Some integrals for groups of bounded linear operators on finite-dimensional non-Archimedean Banach spaces

J. Ettayb

Abstract

In this paper, we extend the Volkenborn integral and Shnirelman integral for groups of bounded linear operators on finite-dimensional non-Archimedean Banach spaces over \mathbb{Q}_{p} and \mathbb{C}_{p} respectively. When the ground field is a complete nonArchimedean valued field, which is also algebraically closed, we give some functional calculus for groups of infinitesimal generator A such that A is a nilpotent operator on finite-dimensional non-Archimedean Banach spaces.

Mathematics subject classification: 47D03, 47S10, 46S10.
Keywords and phrases: Volkenborn integral, Shnirelman integral, groups of bounded linear operators, p-adic theory.

1 Introduction and Preliminaries

Throughout this paper, \mathbb{K} is a non-Archimedean non trivially complete valued field with valuation $|\cdot|, X$ is a non-Archimedean Banach space over $\mathbb{K}, \mathbb{Q}_{p}$ is the field of p-adic numbers ($p \geq 2$ being a prime) equipped with p-adic valuation $|\cdot|_{p}$ and \mathbb{Z}_{p} denotes the ring of p-adic integers (the ring of p-adic integers \mathbb{Z}_{p} is the unit ball of \mathbb{Q}_{p}). We denote the completion of algebraic closure of \mathbb{Q}_{p} under the p-adic valuation $|\cdot|_{p}$ by \mathbb{C}_{p} and $B(X)$ denotes the set of all bounded linear operators on X.
The study of Archimedean C_{0}-semigroup or C_{0}-group of bounded linear operators was first attempted by Yosida and Hille [8]. From [8], Corollary 2.5, if A is the infinitesimal generator of a C_{0}-semigroup then it is closed and $\overline{D(A)}=X$. By [8], (b) of Theorem 2.4:

$$
\text { For } x \in X, t \in \mathbb{R}^{+}, \int_{0}^{t} T(s) d s \in D(A) \text {, }
$$

and

$$
\text { for } x \in X, T(t) x-T(s) x=\int_{s}^{t} T(u) A x d u=\int_{s}^{t} A T(u) x d u \text {. }
$$

This is thanks to the Haar measure on the topological group $(\mathbb{R},+)$.
In the non-Archimedean analysis, there is no Haar measure on a subset of \mathbb{Q}_{p} into \mathbb{Q}_{p}, see Theorem 5 . When $\mathbb{K}=\mathbb{C}_{p}$, it is useful to use the Shnirelman integral defined

[^0]as: let $f(z)$ be a \mathbb{C}_{p}-valued function defined for all $z \in \mathbb{C}_{p}$ such that $|z-a|_{p}=r$ where $a \in \mathbb{C}_{p}$ and $r>0$ with $r \in\left|\mathbb{C}_{p}\right|_{p}$. Let $\Gamma \in \mathbb{C}_{p}$ such that $|\Gamma|_{p}=r$. Then the Shnirelman integral of f is defined as the following limit, if it exists,
\[

$$
\begin{equation*}
\int_{a, \Gamma} f(z) d z=\lim _{n \rightarrow \infty}^{\prime} \frac{1}{n} \sum_{\zeta^{n}=1} f(a+\zeta \Gamma) \tag{1}
\end{equation*}
$$

\]

where $\lim ^{\prime}$ indicates that the limit is taken over n such that $\operatorname{gcd}(n, p)=1$. For more details, we refer to [2], [4] and [9]. But there is a different results in non-Archimedean analysis, by [2], Theorem 1, we have:

$$
\int_{a, \Gamma} e^{z} d z=e^{a}
$$

and

$$
\int_{a, \Gamma}(z-a) e^{z} d z=0
$$

Recently, Diagana [3] introduced the notion of C_{0}-groups of bounded linear operators on a free non-Archimedean Banach space, for more details we refer to [3] and [5]. In [5], A. El Amrani, A. Blali, J. Ettayb and M. Babahmed introduced the notions of C-groups and cosine families of bounded linear operators on non-Archimedean Banach space. Let $r>0, \Omega_{r}=\{t \in \mathbb{K}:|t|<r\}$ [5]. We have the following definition.

