Some integrals for groups of bounded linear operators on finite-dimensional non-Archimedean Banach spaces

J. Ettayb

Abstract. In this paper, we extend the Volkenborn integral and Shnirelman integral for groups of bounded linear operators on finite-dimensional non-Archimedean Banach spaces over \mathbb{Q}_p and \mathbb{C}_p respectively. When the ground field is a complete non-Archimedean valued field, which is also algebraically closed, we give some functional calculus for groups of infinitesimal generator A such that A is a nilpotent operator on finite-dimensional non-Archimedean Banach spaces.

Mathematics subject classification: 47D03, 47S10, 46S10.

Keywords and phrases: Volkenborn integral, Shnirelman integral, groups of bounded linear operators, *p*-adic theory.

1 Introduction and Preliminaries

Throughout this paper, \mathbb{K} is a non-Archimedean non trivially complete valued field with valuation $|\cdot|$, X is a non-Archimedean Banach space over \mathbb{K} , \mathbb{Q}_p is the field of p-adic numbers ($p \geq 2$ being a prime) equipped with p-adic valuation $|\cdot|_p$ and \mathbb{Z}_p denotes the ring of p-adic integers (the ring of p-adic integers \mathbb{Z}_p is the unit ball of \mathbb{Q}_p). We denote the completion of algebraic closure of \mathbb{Q}_p under the p-adic valuation $|\cdot|_p$ by \mathbb{C}_p and B(X) denotes the set of all bounded linear operators on X.

The study of Archimedean C_0 -semigroup or C_0 -group of bounded linear operators was first attempted by Yosida and Hille [8]. From [8], Corollary 2.5, if A is the infinitesimal generator of a C_0 -semigroup then it is closed and $\overline{D(A)} = X$. By [8], (b) of Theorem 2.4:

For
$$x \in X$$
, $t \in \mathbb{R}^+$, $\int_0^t T(s)ds \in D(A)$

and

for
$$x \in X$$
, $T(t)x - T(s)x = \int_{s}^{t} T(u)Axdu = \int_{s}^{t} AT(u)xdu$.

This is thanks to the Haar measure on the topological group $(\mathbb{R}, +)$. In the non-Archimedean analysis, there is no Haar measure on a subset of \mathbb{Q}_p into \mathbb{Q}_p , see Theorem 5. When $\mathbb{K} = \mathbb{C}_p$, it is useful to use the Shnirelman integral defined

© J. Ettayb, 2022

DOI: https://doi.org/10.56415/basm.y2022.i3.p3

J. ETTAYB

as: let f(z) be a \mathbb{C}_p -valued function defined for all $z \in \mathbb{C}_p$ such that $|z - a|_p = r$ where $a \in \mathbb{C}_p$ and r > 0 with $r \in |\mathbb{C}_p|_p$. Let $\Gamma \in \mathbb{C}_p$ such that $|\Gamma|_p = r$. Then the Shnirelman integral of f is defined as the following limit, if it exists,

$$\int_{a,\Gamma} f(z)dz = \lim_{n \to \infty} \frac{1}{n} \sum_{\zeta^n = 1} f(a + \zeta\Gamma), \tag{1}$$

where lim' indicates that the limit is taken over n such that gcd(n, p) = 1. For more details, we refer to [2], [4] and [9]. But there is a different results in non-Archimedean analysis, by [2], Theorem 1, we have:

$$\int_{a,\Gamma} e^z dz = e^a,$$

and

$$\int_{a,\Gamma} (z-a)e^z dz = 0$$

Recently, Diagana [3] introduced the notion of C_0 -groups of bounded linear operators on a free non-Archimedean Banach space, for more details we refer to [3] and [5]. In [5], A. El Amrani, A. Blali, J. Ettayb and M. Babahmed introduced the notions of *C*-groups and cosine families of bounded linear operators on non-Archimedean Banach space. Let r > 0, $\Omega_r = \{t \in \mathbb{K} : |t| < r\}$ [5]. We have the following definition.

Definition 1. [5] Let r > 0 be a real number. A one-parameter family $(T(t))_{t \in \Omega_r}$ of bounded linear operators from X into X is a group of bounded linear operators on X if

- (i) T(0) = I, where I is the unit operator of X.
- (ii) For all $t, s \in \Omega_r$, T(t+s) = T(t)T(s).

