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A self-similar solution for the two-dimensional
Broadwell system via the Bateman equation

Abstract.

Sergey Dukhnovsky

A self-similar solution of the Broadwell system is found. Here the so-

lution is sought using a reduction that transforms the given system into a system of
differential equations. Further, the solution is constructed using the Painlevé series.

Here the system

already passes the Painlevé test and it is possible to find the solu-

tion if the equations in resonance satisfy the solution of the two-dimensional Bateman
equation. Exact solution of the Bateman equation is established, allowing to find new

explicit solution

for the original system. In the process of calculations, we use the

Wolfram Mathematica program. The proof of these results is carried out at a rigorous
mathematical level.

Mathematics subject classification: 35140, 35Q20, 35C06.
Keywords and phrases: Broadwell system, self-similar solution, Painlevé test, Bate-

man equation.

1 Introduction

We consider the well-known two-dimensional Broadwell model [7,10,11,15,17,20]

1
Opu + Oryu = g(wz —uv),
1
O — Opv = —(wz —wv), x,y€R, t>0,
2 )
Oyw + Oyw = g(uv —wz),
1
Orz — Oyz = g(uv —wz).

Here u(x,y,t),v(x,y,t),w(z,y,t), z(z,y,t) are the densities of particle groups,

¢ is the Knudsen parameter.
As is known, most of the equations of mathematical physics describe

system (1).

It is required to find a self-similar solution of the

various physical processes, for example, the Burgers equation, the Korteweg-de Vries
equation, the Allen-Kahn equation, etc. One of such equations is the discrete ki-
netic Boltzmann equation [22] (see p.1). We consider the so-called Broadwell model
[7,11,20], which is a consequence in the discrete case when the collision integral on

the right side of the

Boltzmann equation is replaced by a finite sum. From here, the

given system of equations is directly obtained. The physical interpretation of the
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system can be found in [7,20]. Works [1,5,11] are devoted to finding exact solutions
of kinetic systems by means of the Bateman equation [3,6,13,14]. These systems
are non-integrable (kinetic systems Carleman [1], Godunov-Sultangazin [9,11] (one-
dimensional model of Broadwell), McKean [5,12], two-dimensional model of Broad-
well). As a result, the Painlevé test fails. Here, in resonance, the author obtained
the Bateman equation and, knowing its implicit solution, constructed a solution for
the original system. Stationary solutions of systems were found in [16,18]. In the
works [7,9,19] it is proved that the solution of systems tends to a positive equilib-
rium state exponentially fast. Also recently in [8,12,18,20], solutions were found that
can take both positive and negative values. Nevertheless, ones produce interesting
results. In our work, a self-similar solution of the system is presented.

2 Bateman equation

The two-dimensional Bateman equation is an equation of the form [4,6,11]

0%p 10 O Op 0% Oy 2827g0 B
<8§> On OE D€ (877) €2 0. )
This equation has an implicit solution
Ef(e) +mg(p) = c, (3)

where f, g are arbitrary smooth functions, ¢ € R. The proof is carried out by direct
computation

dp %

B )
9 &f'(e) +ng' ()

) +ng
Py f(w)( —26f'(0)* = 2nf'(0)g (@) + () (ES" (0) + 779”(@)))
ogr S (@) +ng'(9))? ’
op 9(¥) (4)
on Ef'(p) +ng' ()
2o 90)( -2 (0) - 200 (0 + g(P)EF(R) + ng ()
on? (S (@) + 19 () ’
o2 F9EF +n9)+9(Ef (0 +nf ()9 (0) - (" +ng"))
oEon (Ef(@) +n9g' ()3 '

Substituting (4) into (2), we are convinced of the equality.