Definition 1. [5] Let $r>0$ be a real number. A one-parameter family $(T(t))_{t \in \Omega_{r}}$ of bounded linear operators from X into X is a group of bounded linear operators on X if
(i) $T(0)=I$, where I is the unit operator of X.
(ii) For all $t, s \in \Omega_{r}, T(t+s)=T(t) T(s)$.

The group $(T(t))_{t \in \Omega_{r}}$ will be called of class C_{0} or strongly continuous if the following condition holds:

- For each $x \in X, \lim _{t \rightarrow 0}\|T(t) x-x\|=0$.

A group of bounded linear operators $(T(t))_{t \in \Omega_{r}}$ is uniformly continuous if and only if $\lim _{t \rightarrow 0}\|T(t)-I\|=0$.
The linear operator A defined by

$$
D(A)=\left\{x \in X: \lim _{t \rightarrow 0} \frac{T(t) x-x}{t} \text { exists }\right\}
$$

and

$$
A x=\lim _{t \rightarrow 0} \frac{T(t) x-x}{t}, \text { for each } x \in D(A)
$$

is called the infinitesimal generator of the group $(T(t))_{t \in \Omega_{r}}$.
In this paper, we extend to Volkenborn integral and Shnirelman integral for studying the C_{0}-groups of bounded linear operators on some non-Archimedean Banach spaces and we show some results about it. Now, we assume that $\mathbb{K}=\mathbb{C}_{p}$. We have the following definition.
Definition 2. [4] Let $f(z)$ be a \mathbb{C}_{p}-valued function defined for all $z \in \mathbb{C}_{p}$ such that $|z-a|_{p}=r$ where $a \in \mathbb{C}_{p}$ and $r>0$ with $r \in\left|\mathbb{C}_{p}\right|_{p}$. Let $\Gamma \in \mathbb{C}_{p}$ such that $|\Gamma|_{p}=r$. Then the Shnirelman integral of f is defined as the following limit, if it exists,

$$
\int_{a, \Gamma} f(z) d z=\lim _{n \rightarrow \infty}^{\prime} \frac{1}{n} \sum_{\zeta^{n}=1} f(a+\zeta \Gamma)
$$

where lim' indicates that the limit is taken over n such that $\operatorname{gcd}(n, p)=1$.
Theorem 1. [1] Let $f(z)=\sum_{n \in \mathbb{N}} a_{n} f_{n}(z)$ where the series on the right converges uniformly to $f(z)$ for all points $z \in \mathbb{C}_{p}$ such that $|z-a|_{p}=|\gamma|_{p}$. Suppose that for all $n \in \mathbb{N}, \int_{a, \gamma} f_{n}(z) d z$ exists.
Then $\int_{a, \gamma}^{a, \gamma} f(z) d z$ exists and $\int_{a, \gamma} f(z) d z=\sum_{n \in \mathbb{N}} a_{n} \int_{a, \gamma} f_{n}(z) d z$.
Lemma 1. [1] Let p be any integer such that $0<|p|<n$. Then

$$
\sum_{i=1}^{n} \xi_{i}^{(n) p}=0 .
$$

Now, let $f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots$ be a power series converging for all $z \in \mathbb{C}_{p}$ such that $|z|_{p}<R(R>0)$, we have the following:
Theorem 2. [1] If $|a|_{p}<R$ and $|\gamma|_{p}<R$, then

$$
\int_{a, \gamma} f(z) d z=f(a) .
$$

Corollary 1. [1] With the same hypothesis as in Theorem 2, we have:

$$
\int_{a, \gamma}(z-a) f(z) d z=0
$$

Theorem 3. [1] Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ be a power series converging for all $z \in \mathbb{C}_{p}$ such that $|z|_{p}<R(R>0)$. Suppose that $x, r \in \mathbb{C}_{p}$ such that $|x|_{p},|r|_{p}<R$. Then,

$$
\int_{0, r} \frac{z f(z)}{z-x} d z= \begin{cases}f(x) & \text { if }|x|_{p}<|r|_{p}, \\ 0 & \text { if }|x|_{p}>|r|_{p} .\end{cases}
$$

Theorem 4. [1] With the same hypothesis as in Theorem 3, we have:

$$
\int_{0, r} \frac{z f(z)}{(z-x)^{n+1}} d z=\frac{f^{n}(x)}{n!} \text { for }|x|_{p}<|r|_{p} .
$$

In the next, we assume that $\mathbb{K}=\mathbb{Q}_{p}$. There is no Newton-Leibniz formula in the p-adic analysis. There is no \mathbb{Q}_{p}-valued Lebesgue measure $\int_{\mathbb{Q}_{p}} f(t) d t$ is not well defined as usual.