The group $(T(t))_{t\in\Omega_r}$ will be called of class C_0 or strongly continuous if the following condition holds:

• For each $x \in X$, $\lim_{t \to 0} ||T(t)x - x|| = 0$.

A group of bounded linear operators $(T(t))_{t\in\Omega_r}$ is uniformly continuous if and only if $\lim_{t\to 0} ||T(t) - I|| = 0$.

The linear operator A defined by

$$D(A) = \{ x \in X : \lim_{t \to 0} \frac{T(t)x - x}{t} \text{ exists} \},$$

and

$$Ax = \lim_{t \to 0} \frac{T(t)x - x}{t}$$
, for each $x \in D(A)$,

is called the infinitesimal generator of the group $(T(t))_{t\in\Omega_r}$.

In this paper, we extend to Volkenborn integral and Shnirelman integral for studying the C_0 -groups of bounded linear operators on some non-Archimedean Banach spaces and we show some results about it. Now, we assume that $\mathbb{K} = \mathbb{C}_p$. We have the following definition.

Definition 2. [4] Let f(z) be a \mathbb{C}_p -valued function defined for all $z \in \mathbb{C}_p$ such that $|z - a|_p = r$ where $a \in \mathbb{C}_p$ and r > 0 with $r \in |\mathbb{C}_p|_p$. Let $\Gamma \in \mathbb{C}_p$ such that $|\Gamma|_p = r$. Then the Shnirelman integral of f is defined as the following limit, if it exists,

$$\int_{a,\Gamma} f(z)dz = \lim_{n \to \infty} \frac{1}{n} \sum_{\zeta^n = 1} f(a + \zeta\Gamma),$$

where \lim' indicates that the limit is taken over n such that gcd(n, p) = 1.

Theorem 1. [1] Let $f(z) = \sum_{n \in \mathbb{N}} a_n f_n(z)$ where the series on the right converges uniformly to f(z) for all points $z \in \mathbb{C}_p$ such that $|z - a|_p = |\gamma|_p$. Suppose that for all $n \in \mathbb{N}, \int_{a,\gamma} f_n(z) dz$ exists. Then $\int_{a,\gamma} f(z) dz$ exists and $\int_{a,\gamma} f(z) dz = \sum_{n \in \mathbb{N}} a_n \int_{a,\gamma} f_n(z) dz$.

Lemma 1. [1] Let p be any integer such that 0 < |p| < n. Then

$$\sum_{i=1}^{n} \xi_i^{(n)p} = 0$$

Now, let $f(z) = a_0 + a_1 z + a_2 z^2 + \cdots$ be a power series converging for all $z \in \mathbb{C}_p$ such that $|z|_p < R(R > 0)$, we have the following:

Theorem 2. [1] If $|a|_p < R$ and $|\gamma|_p < R$, then

$$\int_{a,\gamma} f(z)dz = f(a).$$

Corollary 1. [1] With the same hypothesis as in Theorem 2, we have:

$$\int_{a,\gamma} (z-a)f(z)dz = 0.$$

Theorem 3. [1] Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ be a power series converging for all $z \in \mathbb{C}_p$ such that $|z|_p < R$ (R > 0). Suppose that $x, r \in \mathbb{C}_p$ such that $|x|_p, |r|_p < R$. Then,

$$\int_{0,r} \frac{zf(z)}{z-x} dz = \begin{cases} f(x) & \text{ if } |x|_p < |r|_p, \\ 0 & \text{ if } |x|_p > |r|_p. \end{cases}$$

Theorem 4. [1] With the same hypothesis as in Theorem 3, we have:

$$\int_{0,r} \frac{zf(z)}{(z-x)^{n+1}} dz = \frac{f^n(x)}{n!} \text{ for } |x|_p < |r|_p.$$

In the next, we assume that $\mathbb{K} = \mathbb{Q}_p$. There is no Newton-Leibniz formula in the *p*-adic analysis. There is no \mathbb{Q}_p -valued Lebesgue measure $\int_{\mathbb{Q}_p} f(t)dt$ is not well defined as usual.

Theorem 5. [7] Additive, translation invariant and bounded \mathbb{Q}_p -valued measure on clopens of \mathbb{Z}_p is the zero measure.

We denote by $C(\mathbb{Z}_p, \mathbb{Q}_p)$ the space of all functions defined and continuous from \mathbb{Z}_p into \mathbb{Q}_p .

