj − tj, cpkj
rkj

qkj
− tkj

α
κkj ,

cpki
rki

qki
− w−κki tki

: 1 ≤ n ≤ m, 1 ≤ j ≤ ℓ, κkj
≥ 0, κki

< 0〉.

By Theorem 8 (J is taken to be trivial), we have

kerφ = H̃ ∩ C[a, b, c]

and by Proposition 3, IR = H ∩ C[a, b, c].

We next show that H̃ ∩ C[a, b, c] = H ∩ C[a, b, c]. By elimination of
s1, . . . , sm, t1, . . . , tℓ from H̃ we get exactly H. Hence H = H̃ ∩ C[a, b, c, α,w] and

IR = H ∩ C[a, b, c]

= H̃ ∩ C[a, b, c, α,w] ∩ C[a, b, c]

= H̃ ∩ C[a, b, c]

= kerφ.

Next we check that IS ⊂ ker φ, i.e. that

φ([µ̂; ν̂]) = (−1)|µ|φ([µ; ν]), (µ; ν) ∈ M.

Writing in a short way, with µ = (ξ, η) ∈ Nm
0 × Nm

0 , ν = (ζ, θ) ∈ Nℓ
0 × Nℓ

0, we have

[µ; 0] = [ξ, η; 0] = aξ(â′)η =

m∏

j=1

aPjQjRj

ξj

m∏

n=1

aPnRnQn

η̂n

and

[0; ν] = [0; ζ, θ] = bζ ĉθ =

ℓ∏

j=1

bpjqjrj
ζjΠℓ

n=1cpnrnqn
θ̂n .
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Now, acting by φ on [µ; 0], noting that ŝη = sη̂ gives us

φ([µ; 0]) = φ([ξ, η; 0]) = (−1)|η|α(Q̂−R̂)·ηsξ ŝη + I

= (−1)|η|αK̂·ηsξ+η̂ + I
(27)

and
φ([µ̂; 0]) = φ([η̂, ξ̂; 0]) = (−1)|ξ|α(Q̂−R̂)·ξ̂sη̂ ŝξ̂ + I

= (−1)|ξ|α(Q−R)·ξsξ+η̂ + I

= (−1)|ξ|αK·ξsξ+η̂ + I.

By choosing [µ; 0] = [ξ, η; 0] ∈ M we know that K · ξ = K̂ · η. Moreover, it is easy
to check that

φ((−1)|µ| [µ; 0]) = φ([µ̂; 0]))

since (−1)|ξ|+2|η| = (−1)|ξ|. We have to be a bit careful when computing φ(cθ).

Namely, φ(cθn
n ) = tθn

n α
κnθn if κn = qn − rn ≥ 0 and φ(c

θj

j ) = tjw−κjθj if κj < 0.
Denote by κ+ the non-negative part of κ, and by κ− the negative part such that
κ = κ+ + κ− and supp κ+ ∩ supp κ− = {}. Now,

φ([0; ν]) = φ([0; ζ, θ]) = tζ t̂θα(κ+)·θ̂w−(κ
−

)·θ̂ + I = tζ+θ̂α(κ+)·θ̂w−(κ
−

)·θ̂ + I (28)

and
φ([0; ν̂ ]) = φ([0; θ̂, ζ̂]) = tθ̂+ζα(κ+)·ζw−(κ

−
)·ζ + I.

We next show that α(κ+)·θ̂w−(κ
−

)·θ̂ − α(κ+)·ζw−(κ
−

)·ζ ∈ I as soon as (0; ζ, θ) ∈ M.
Denote u1 = κ+ · θ̂, u2 = −κ− · θ̂, v1 = κ+ · ζ, v2 = −κ− · ζ. The requirement
(0; ζ, θ) ∈ M tells us that v1 − u1 = v2 − u2 =: d. Assuming that d ≥ 0 we obtain

α(κ+)·θ̂w−(κ
−

)·θ̂ − α(κ+)·ζw−(κ
−

)·ζ =αu1wu2 − αv1wv2

=αu1wu2(1 − αdwd)

=αu1wu2f(α,w)(1 − αw)

where f(α,w) is a polynomial. We proceed very similarly when d < 0. Therefore,
φ([0; ν]) = φ([0; ν̂]).

To complete this step of the proof, i.e. to show that all generating binomials of
IS are in the kernel of φ, let (µ, ν) ∈ M. Then, as φ is a ring homomorphism,

φ((−1)|µ|[µ; ν]) =φ((−1)|µ|[µ; 0])φ([0; ν])

=φ([µ̂; 0])φ([0; ν̂ ])

=φ([µ̂; ν̂]).