Theorem 5. [7] Additive, translation invariant and bounded \mathbb{Q}_{p}-valued measure on clopens of \mathbb{Z}_{p} is the zero measure.

We denote by $C\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$ the space of all functions defined and continuous from \mathbb{Z}_{p} into \mathbb{Q}_{p}.

Theorem 6. [7] Let $f \in C\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$. The function defined on \mathbb{N} by

$$
F(0)=0, F(n)=f(0)+f(1)+\cdots+f(n-1)
$$

is uniformly continuous. The extended function is denoted by $S f(x)$ (called indenite sum of f). If f is strictly differentiable, so is $S f$.

We denote by $C_{s}^{1}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$ the space of all functions defined and strictly differentiable in \mathbb{Z}_{p} taking values in \mathbb{Q}_{p}. For more details, we refer to [7].

Definition 3. [7] The Volkenborn integral of $f \in C_{s}^{1}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$ is defined by

$$
\int_{\mathbb{Z}_{p}} f(t) d t=\lim _{n \rightarrow \infty} p^{-n} \sum_{j=0}^{p^{n}-1} f(j)=\lim _{n \rightarrow \infty} \frac{S f\left(p^{n}\right)-S f(0)}{p^{n}}=(S f)^{\prime}(0) .
$$

Lemma 2. [7] For all $t \in \Omega_{p^{*}-\frac{1}{p-1}}$,

$$
\int_{\mathbb{Z}_{p}} e^{t u} d u=\frac{t}{e^{t}-1} .
$$

2 Integral for C_{0}-groups on finite-dimentional Banach space over \mathbb{C}_{p}

In this section, let $\mathbb{K}=\mathbb{C}_{p}$ and let Ω_{r} be the open ball of \mathbb{K} centered at 0 with radius $r>0$. We always assume that r is suitably chosen such that $t \in \Omega_{r} \mapsto T(t)$ is well-defined, we have the following definition.

Definition 4. Let $r>0$ be a real number. A one-parameter family $(T(t))_{t \in \Omega_{r}}$ of bounded linear operators from \mathbb{C}_{p}^{n} into \mathbb{C}_{p}^{n} is said to be analytic group of bounded linear operators on \mathbb{C}_{p}^{n} if
(i) $T(0)=I$, where I is the unit operator of \mathbb{C}_{p}^{n}.
(ii) For all $t, s \in \Omega_{r}, T(t+s)=T(t) T(s)$.
(iii) For all $x \in X, t \rightarrow T(t) x$ is analytic on Ω_{r}.

We extend the following definition.
Definition 5. Let $(T(t))_{t \in \Omega_{r}}$ be analytic group of bounded linear operators on \mathbb{C}_{p}^{n}. The group $(T(t))_{t \in \Omega_{r}}$ is said to be integrable in the sense of Schnirelman if for all $a \in \Omega_{r}$ and $\gamma \in \Omega_{r} \backslash\{0\}$, the sequence $\left(S_{n}\right)_{n} \subset B\left(\mathbb{C}_{p}^{n}\right)$ defined by

$$
S_{n}=\sum_{\zeta^{n}=1} T(a+\zeta \gamma),
$$

converges strongly as $n \rightarrow \infty$ (the limit is taken over n such that $\operatorname{gcd}(n, p)=1)$ to a bounded linear operator. More precisely

$$
\int_{a, \gamma} T(t) d t=\lim _{n \rightarrow \infty}^{\prime} \frac{1}{n} \sum_{\zeta^{n}=1} T(a+\zeta \gamma)
$$

where $\lim ^{\prime}$ indicates that the limit is taken over n such that $\operatorname{gcd}(n, p)=1$.
Lemma 3. Let $(T(t))_{t \in \Omega_{r}}$ be analytic group on \mathbb{C}_{p}^{n} such that $\int_{a, \gamma} T(t) d t$ exists and $\sup _{t \in \Omega_{r}}\|T(t)\| \leq M$ where $a \in \Omega_{r}$ and $\gamma \in \Omega_{r} \backslash\{0\}$. Then
(i) For all $x \in \mathbb{C}_{p}^{n},\left\|\int_{a, \gamma} T(t) x d t\right\| \leq M\|x\|$.
(ii) For all $a \in \Omega_{r}, x \in \mathbb{C}_{p}^{n}, \int_{a, \gamma} T(t) x d t=T(a) \int_{0, \gamma} T(t) x d t$.