Theorem 6. [7] Let $f \in C(\mathbb{Z}_p, \mathbb{Q}_p)$. The function defined on \mathbb{N} by

$$F(0) = 0, F(n) = f(0) + f(1) + \dots + f(n-1)$$

is uniformly continuous. The extended function is denoted by Sf(x) (called indenite sum of f). If f is strictly differentiable, so is Sf.

We denote by $C_s^1(\mathbb{Z}_p, \mathbb{Q}_p)$ the space of all functions defined and strictly differentiable in \mathbb{Z}_p taking values in \mathbb{Q}_p . For more details, we refer to [7].

Definition 3. [7] The Volkenborn integral of $f \in C_s^1(\mathbb{Z}_p, \mathbb{Q}_p)$ is defined by

$$\int_{\mathbb{Z}_p} f(t)dt = \lim_{n \to \infty} p^{-n} \sum_{j=0}^{p^n - 1} f(j) = \lim_{n \to \infty} \frac{Sf(p^n) - Sf(0)}{p^n} = (Sf)'(0).$$

Lemma 2. [7] For all $t \in \Omega^*_{p^{\frac{-1}{p-1}}}$,

$$\int_{\mathbb{Z}_p} e^{tu} du = \frac{t}{e^t - 1}.$$

2 Integral for C_0 -groups on finite-dimensional Banach space over \mathbb{C}_p

In this section, let $\mathbb{K} = \mathbb{C}_p$ and let Ω_r be the open ball of \mathbb{K} centered at 0 with radius r > 0. We always assume that r is suitably chosen such that $t \in \Omega_r \mapsto T(t)$ is well-defined, we have the following definition.

Definition 4. Let r > 0 be a real number. A one-parameter family $(T(t))_{t \in \Omega_r}$ of bounded linear operators from \mathbb{C}_p^n into \mathbb{C}_p^n is said to be analytic group of bounded linear operators on \mathbb{C}_p^n if

(i) T(0) = I, where I is the unit operator of \mathbb{C}_p^n .

- (ii) For all $t, s \in \Omega_r$, T(t+s) = T(t)T(s).
- (iii) For all $x \in X$, $t \to T(t)x$ is analytic on Ω_r .

We extend the following definition.

Definition 5. Let $(T(t))_{t\in\Omega_r}$ be analytic group of bounded linear operators on \mathbb{C}_p^n . The group $(T(t))_{t\in\Omega_r}$ is said to be integrable in the sense of Schnirelman if for all $a \in \Omega_r$ and $\gamma \in \Omega_r \setminus \{0\}$, the sequence $(S_n)_n \subset B(\mathbb{C}_p^n)$ defined by

$$S_n = \sum_{\zeta^n = 1} T(a + \zeta \gamma),$$

converges strongly as $n \to \infty$ (the limit is taken over n such that gcd(n,p) = 1) to a bounded linear operator. More precisely

$$\int_{a,\gamma} T(t)dt = \lim_{n \to \infty} \frac{1}{n} \sum_{\zeta^n = 1} T(a + \zeta\gamma),$$

where \lim' indicates that the limit is taken over n such that gcd(n, p) = 1.

Lemma 3. Let $(T(t))_{t\in\Omega_r}$ be analytic group on \mathbb{C}_p^n such that $\int_{a,\gamma} T(t)dt$ exists and $\sup_{t\in\Omega_r} ||T(t)|| \leq M$ where $a \in \Omega_r$ and $\gamma \in \Omega_r \setminus \{0\}$. Then

(i) For all $x \in \mathbb{C}_p^n$, $\|\int_{a,\gamma} T(t)xdt\| \le M \|x\|$. (ii) For all $a \in \Omega_r$, $x \in \mathbb{C}_p^n$, $\int_{a,\gamma} T(t)xdt = T(a) \int_{\Omega_r} T(t)xdt$.

Proof. Let $(T(t))_{t \in \Omega_r}$ be analytic group on \mathbb{C}_p^n such that $\int_{a,\gamma} T(t)dt$ exists, then (i) It suffices to apply Definition 5.