It remains to check that ker φ ⊂ IS . A reduced Gröbner basis G of C[a, b, c]∩ H̃
can be found by computing a reduced Gröbner basis of H̃ using an elimination
ordering with {a, b, c} < {w,α, s, t}, and then intersecting it with C[a, b, c]. Since H̃
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is binomial, any reduced Gröbner basisG of H̃ also consists of binomials. This means
that IR = H̃∩Q[a, b, c] = ker φ is a binomial ideal. Assume that for some (ξ, η; ζ, θ),
(γ, δ; ε, ϕ) ∈ N2m × N2ℓ, u ∈ C, the equality φ(u[ξ, η; ζ, θ] − [γ, δ; ε, ϕ]) = 0 holds.
Without loosing any generality, we assume that [ξ, η; ζ, θ] and [γ, δ; ε, ϕ] do not have
nontrivial common factors. This implies that ξjγj = ηjδj = 0, j = 1, 2, . . . ,m, and
ζiεi = θiδi = 0, i = 1, 2, . . . , ℓ. Suppose

φ(u[ξ, η; ζ, θ]) = φ([γ, δ; ε, ϕ]).

We will show that [γ, δ; ε, ϕ] = [η̂, ξ̂; θ̂, ζ̂] and u = (−1)|ξ|+|η|. From (27) and (28)
one derives that

f := u(−1)|η|+|δ|sξ+η̂tζ+θ̂αK̂·η+(κ+)·θ̂w−(κ
−

)·θ̂−sγ+δ̂tε+ϕ̂αK̂·δ+(κ+)·ϕ̂w−(κ
−

)·ϕ̂ ∈ 〈αw−1〉.

Computing the value of f at w = α−1 we must have 0. But this implies the equality
of (possibly rational) monomials

sξ+η̂tζ+θ̂αK̂·η+(κ++κ
−

)·θ̂ = sγ+δ̂tε+ϕ̂αK̂·δ+(κ++κ
−

)·ϕ̂ (29)

and additionally,

u(−1)|η|+|δ| = 1. (30)

Comparing the powers at s, t, α in (29) gives

ξ + η̂ = γ + δ̂ (31)

ζ + θ̂ = ε+ ϕ̂ (32)

K̂ · η + κ · θ̂ = K̂ · δ + κ · ϕ̂. (33)

We will firstly prove and then immediately apply the following technical lemma.

Lemma 10. Let ξ, η, γ, δ ∈ N0 be non-negative integers. Assume that

ξ + η = γ + δ (34)

ξγ = 0 (35)

ηδ = 0. (36)

Then (γ, δ) = (η, ξ).

Proof. Let us firstly assume that γ > η. Then γ 6= 0 and by (35), ξ = 0. Apply (34)
to get a contradiction, since δ is not negative. Similarly, if η > γ we have η 6= 0 and
thus by (36) one obtains δ = 0. This contradicts the non-negativity of ξ. It follows
that γ = η and consequently from (34), δ = ξ as claimed. �

Let us continue with the proof of Theorem 9. From (31) we observe that
ξj + η̂j = γj + δ̂j and by our assumption on coprimeness, ξjγj = η̂j δ̂j = 0 for

all j = 1, 2, . . . ,m. Applying Lemma 10 we obtain γj = η̂j and δ̂j = ξj, j = 1, . . . ,m



TIME-REVERSIBILITY AND IVARIANTS OF 3-DIM SYSTEMS 27

and in turn, γ = η̂ and δ = ξ̂, i.e. (γ, δ) = (η̂, ξ̂). In a very similar manner we get
(ε, ϕ) = (θ̂, ζ̂) from (32).

It remains to see that both [ξ, η; ζ, θ] and [γ, δ; ε, ϕ] must be in M. By Lemma
5 and inserting (γ, δ, ε, ϕ) = (η̂, ξ̂, θ̂, ζ̂) into (33) we confirm the claim.

Finally we easily get u = (−1)|ξ|+|η| from (30) since |δ| = |ξ̂| = |ξ|. �

A generating set or basis N of M is minimal if, for each ν ∈ N , N \ {ν} is not
a generating set. A minimal generating set is called a Hilbert basis of M.

Theorem 11. Let G be the reduced Gröbner basis of IS with respect to a chosen
term order. Then the following holds.

1. Every element of G has the form (−1)|µ|[µ; ν] − [µ̂; ν̂], where (µ, ν) ∈ M and
[µ; ν] and [µ̂; ν̂] have no common factors.

2. The set

N = {(µ, ν), (µ̂, ν̂) : (−1)|µ|[µ; ν] − [µ̂; ν̂] ∈ G}

∪ {(0, ej) + (0, e2ℓ−j+1) : j = 1, . . . , ℓ and ± ([0; ej ] − [0; e2ℓ−j+1]) 6∈ G},

where ej = (0, . . . , 0,
j
1, 0, . . . , 0) ∈ Q2ℓ, is a Hilbert basis of M.

The proof of the theorem is similar to the proof of Theorem 5.2.5 in [9].
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