Proof. Let $(T(t))_{t \in \Omega_{r}}$ be analytic group on \mathbb{C}_{p}^{n} such that $\int_{a, \gamma} T(t) d t$ exists, then
(i) It suffices to apply Definition 5 .
(ii) By Definition 5, for all $x \in \mathbb{C}_{p}^{n}$ and for each $a \in \Omega_{r}$, then

$$
\begin{aligned}
\int_{a, \gamma} T(t) x d t & =\lim _{n \rightarrow \infty}^{\prime} \frac{1}{n} \sum_{\zeta^{n}=1} T(a+\zeta \gamma) x \\
& =T(a) \lim _{n \rightarrow \infty}^{\prime} \frac{1}{n} \sum_{\zeta^{n}=1} T(\zeta \gamma) x \\
& =T(a) \int_{0, \gamma} T(t) x d t
\end{aligned}
$$

Definition 6. [6] Let $A \in B\left(\mathbb{C}_{p}^{n}\right)$. A is said to be nilpotent of index d, if there is an integer number $d \leq n$ such that $A^{n}=0_{\mathbb{C}_{p}^{n}}$ and $A^{n-1} \neq 0_{\mathbb{C}_{p}^{n}}\left(\right.$ where $0_{\mathbb{C}_{p}^{n}}$ denotes the null operator from \mathbb{C}_{p}^{n} into \mathbb{C}_{p}^{n}).

Example 1. Let $A \in B\left(\mathbb{C}_{p}^{4}\right)$ be defined by

$$
\left(\begin{array}{cccc}
0 & a & b & c \\
0 & 0 & a & b \\
0 & 0 & 0 & a \\
0 & 0 & 0 & 0
\end{array}\right) \text { where } a, b, c \in \mathbb{C}_{p}
$$

It is easy to see that A is nilpotent of index 4.
Proposition 1. Let A be a nilpotent operator of index n on \mathbb{C}_{p}^{n} such that $\|A\|<p^{\frac{-1}{p-1}}$. Then $e^{t A}=\sum_{k=0}^{n-1} \frac{t^{k} A^{k}}{k!}$.

Proof. Since A is nilpotent operator of index n on \mathbb{C}_{p}^{n}. Then,

$$
\begin{aligned}
e^{t A} & =\sum_{k \in \mathbb{N}} \frac{t^{k} A^{k}}{k!} \\
& =\sum_{k=0}^{n-1} \frac{t^{k} A^{k}}{k!}
\end{aligned}
$$

Theorem 7. Let $e^{t A}$ be a C_{0}-group of infinitesimal generator A on \mathbb{C}_{p}^{n} such that A is nilpotent operator of index n on \mathbb{C}_{p}^{n}. Then for all $x \in \mathbb{C}_{p}^{n}, \int_{a, \gamma} e^{t A} x d t=e^{a A} x$.

Proof. Let $e^{t A}=\sum_{k=0}^{n-1} \frac{t^{k} A^{k}}{k!}$. Using Proposition 1 and Theorem 2, we have for all $x \in \mathbb{C}_{p}^{n}$,

$$
\begin{aligned}
\int_{a, \gamma} e^{t A} x d t & =\sum_{k=0}^{n-1} \frac{A^{k}}{k!} \int_{a, \gamma} t^{k} x d t \\
& =\sum_{k=0}^{n-1} \frac{a^{k} A^{k}}{k!} x=e^{a A} x
\end{aligned}
$$

Corollary 2. Under the hypothesis of Theorem 7, for all $x \in \mathbb{C}_{p}^{n}$,

$$
\int_{a, \gamma}(t-a) e^{t A} x d t=0
$$

Remark 1. Let $A \in B\left(\mathbb{C}_{p}^{n}\right)$ be a nilpotent operator, then $e^{t A}$ is integrable in the sense of Shnirelman.