(ii) By Definition 5, for all $x \in \mathbb{C}_p^n$ and for each $a \in \Omega_r$, then

$$\int_{a,\gamma} T(t)xdt = \lim_{n \to \infty} \frac{1}{n} \sum_{\zeta^n = 1} T(a + \zeta\gamma)x$$
$$= T(a) \lim_{n \to \infty} \frac{1}{n} \sum_{\zeta^n = 1} T(\zeta\gamma)x$$
$$= T(a) \int_{0,\gamma} T(t)xdt.$$

Definition 6. [6] Let $A \in B(\mathbb{C}_p^n)$. A is said to be nilpotent of index d, if there is an integer number $d \leq n$ such that $A^n = 0_{\mathbb{C}_p^n}$ and $A^{n-1} \neq 0_{\mathbb{C}_p^n}$ (where $0_{\mathbb{C}_p^n}$ denotes the null operator from \mathbb{C}_p^n into \mathbb{C}_p^n).

Example 1. Let $A \in B(\mathbb{C}_p^4)$ be defined by

$$\begin{pmatrix} 0 & a & b & c \\ 0 & 0 & a & b \\ 0 & 0 & 0 & a \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ where } a, \ b, \ c \in \mathbb{C}_p.$$

It is easy to see that A is nilpotent of index 4.

Proposition 1. Let A be a nilpotent operator of index n on \mathbb{C}_p^n such that $||A|| < p^{\frac{-1}{p-1}}$. Then $e^{tA} = \sum_{k=0}^{n-1} \frac{t^k A^k}{k!}$.

Proof. Since A is nilpotent operator of index n on \mathbb{C}_p^n . Then,

$$e^{tA} = \sum_{k \in \mathbb{N}} \frac{t^k A^k}{k!}$$
$$= \sum_{k=0}^{n-1} \frac{t^k A^k}{k!}$$

_	

Theorem 7. Let e^{tA} be a C_0 -group of infinitesimal generator A on \mathbb{C}_p^n such that A is nilpotent operator of index n on \mathbb{C}_p^n . Then for all $x \in \mathbb{C}_p^n$, $\int_{a,\gamma} e^{tA} x dt = e^{aA} x$.

Proof. Let $e^{tA} = \sum_{k=0}^{n-1} \frac{t^k A^k}{k!}$. Using Proposition 1 and Theorem 2, we have for all $x \in \mathbb{C}_p^n$,

$$\int_{a,\gamma} e^{tA} x dt = \sum_{k=0}^{n-1} \frac{A^k}{k!} \int_{a,\gamma} t^k x dt$$
$$= \sum_{k=0}^{n-1} \frac{a^k A^k}{k!} x = e^{aA} x.$$

Corollary 2. Under the hypothesis of Theorem 7, for all $x \in \mathbb{C}_p^n$,

$$\int_{a,\gamma} (t-a)e^{tA}xdt = 0.$$

Remark 1. Let $A \in B(\mathbb{C}_p^n)$ be a nilpotent operator, then e^{tA} is integrable in the sense of Shnirelman.

Set for all $\lambda \in \rho(A)$, $R(\lambda, A) = (\lambda I - A)^{-1}$ where $\rho(A)$ is the resolvent set of the linear operator A defined on X, we have the following:

Proposition 2. Let $A \in B(\mathbb{C}_p^n)$. If A is a nilpotent operator of index n, then for all $\lambda \in \mathbb{C}_p^*$, $R(\lambda, A)$ exists. Furthermore, for each $\lambda \in \mathbb{C}_p^*$, we have

$$R(\lambda, A) = \sum_{k=0}^{n-1} \frac{A^k}{\lambda^{k+1}}.$$

Proof. Let $\lambda \in \mathbb{C}_p^*$, then

$$(\lambda I - A) \left(\sum_{k=0}^{n-1} \frac{A^k}{\lambda^{k+1}} \right) = \sum_{k=0}^{n-1} \frac{A^k}{\lambda^k} - \sum_{k=0}^{n-1} \frac{A^{k+1}}{\lambda^{k+1}}$$

= I.

On the other hand,

$$\left(\sum_{k=0}^{n-1} \frac{A^k}{\lambda^{k+1}} \right) (\lambda I - A) = \sum_{k=0}^{n-1} \frac{A^k}{\lambda^k} - \sum_{k=0}^{n-1} \frac{A^{k+1}}{\lambda^{k+1}}$$

= I.

Consequently, for all $\lambda \in \mathbb{C}_p^*$, $R(\lambda, A) = \sum_{k=0}^{n-1} \frac{A^k}{\lambda^{k+1}}$.