3 A self-similar solution for the Broadwell system

We look for a self-similar solution in the form (see [21], S.3.3., p. 708)
w(z,y,t) = 2°U(&,n),v(z,y,t) = 2°V(£,7),
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w(z,y,t) = 27W(En), 2(x,y,t) = °Z(&,m),
where & = tz?, 7 = yzB. System is scale invariant under
t=CM,x=0z,y=C%,u=C"u,v=C",w=CPw,z=C%C >0 (5)
The scaling transformation (5) converts system (1) into

cm=k9% | om10U 1(0“%2 — C™ ),

ot or ¢
ov ov 1
n—k n—1 _ ~(rta, m-+n — —
C T -C 9 6(C’ wz — C"™ " uv),
0w ow 1
p—k p=lZ~" _ Z(omtng P+q,55
C 5 C a5 5(0 — CP™wz),
1
ot kgj ca- lgz = (O™ - O w),

Equating the powers of C' yields the following system of linear algebraic equations
for the constants m, k, p,q,l and n:

m—1-m+k=0,p+g—m+k=0m+n—m-+k=0,
n—1-n+k=0p+qg—n+k=0m+n—nm+k=0,
p—l—p+k=0m+n—-—p+k=0,p+q—p+k=0,

q—l—q+k=0m+n—qgq+k=0,p+qg—qg+k=0.
This system has a unique solution
k=l=1n=p=m=q=—1.
In this case according to the formulas from (see [21], S.3.3., p. 708)
a=pf=v=s=—-1,A=B=-1.

Then we have

(e, t) = ~U(E m), (e, ,1) = ~V(E ) (0

x x
wle,y,t) = SW(E),2(2,5,0) = > 26, 1), (”

where { = t/x,n = y/z. Substituting expressions (6)-(7) into (1), we obtain for the
first equation

W)+ U Ty = 2wz - Loy, @)

1,1
r Sz 2 € a2
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The rest of the equations are obtained similarly. Hence, we have system

1
Ui(1=¢) —Umn=U+ g(WZ —UvV),

1
ViA++Vn=-V+=-(WZ-UV),

Wi+ Wg UV -Ww2),

m\H(‘ﬁ\H(‘f)

Zt — UV -Ww2).

We apply the Painlevé expansion [2]:

pZU &),V Bzvs, 7,

W(&n) = 'YZW&w Z(&m) = qZZ (& )¢

7=0

where ¢ = (£,n) is an analytic function in a neighborhood of the manifold
©(&,m) = 0. Firstly, we find the dominant terms

U=Upp P,V =Vop P\ W=Wop ", Z = Zop ", (11)

where p, 3,7, q are positive integers. Substituting the leading terms of (11) into our
original system, we have

(1= &) (Usep™ = pp " oelo) — n(Upy ™ — pp P71 U) =
=Upp P + - (W()Z()(p 14— Uy Vo PP,
1+ (Ve = 87" 1905‘/0)+77(Vdn90_p—pso P Vo) =
— VPl ~(WoZpp™ 7 — UVop "),
Woee™ =707 l%WO + W™ =07 Wo = (12)
= l(UoVbso_p‘ﬂ — WoZop ™ 779),
Zoge ™! —ap 'Zo—ZonsD Tt Zy =

= E(Uovosfp*ﬁ — WoZop™779).
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Multiplying the first equation of (12) by ¢P*! and taking into account that
©(&,mn) =0, we have p = 3 =~ = ¢ = 1. From here

—(1 =& eUo + ¢, Uon = = (WoZo — UoVo),

~(1+&eeVo — ¢y Von = =(WoZo — Uo V), 3)
13

—Wo — ¢, Wo = =(UoVo — WoZo),

(G I S N I S O N I O W I

— e Zo + ¥pZo = —(UoVo — Wo Zo).