Set for all $\lambda \in \rho(A), R(\lambda, A)=(\lambda I-A)^{-1}$ where $\rho(A)$ is the resolvent set of the linear operator A defined on X, we have the following:

Proposition 2. Let $A \in B\left(\mathbb{C}_{p}^{n}\right)$. If A is a nilpotent operator of index n, then for all $\lambda \in \mathbb{C}_{p}^{*}, R(\lambda, A)$ exists. Furthermore, for each $\lambda \in \mathbb{C}_{p}^{*}$, we have

$$
R(\lambda, A)=\sum_{k=0}^{n-1} \frac{A^{k}}{\lambda^{k+1}}
$$

Proof. Let $\lambda \in \mathbb{C}_{p}^{*}$, then

$$
\begin{aligned}
(\lambda I-A)\left(\sum_{k=0}^{n-1} \frac{A^{k}}{\lambda^{k+1}}\right) & =\sum_{k=0}^{n-1} \frac{A^{k}}{\lambda^{k}}-\sum_{k=0}^{n-1} \frac{A^{k+1}}{\lambda^{k+1}} \\
& =I .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left(\sum_{k=0}^{n-1} \frac{A^{k}}{\lambda^{k+1}}\right)(\lambda I-A) & =\sum_{k=0}^{n-1} \frac{A^{k}}{\lambda^{k}}-\sum_{k=0}^{n-1} \frac{A^{k+1}}{\lambda^{k+1}} \\
& =I .
\end{aligned}
$$

Consequently, for all $\lambda \in \mathbb{C}_{p}^{*}, R(\lambda, A)=\sum_{k=0}^{n-1} \frac{A^{k}}{\lambda^{k+1}}$.
Proposition 3. Let A be a nilpotent operator of index n on \mathbb{C}_{p}^{n} and $r=\frac{-1}{p-1}$. Then

$$
\text { for all } t \in \Omega_{r}, e^{t A}=\int_{0, \gamma} \lambda e^{\lambda t} R(\lambda, A) d \lambda, \text { where } \gamma \in \Omega_{r} \backslash\{0\} \text {. }
$$

Proof. By Proposition 2, for all $\lambda \in \Omega_{\frac{-1}{p-1}} \backslash\{0\}, R(\lambda, A)$ has a polynomial function form on \mathbb{C}_{p}^{n}, hence it is analytic on $\Omega_{\frac{-1}{p-1}} \backslash\{0\}$. Using Theorem 4, we obtain

$$
\begin{aligned}
\int_{0, \gamma} \lambda e^{\lambda t} R(\lambda, A) & =\int_{0, \gamma} \sum_{k=0}^{n-1} \lambda^{-k} e^{t \lambda} A^{k} d \lambda \\
& =\sum_{k=0}^{n-1} A^{k} \int_{0, \gamma} \lambda^{-k} e^{t \lambda} d \lambda
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{n-1} A^{k} \frac{\left(e^{t \lambda}\right)^{(k)}(0)}{k!} \\
& =\sum_{k=0}^{n-1} A^{k} \frac{t^{k}}{k!}=e^{t A} .
\end{aligned}
$$

We have the following proposition.
Proposition 4. Let A and B be nilpotent operators on \mathbb{C}_{p}^{n} and let $e^{t A}$ and $e^{t B}$ be two C_{0}-groups of infinitesimal generators A and B respectively. If $R(\lambda, A)$ and $R(\lambda, B)$ commute, then $e^{t A}$ and $e^{t B}$ commute.