Proposition 3. Let A be a nilpotent operator of index n on \mathbb{C}_p^n and $r = \frac{-1}{p-1}$. Then

for all
$$t \in \Omega_r$$
, $e^{tA} = \int_{0,\gamma} \lambda e^{\lambda t} R(\lambda, A) d\lambda$, where $\gamma \in \Omega_r \setminus \{0\}$.

Proof. By Proposition 2, for all $\lambda \in \Omega_{\frac{-1}{p-1}} \setminus \{0\}$, $R(\lambda, A)$ has a polynomial function form on \mathbb{C}_p^n , hence it is analytic on $\Omega_{\frac{-1}{p-1}} \setminus \{0\}$. Using Theorem 4, we obtain

$$\int_{0,\gamma} \lambda e^{\lambda t} R(\lambda, A) = \int_{0,\gamma} \sum_{k=0}^{n-1} \lambda^{-k} e^{t\lambda} A^k d\lambda$$
$$= \sum_{k=0}^{n-1} A^k \int_{0,\gamma} \lambda^{-k} e^{t\lambda} d\lambda$$

$$= \sum_{k=0}^{n-1} A^{k} \frac{\left(e^{t\lambda}\right)^{(k)}(0)}{k!}$$
$$= \sum_{k=0}^{n-1} A^{k} \frac{t^{k}}{k!} = e^{tA}.$$

Г		
L		
_		

We have the following proposition.

Proposition 4. Let A and B be nilpotent operators on \mathbb{C}_p^n and let e^{tA} and e^{tB} be two C_0 -groups of infinitesimal generators A and B respectively. If $R(\lambda, A)$ and $R(\lambda, B)$ commute, then e^{tA} and e^{tB} commute.

Proof. By Proposition 3, we have

$$e^{tA} = \int_{0,\gamma} \lambda e^{\lambda t} (\lambda I - A)^{-1} d\lambda$$
 and $e^{tB} = \int_{0,\gamma} \lambda e^{\lambda t} (\lambda I - B)^{-1} d\lambda$.

Asumme that $R(\lambda, A)$ and $R(\lambda, B)$ commute, then

$$e^{tA}e^{tB} = \int_{0,\gamma} \lambda e^{\lambda t} (\lambda I - A)^{-1} d\lambda \int_{0,\gamma} \lambda e^{\lambda t} (\lambda I - B)^{-1} d\lambda$$

$$= \int_{0,\gamma} \int_{0,\gamma} \lambda e^{\lambda t} (\lambda I - A)^{-1} \lambda e^{\lambda t} (\lambda I - B)^{-1} d\lambda d\lambda$$

$$= \int_{0,\gamma} \int_{0,\gamma} \lambda e^{\lambda t} (\lambda I - B)^{-1} \lambda e^{\lambda t} (\lambda I - A)^{-1} d\lambda d\lambda$$

$$= e^{tB} e^{tA}.$$

		ъ

We have the following:

Proposition 5. Let A and $(A_k)_{k \in \mathbb{N}}$ be nilpotent operators on \mathbb{C}_p^n . If, $R(\lambda, A_k) \to R(\lambda, A)$ as $k \to \infty$, then e^{tA_k} converges to e^{tA} as $k \to \infty$.

Proof. From Proposition 3, we have

for all
$$t \in \Omega_r$$
, $e^{tA} = \int_{0,\gamma} \lambda e^{\lambda t} R(\lambda, A) d\lambda$

where $\gamma \in \Omega_r \setminus \{0\}$ and $r = \frac{-1}{p-1}$ and

for all
$$t \in \Omega_r$$
, $k \in \mathbb{N}$, $e^{tA_k} = \int_{0,\gamma} \lambda e^{\lambda t} R(\lambda, A_k) d\lambda$.

Moreover,

$$e^{tA_k} - e^{tA} = \int_{0,\gamma} \lambda e^{t\lambda} [R(\lambda, A_k) - R(\lambda, A)] d\lambda$$

is well-defined. Set

$$M = \max_{|\lambda|_p = |\gamma|_p} |\lambda e^{t\lambda}|_p < \infty.$$

Since $R(\lambda, A_k) \to R(\lambda, A)$ as $k \to \infty$, it follows that for each $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $k \ge N$, $||R(\lambda, A_k) - R(\lambda, A)|| \le \frac{\varepsilon}{M}$. Consequently

$$\begin{aligned} \|e^{tA_k} - e^{tA}\| &\leq \left\| \int_{0,\gamma} \lambda e^{t\lambda} [R(\lambda, A_k) - R(\lambda, A)] d\lambda \right\| \\ &\leq \max_{|\lambda|_p = |\gamma|_p} |\lambda e^{t\lambda}|_p \|R(\lambda, A_k) - R(\lambda, A)\| \\ &\leq M \cdot \frac{\varepsilon}{M} \\ &= \varepsilon. \end{aligned}$$

whenever $k \geq N$, then e^{tA_k} converges to e^{tA} as $k \to \infty$.