Solving the system (13), we obtain solution

e(nen + (€ + Dge) (pr — ¢7)
(n? — D)3 + 26neipn + E20F
e(ney + (€ — Dge) (¢h — #7)

Volem) = (n? = 1)ep + 26npepn + 207 (14)
e(ion — @e) ey + (€ = 1)) (neon + (€ + 1) ee)
(7 — D)2 + 2Enpepn + €207
Zo(Eun) = e + we) ey + (€ = V)pe) (py + (€ + 1)pe)

(1 — 1)@2 + 26npepn + €207

U0(€7 77) ==

WO(ga 7]) ==

)

The truncated Painlevé expansion has the form

U=Up ' + U,V =Vop ' + W,

. . (15)
W =Wop™ +Wh,Z = 2oy~ + Z1,

where Uy, Vi, Wy, Zy are defined by (14) and Uy, Vi, W1, Z; are arbitrary functions.
Substituting (15) into (9), we have

1
9071<U6§(1 — &) — U, — U — E(WOZI +WhZy — UgV1 — U1Vb)>+
_ 1
+p 2( — Uope(1 =€) + neyUo — - (WoZp - UoVo)>+
1
—HOO(U{g(l —&) —nUj, — U1 — E(WIZI - U1V1)> =0,
1
o ! (‘/0/5(1 +&) + Vg, + Vo — E(WOZI + WhiZy — UpgVi — U1V0))+
1
+80_2( — Voge (1 + &) — 0, Vo — E(WOZO - UOVO))+

1
+0 (Vie(U+€) + Vi, + Vi = (W24 — U1V)) = 0,
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) 1
o (Wég + Wi, = < (UoVi + UrVo = WoZy - leo))+
) 1
+¢ 2( — Wope — o, Wo — E(UoVb - W0Z0)>+

1
" (Wie + Wi, =~V = W1.20)) = 0,

_ 1
() 1 <Z(/]£ — ZéTI — E(UOVI + UIVE) — W()Zl — W120>)+
_ 1
+¢ 2( — Zowe + oy Zo — ~(UoVo — W121)>+
1
0 (Zig ~ 24, — (Ui - lel)) —0.
The coefficients at ¢ 2 give the well-known expressions defined by (14). Assuming

that Uy = V; = Wy = Z; = 0, the coefficients at ¢° are satisfied. It remains to
consider at ¢!, Equating each coefficient of ¢! to zero, we have

1
Upe(1 = &) — nUg, — Uo = E(WOZI + WiZy — UgVi — U1 Vo),
1
Vog(1+€) + Vi, + Vo = —(WoZ1 + Wi Zy — UV — UiVh), »
16
1
Woe + W, = E(UOVI + U1V — WoZy — Wi Zy),
1
Z(l)£ — 2677 == E(U()Vi + Ul‘/() — W()Z1 — W1Z0).
We rewrite the system (16) as
Ue(1 = &) — nUg, — Up = Ve (1 + &) + Vg, + Vo, (17)
U(/)E(l - 5) - nU(S'r] — Uy = _W6§ - Wém (18)
Ute(1 = &) —nU, — Up = 0. (20)
Substituting (14) into (17), we have
dne(ngpy + (=1 + 0 + E)npe + 1E0E) (unwf + on(—20epen + Pnee)) 0

(=1 + 1292 + 2nEpnpe + £2¢7)?

which contains one of the equations — the Bateman equation. Similarly, the equations
(18), (19) also yield the given equation. Finally, substituting (14) into (20), we have
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condition using the Wolfram Mathematica
—2n¢) + oy (772(—1 +7%) oy — 260e — 20EQen + Pee — Mpeet
120 Epee — Epee — 7725290&) + £pf (772(2 + &) om—
—2p¢ — 2Npen + EPge — 53%) - 2nsof’,sos( = 20° €y — 2pe — Npent
+17° 0y + 2nEpen — NEXpen + e — M pee — Epee + M Epee—
—&pee + 53%) + 0o} (772(—1 + 177 + 26 4 58%) oy + Ape + oe—  (21)
— 40 oy — A E ey — AnEpen + AnEpen — Bpee + 3N pect
+20°Epee + 4% pee — 0P pee — €4¢ss>+
20q0% (77(1 + (1 + 7 + &) pny — npe—
~(1+ (7 = (=1 + )1+ )pen +20(~1+ E)éipee) ) = 0.