Proof. By Proposition 3, we have

$$
e^{t A}=\int_{0, \gamma} \lambda e^{\lambda t}(\lambda I-A)^{-1} d \lambda \text { and } e^{t B}=\int_{0, \gamma} \lambda e^{\lambda t}(\lambda I-B)^{-1} d \lambda .
$$

Asumme that $R(\lambda, A)$ and $R(\lambda, B)$ commute, then

$$
\begin{aligned}
e^{t A} e^{t B} & =\int_{0, \gamma} \lambda e^{\lambda t}(\lambda I-A)^{-1} d \lambda \int_{0, \gamma} \lambda e^{\lambda t}(\lambda I-B)^{-1} d \lambda \\
& =\int_{0, \gamma} \int_{0, \gamma} \lambda e^{\lambda t}(\lambda I-A)^{-1} \lambda e^{\lambda t}(\lambda I-B)^{-1} d \lambda d \lambda \\
& =\int_{0, \gamma} \int_{0, \gamma} \lambda e^{\lambda t}(\lambda I-B)^{-1} \lambda e^{\lambda t}(\lambda I-A)^{-1} d \lambda d \lambda \\
& =e^{t B} e^{t A} .
\end{aligned}
$$

We have the following:
Proposition 5. Let A and $\left(A_{k}\right)_{k \in \mathbb{N}}$ be nilpotent operators on \mathbb{C}_{p}^{n}. If, $R\left(\lambda, A_{k}\right) \rightarrow R(\lambda, A)$ as $k \rightarrow \infty$, then $e^{t A_{k}}$ converges to $e^{t A}$ as $k \rightarrow \infty$.

Proof. From Proposition 3, we have

$$
\text { for all } t \in \Omega_{r}, e^{t A}=\int_{0, \gamma} \lambda e^{\lambda t} R(\lambda, A) d \lambda,
$$

where $\gamma \in \Omega_{r} \backslash\{0\}$ and $r=\frac{-1}{p-1}$ and

$$
\text { for all } t \in \Omega_{r}, k \in \mathbb{N}, \quad e^{t A_{k}}=\int_{0, \gamma} \lambda e^{\lambda t} R\left(\lambda, A_{k}\right) d \lambda \text {. }
$$

Moreover,

$$
e^{t A_{k}}-e^{t A}=\int_{0, \gamma} \lambda e^{t \lambda}\left[R\left(\lambda, A_{k}\right)-R(\lambda, A)\right] d \lambda
$$

is well-defined. Set

$$
M=\max _{|\lambda|_{p}=|\gamma|_{p}}\left|\lambda e^{t \lambda}\right|_{p}<\infty
$$

Since $R\left(\lambda, A_{k}\right) \rightarrow R(\lambda, A)$ as $k \rightarrow \infty$, it follows that for each $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $k \geq N,\left\|R\left(\lambda, A_{k}\right)-R(\lambda, A)\right\| \leq \frac{\varepsilon}{M}$. Consequently

$$
\begin{aligned}
\left\|e^{t A_{k}}-e^{t A}\right\| & \leq\left\|\int_{0, \gamma} \lambda e^{t \lambda}\left[R\left(\lambda, A_{k}\right)-R(\lambda, A)\right] d \lambda\right\| \\
& \leq \max _{|\lambda|_{p}=|\gamma|_{p}}\left|\lambda e^{t \lambda}\right|_{p}\left\|R\left(\lambda, A_{k}\right)-R(\lambda, A)\right\| \\
& \leq M \cdot \frac{\varepsilon}{M} \\
& =\varepsilon,
\end{aligned}
$$

whenever $k \geq N$, then $e^{t A_{k}}$ converges to $e^{t A}$ as $k \rightarrow \infty$.

3 Integral of groups of linear operators on \mathbb{Q}_{p}^{n}

From now on we assume that $\mathbb{K}=\mathbb{Q}_{p}$, we extend the Volkenborn integral to some non-Archimedean Banach spaces.

Definition 7. Let $f \in C_{s}^{1}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}^{n}\right)$. The sequence $\left(S_{m}\right)_{m} \subset B\left(\mathbb{Q}_{p}^{n}\right)$ defined by

$$
S_{m}=p^{-m} \sum_{j=0}^{p^{m}-1} f(j)
$$

converges strongly as $m \rightarrow \infty$ to a bounded linear operator. More precisely

$$
\int_{\mathbb{Z}_{p}} f(t) d t=\lim _{m \rightarrow \infty} p^{-m} \sum_{j=0}^{p^{m}-1} f(j)
$$

Set $B_{r}\left(\mathbb{Q}_{p}^{n}\right)=\left\{A \in B\left(\mathbb{Q}_{p}^{n}\right): 0<\|A\|<r\right\}$ where $r=p^{\frac{-1}{p-1}}$.
Proposition 6. Let $A \in B_{r}\left(\mathbb{Q}_{p}^{n}\right)$ be invertible diagonal operator, then $\left(e^{t A}\right)_{t \in \mathbb{Z}_{p}}$ is C^{1} function and $\left(e^{A}-I\right)^{-1} \in B\left(\mathbb{Q}_{p}^{n}\right)$.