3 Integral of groups of linear operators on \mathbb{Q}_p^n

From now on we assume that $\mathbb{K} = \mathbb{Q}_p$, we extend the Volkenborn integral to some non-Archimedean Banach spaces.

Definition 7. Let $f \in C^1_s(\mathbb{Z}_p, \mathbb{Q}_p^n)$. The sequence $(S_m)_m \subset B(\mathbb{Q}_p^n)$ defined by

$$S_m = p^{-m} \sum_{j=0}^{p^m - 1} f(j),$$

converges strongly as $m \to \infty$ to a bounded linear operator. More precisely

$$\int_{\mathbb{Z}_p} f(t)dt = \lim_{m \to \infty} p^{-m} \sum_{j=0}^{p^m - 1} f(j).$$

Set $B_r(\mathbb{Q}_p^n) = \{A \in B(\mathbb{Q}_p^n) : 0 < ||A|| < r\}$ where $r = p^{\frac{-1}{p-1}}$.

Proposition 6. Let $A \in B_r(\mathbb{Q}_p^n)$ be invertible diagonal operator, then $(e^{tA})_{t \in \mathbb{Z}_p}$ is C^1 function and $(e^A - I)^{-1} \in B(\mathbb{Q}_p^n)$.

Proof. Let $A \in B_r(\mathbb{Q}_p^n)$ be invertible diagonal operator, then

for all
$$i \in \{1, \cdots, n\}$$
, $Ae_i = a_i e_i$,

where $a_i \in \mathbb{Q}_p^*$ such that $|a_i|_p < r$ and $(e_i)_{1 \le i \le n}$ is the canonical basis of \mathbb{Q}_p^n . Hence, for all $t \in \Omega_r$, e^{tA} exists and is given by

for all
$$i \in \{1, \cdots, n\}$$
, $e^{tA}e_i = e^{ta_i}e_i$.

Hence e^{tA} is C^{∞} that is C^1 . Moreover,

for all
$$i \in \{1, \dots, n\}$$
, $(e^A - I)e_i = (e^{a_i} - 1)e_i$.

We have for all $i \in \{1, \dots, n\}$, $1 - e^{a_i} \neq 0$. Consequently, $\det(e^A - I) \neq 0$, then $e^A - I$ is invertible. Moreover,

for all
$$i \in \{1, \dots, n\}$$
, $(e^A - I)^{-1} e_i = (\frac{1}{e^{a_i} - 1}) e_i$.

Hence $||(e^A - I)^{-1}|| = \sup_{1 \le i \le n} \left| \frac{1}{e^{a_i} - 1} \right|_p = \frac{1}{\inf_{1 \le i \le n} |e^{a_i} - 1|_p} < \infty$. Consequently, $(e^A - I)^{-1} \in B(\mathbb{Q}_p^n)$.

Proposition 7. Let $A \in B_r(\mathbb{Q}_p^n)$ be invertible diagonal operator such that $\int_{\mathbb{Z}_p} e^{tA} dt$ exists. Then for all $x \in \mathbb{Q}_p^n$, $(e^A - I) \int_{\mathbb{Z}_p} e^{tA} x dt = Ax$.

Proof. Let $A \in B_r(\mathbb{Q}_p^n)$ be invertible diagonal operator. By Proposition 6, the C_0 group $(e^{tA})_{t \in \mathbb{Z}_p}$ is locally analytic function and $(e^A - I)^{-1} \in B(\mathbb{Q}_p^n)$. Let $x \in \mathbb{Q}_p^n$, set $S_m x = p^{-m} \sum_{j=0}^{p^m-1} e^{jA} x$. Hence for all $x \in \mathbb{Q}_p^n$, we have

$$(e^A - I)S_m x = S_m (e^A - I)x$$
$$= \frac{e^{p^m A} x - x}{p^m}.$$

By assumption, for all $x \in \mathbb{Q}_p^n$, we have

$$\int_{\mathbb{Z}_p} e^{tA} x dt = \lim_{m \to \infty} S_m x.$$

Then, for all $x \in \mathbb{Q}_p^n$, we have

$$(e^{A} - I) \int_{\mathbb{Z}_{p}} e^{tA} x dt = (e^{A} - I) \lim_{m \to \infty} S_{m} x$$
$$= \lim_{m \to \infty} \frac{e^{p^{m}A} x - x}{p^{m}}$$
$$= Ax.$$