Equating coefficients to zero at the same degrees, we obtain

E—Af3P () +2fg* (f)? +2f af'd + fiP " — o' =0,
n:—AfP3f'd +2fg f'd +2f'9(d) + o9 — fg*gd" =0
%0,

En:8flg(f)2 +4ff'd —8f3g* g —Aftg(g)?—
—2f%qf" +2fg° " — 04" + f2g'g" =0,

En*:0,7°: 0,

AP () + 8 gf'd — 425 g — 81357 (d)*~
o f492f//+96f// o 2f5gg//+2fg5g// — 07

AP —4figf'd — O+ f2g*f =0,
&n 0,

En’ 12130 (f) = 8f'gf g +12f0° g + 8fg*(¢')*+
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+ 647 —6f2g "+ 4f 99" — 4fPg%g" =0,
&’ 10,
0’ AP — 42 (d) - [P + 9% =0,
% 2 0,

e =812 (f')? — 12f°° f'd' + 8fg" f'g + 12f%¢°(¢')*+
+4f393f/, o 4fg5f/l +6f4g29// o 6f294g// _ 0’

¢,

e =8f1g(f): =217 f'g' +813g% f'g' + 21 g(g)*+
+Afgf" —AfPg [+ 09" — fe?d" =0,

0,8 0,6 0,0t 1 0,

nhe s =2fg ()2 = 81263 g +26° f'd + 814 (¢) 2+
+ f294f” _ ng” +4f3g3g" _ 4fg5g// =0,

nte? 0t 0yt p 0,
E =2V +2fgf'g + O — flg?f" =0,
&0,
n’:=2fg*f'g' +29°(9')* + fg*d" — 9°¢" = 0.

This system of equations is satisfied for g(¢) = = (). Taking this equality into (3),
we have for g(¢) = f(¢)

c
o =F(——), (22)
£+
where F' is an arbitrary invertible function. And finally, to get the final solution of
our system, we substitute (22) in (15) and take into account the formula (6).
We can formulate a proposition.
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Proposition. A self-similar solution of (1) is

1 U 114 1 W, 17
U(%Z/J) = 77070($7y7t) = 7707w(x7y7t) = 77072(xayat) = 7707
T @ T e T ¢ T @

where Uy, Vo, Wo, Zy are defined by (14) and ¢ satisfies the two-dimensional Bateman
equation (2) and (21). Solution for ¢ is

c
o(&,n) = F(i)c €R.
§+n
Here F is an arbitrary invertible function.

Solutions of system (1) are for g(p) = f(v)

u(z,y,t) = 0,v(x,y,t) =0,
_l 2C€F/(£in) (23)
PR ()

w(z,y,t) =0,2(x,y,t) =

and for g(¢) = —f(¢)

u(z,y,t) = 0,v(z,y,t) =0,
1 2ce F'( =) B (24)
T (5 _ n)QF(gfn)az(xayvt) - 07

w(z,y,t) =

where £ = t/x,n = y/x are self-similar variables.
Comment. We give an example of a solution that is not described in the work [11]:

14 16
U(Zﬁ,y,t) = 1 5
15 5(—Z + /191 tan(755V191(1 + t + 22 + 3y)))
(z,y,t) =3+ 1
v ./I/‘, y? = )
5(— 8 + &v/191 tan(745v/191(1 + ¢ + 2z + 3y)))
( t)y=2+ 12
w\x, Y, = )
5(— T + &5v/191 tan( o5 v19L(1 + ¢ + 2z + 3y)))
24

z(x,y,t) =1—

5(— 8 + &v/191 tan(755V191(1 + ¢ + 2z + 3y)))

This solution is taken from [20].

4 Conclusion

We investigated the two-dimensional Broadwell system. We found the self-similar
solutions for this system using the Bateman equation.
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