Proof. Let $A \in B_{r}\left(\mathbb{Q}_{p}^{n}\right)$ be invertible diagonal operator, then

$$
\text { for all } i \in\{1, \cdots, n\}, A e_{i}=a_{i} e_{i}
$$

where $a_{i} \in \mathbb{Q}_{p}^{*}$ such that $\left|a_{i}\right|_{p}<r$ and $\left(e_{i}\right)_{1 \leq i \leq n}$ is the canonical basis of \mathbb{Q}_{p}^{n}. Hence, for all $t \in \Omega_{r}, e^{t A}$ exists and is given by

$$
\text { for all } i \in\{1, \cdots, n\}, e^{t A} e_{i}=e^{t a_{i}} e_{i}
$$

Hence $e^{t A}$ is C^{∞} that is C^{1}. Moreover,

$$
\text { for all } i \in\{1, \cdots, n\},\left(e^{A}-I\right) e_{i}=\left(e^{a_{i}}-1\right) e_{i} \text {. }
$$

We have for all $i \in\{1, \cdots, n\}, 1-e^{a_{i}} \neq 0$. Consequently, $\operatorname{det}\left(e^{A}-I\right) \neq 0$, then $e^{A}-I$ is invertible. Moreover,

$$
\text { for all } i \in\{1, \cdots, n\},\left(e^{A}-I\right)^{-1} e_{i}=\left(\frac{1}{e^{a_{i}}-1}\right) e_{i} \text {. }
$$

Hence $\left\|\left(e^{A}-I\right)^{-1}\right\|=\sup _{1 \leq i \leq n}\left|\frac{1}{e^{a_{i}}-1}\right|_{p}=\frac{1}{\inf _{1 \leq i \leq n}\left|e^{a_{i}}-1\right|_{p}}<\infty$. Consequently, $\left(e^{A}-I\right)^{-1} \in B\left(\mathbb{Q}_{p}^{n}\right)$.

Proposition 7. Let $A \in B_{r}\left(\mathbb{Q}_{p}^{n}\right)$ be invertible diagonal operator such that $\int_{\mathbb{Z}_{p}} e^{t A} d t$ exists. Then for all $x \in \mathbb{Q}_{p}^{n},\left(e^{A}-I\right) \int_{\mathbb{Z}_{p}} e^{t A} x d t=A x$.

Proof. Let $A \in B_{r}\left(\mathbb{Q}_{p}^{n}\right)$ be invertible diagonal operator. By Proposition 6, the $C_{0^{-}}$ group $\left(e^{t A}\right)_{t \in \mathbb{Z}_{p}}$ is locally analytic function and $\left(e^{A}-I\right)^{-1} \in B\left(\mathbb{Q}_{p}^{n}\right)$. Let $x \in \mathbb{Q}_{p}^{n}$, set $S_{m} x=p^{-m} \sum_{j=0}^{p^{m}-1} e^{j A} x$. Hence for all $x \in \mathbb{Q}_{p}^{n}$, we have

$$
\begin{aligned}
\left(e^{A}-I\right) S_{m} x & =S_{m}\left(e^{A}-I\right) x \\
& =\frac{e^{p^{m} A} x-x}{p^{m}}
\end{aligned}
$$

By assumption, for all $x \in \mathbb{Q}_{p}^{n}$, we have

$$
\int_{\mathbb{Z}_{p}} e^{t A} x d t=\lim _{m \rightarrow \infty} S_{m} x .
$$

Then, for all $x \in \mathbb{Q}_{p}^{n}$, we have

$$
\begin{aligned}
\left(e^{A}-I\right) \int_{\mathbb{Z}_{p}} e^{t A} x d t & =\left(e^{A}-I\right) \lim _{m \rightarrow \infty} S_{m} x \\
& =\lim _{m \rightarrow \infty} \frac{e^{p^{m} A} x-x}{p^{m}} \\
& =A x .
\end{aligned}
$$