ſ			
I			
I			
L			

Example 2. Let $r = \frac{-1}{p-1}$ and let $A \in B(\mathbb{Q}_p^2)$ defined by

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \text{ where } a, \ b \in \Omega_r^*$$

Then, for all $t \in \mathbb{Z}_p$, we have

$$e^{tA} = \begin{pmatrix} e^{at} & 0\\ 0 & e^{bt} \end{pmatrix}.$$

Hence,

$$\int_{\mathbb{Z}_p} e^{tA} dt = \begin{pmatrix} \int_{\mathbb{Z}_p} e^{at} dt & 0\\ 0 & \int_{\mathbb{Z}_p} e^{bt} dt \end{pmatrix}.$$

Thus, for all $x = \begin{pmatrix} u \\ v \end{pmatrix} \in \mathbb{Q}_p^2$, we have

$$\begin{split} \int_{\mathbb{Z}_p} e^{tA} x dt &= \begin{pmatrix} \frac{a}{e^a - 1} & 0\\ 0 & \frac{b}{e^b - 1} \end{pmatrix} \begin{pmatrix} u\\ v \end{pmatrix} \\ &= \begin{pmatrix} a & 0\\ 0 & b \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{e^a - 1} & 0\\ 0 & \frac{1}{e^b - 1} \end{pmatrix} \begin{pmatrix} u\\ v \end{pmatrix} \\ &= (e^A - I)^{-1} A x. \end{split}$$

Definition 8. Let $A \in B(\mathbb{Q}_p^n)$. A is said to be scalar multiple of identity operator on \mathbb{Q}_p^n , if A = aI for some $a \in \mathbb{Q}_p$ and I is the identity operator on \mathbb{Q}_p^n .

Example 3. Let A be invertible scalar multiple of identity operator on \mathbb{Q}_p^n such that A = aI, where $a \in \Omega_r^*$ with $r = \frac{-1}{p-1}$. Hence for all $t \in \mathbb{Z}_p$, $T(t) = e^{ta}I$, then for all $x \in \mathbb{Q}_p^n$ and $a \in \Omega_r^*$, we have

$$\int_{\mathbb{Z}_p} T(tu) x du = \frac{a}{e^a - 1} x = (T(1) - I)^{-1} Ax.$$
(2)

References

- ADAMS W. W. Transcendental Numbers in the P-Adic Domain, American Journal of Mathematics, 88 (1966), no. 2, 279–308.
- [2] AMICE Y. Formules intégrales de Cauchy dans un corps p-adique, Théorie des nombres, Séminaire Delange-Pisot-Poitou. 4 (1963), no. 8, 7pp.
- [3] DIAGANA T. C_0 -semigroups of linear operator on some ultrametric Banach spaces, International journal of Matimatics and Mathematical Science (2006), 9pp.
- [4] DIAGANA T., RAMAROSON F. Non-archimedean Operators Theory, Springer, 2016.
- [5] EL AMRANI A., BLALI A., ETTAYB J., BABAHMED M. A note on C₀-groups and C-groups on non-Archimedean Banach spaces, Asian-European Journal of Mathematics, 14(2021), No.5, 19 pp.

J. ETTAYB

- [6] ETTAYB J. Two parameter C₀-groups of bounded linear operators on non-Archimedean Banach spaces, Mem. Differential Equations Math. Phys., accepted.
- [7] SCHIKHOF W. H. Ultrematric calculus. An introduction to p-adic analysis, Cambridge Studies in Advanced Mathematics, Cambridge, 1984.
- [8] PAZY A. Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci, 44, Springer-Verlag, 1983.

Received April 06, 2022

[9] VISHIK M. Non-Archimedean spectral theory, J. Soviet Math., 30 (1985), 2513-2554.

J. ETTAYB Department of Mathematics, Faculty of Sciences Dhar Mahraz, Sidi Mohamed Ben Abdellah University, Fès, Morocco. E-mail: jawad.ettayb@usmba.ac.ma