Example 2. Let $r=\frac{-1}{p-1}$ and let $A \in B\left(\mathbb{Q}_{p}^{2}\right)$ defined by

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) \text { where } a, b \in \Omega_{r}^{*} .
$$

Then, for all $t \in \mathbb{Z}_{p}$, we have

$$
e^{t A}=\left(\begin{array}{cc}
e^{a t} & 0 \\
0 & e^{b t}
\end{array}\right) .
$$

Hence,

$$
\int_{\mathbb{Z}_{p}} e^{t A} d t=\left(\begin{array}{cc}
\int_{\mathbb{Z}_{p}} e^{a t} d t & 0 \\
0 & \int_{\mathbb{Z}_{p}} e^{b t} d t
\end{array}\right)
$$

Thus, for all $x=\binom{u}{v} \in \mathbb{Q}_{p}^{2}$, we have

$$
\begin{aligned}
\int_{\mathbb{Z}_{p}} e^{t A} x d t & =\left(\begin{array}{cc}
\frac{a}{e^{a}-1} & 0 \\
0 & \frac{b}{e^{b}-1}
\end{array}\right)\binom{u}{v} \\
& =\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right) \cdot\left(\begin{array}{cc}
\frac{1}{e^{a}-1} & 0 \\
0 & \frac{1}{e^{b}-1}
\end{array}\right)\binom{u}{v} \\
& =\left(e^{A}-I\right)^{-1} A x .
\end{aligned}
$$

Definition 8. Let $A \in B\left(\mathbb{Q}_{p}^{n}\right)$. A is said to be scalar multiple of identity operator on \mathbb{Q}_{p}^{n}, if $A=a I$ for some $a \in \mathbb{Q}_{p}$ and I is the identity operator on \mathbb{Q}_{p}^{n}.

Example 3. Let A be invertible scalar multiple of identity operator on \mathbb{Q}_{p}^{n} such that $A=a I$, where $a \in \Omega_{r}^{*}$ with $r=\frac{-1}{p-1}$. Hence for all $t \in \mathbb{Z}_{p}, T(t)=e^{t a} I$, then for all $x \in \mathbb{Q}_{p}^{n}$ and $a \in \Omega_{r}^{*}$, we have

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} T(t u) x d u=\frac{a}{e^{a}-1} x=(T(1)-I)^{-1} A x . \tag{2}
\end{equation*}
$$

References

[1] Adams W. W. Transcendental Numbers in the P-Adic Domain, American Journal of Mathematics, 88 (1966), no. 2, 279-308.
[2] Amice Y. Formules intégrales de Cauchy dans un corps p-adique, Théorie des nombres, Séminaire Delange-Pisot-Poitou. 4 (1963), no. 8, 7pp.
[3] Diagana T. C C_{0}-semigroups of linear operator on some ultrametric Banach spaces, International journal of Matimatics and Mathematical Science (2006), 9pp.
[4] Diagana T., Ramaroson F. Non-archimedean Operators Theory, Springer, 2016.
[5] El Amrani A., Blali A., Ettayb J., Babahmed M. A note on C_{0}-groups and C-groups on non-Archimedean Banach spaces, Asian-European Journal of Mathematics, 14(2021), No.5, 19 pp .
[6] Ettayb J. Two parameter C_{0}-groups of bounded linear operators on non-Archimedean Banach spaces, Mem. Differential Equations Math. Phys., accepted.
[7] Schikhof W. H. Ultrematric calculus. An introduction to p-adic analysis, Cambrige Studies in Advanced Mathematics, Cambridge, 1984.
[8] Pazy A. Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci, 44, Springer-Verlag, 1983.
[9] Vishik M. Non-Archimedean spectral theory, J. Soviet Math., 30 (1985), 2513-2554.
J. Ettayb

Received April 06, 2022
Department of Mathematics,
Faculty of Sciences Dhar Mahraz,
Sidi Mohamed Ben Abdellah University,
Fès, Morocco.
E-mail: jawad.ettayb@usmba.ac.ma

[^0]: (c) J. Ettayb, 2022

 DOI: https://doi.org/10.56415/basm.y2022.i3.p3

