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Optimal control of jump-diffusion processes with
random parameters

Mario Lefebvre

Abstract. Let X(t) be a controlled jump-diffusion process starting at x ∈ [a, b] and
whose infinitesimal parameters vary according to a continuous-time Markov chain.
The aim is to minimize the expected value of a cost function with quadratic control
costs until X(t) leaves the interval (a, b), and a termination cost that depends on the
final value of X(t). Exact and explicit solutions are obtained for important processes.
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1 Introduction

Let {Y (t), t ≥ 0} be a continuous-time Markov chain with state space
E = {1, 2, . . . , k}. We consider the two-dimensional process {(X(t), Y (t)), t ≥ 0},
where X(t) is defined by the stochastic differential equation

dX(t) = µ[X(t), Y (t)]dt + b0u[X(t), Y (t)]dt + σ[X(t), Y (t)]dB(t) + εdN(t), (1)

in which b0 and ε are positive constants, {B(t), t ≥ 0} is a standard Brownian motion
and {N(t), t ≥ 0} is a time-homogeneous Poisson process with rate λ > 0. That is,
{X(t), t ≥ 0} is a controlled jump-diffusion process with random infinitesimal mean
µ(·, ·) and variance σ2(·, ·). We assume that {B(t), t ≥ 0} and {N(t), t ≥ 0} are
independent processes.

Jump-diffusion processes are very important in mathematical finance, where they
are used as models for the evolution of stock or commodity prices. Moreover, be-
cause of frequent regime changes, the fact that the parameters µ(·, ·) and σ2(·, ·) are
random is more realistic.

In this paper, we are looking for the control u∗(x, i) that minimizes the expected
value of the cost function

J(x, i) :=
∫ T (x,i)

0

{
1
2

q0,iu
2[X(t), i] + θi

}
dt + Ki[X(T (x, i))], (2)

where q0,i > 0, θi ∈ R and T (x, i) is the first-passage time

T (x, i) = inf{t ≥ 0 : X(t) /∈ (a, b) | X(0) = x ∈ [a, b], Y (0) = i}, (3)
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for i = 1, 2, . . . , k. If the constant θi is positive (respectively, negative), then the
optimizer wants the process to leave the continuation region as soon (respectively,
late) as possible. Furthermore, we assume that the termination cost is of the form

Ki[X(T (x, i))] = aiX
2(T (x, i)) + biX(T (x, i)) + ki, (4)

where ai, bi and ki are constants, for i = 1, 2, . . . , k. Depending on the values of
these constants (and the other parameters in the problem), the aim can be to try to
leave the interval (a, b) through a rather than b, or vice versa.

The problem set up above is an extension of the so-called LQG homing problem
studied by Whittle [7] for n-dimensional diffusion processes. He showed that it is
sometimes possible to obtain the exact optimal control by computing a mathemat-
ical expectation for the corresponding uncontrolled process. Lefebvre [3] extended
Whittle’s results to the case of one-dimensional jump-diffusion processes with deter-
ministic infinitesimal parameters. The optimal control then becomes approximate,
rather than exact. At any rate, even if one is able to reduce the stochastic optimal
control problem to a purely probabilistic problem, computing the mathematical ex-
pectation needed to obtain the optimal control is usually very difficult, especially in
two or more dimensions.

For applications of LQG homing problems, see in particular Ionescu et al. [1]
and [2], as well as Lefebvre [4] and [5]. See also Makasu [6] for the solution to a
two-dimensional problem.

In the next section, we will give the system of non-linear differential-difference
equations that we must solve to determine the optimal controls u∗(x, i), for
i = 1, 2, . . . , k. In Section 3, exact solutions to particular problems for important
processes will be found explicitly.

2 Dynamic programming

We define the value function

F (x, i) = inf
u[X(t),i], 0≤t≤T (x,i)

E[J(x, i)], (5)

for i = 1, 2, . . . , k. To obtain the dynamic programming equation satisfied by the
function F (x, i), we will use the following results: first, by definition, a Poisson
process starts at N(0) = 0, and the number N(t) of events in the interval (0, t] has
a Poisson distribution with parameter λt, which implies that

P [N(∆t) = 0] = e−λ∆t = 1− λ∆t + o(∆t) (6)

and
P [N(∆t) = 1] = λ∆te−λ∆t = λ∆t + o(∆t). (7)

Next, we assume that B(0) = 0; then, as is well known, we can write that

E[B(∆t)] = 0 (8)
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and
E[B2(∆t)] = V [B(∆t)] = ∆t. (9)

Finally, in the case of the continuous-time Markov chain {Y (t), t ≥ 0}, when it
enters state i, it remains there for a random time τi having an exponential distribu-
tion with parameter denoted by νi. Then, it will move to state j 6= i with probability
pi,j , with

∑
j 6=i pi,j = 1. Therefore, when Y (0) = i,

P [Y (∆t) = i] = P [τi > ∆t] = e−νi∆t = 1− νi∆t + o(∆t) (10)

and
P [Y (∆t) = j] =

(
1− e−νi∆t

)
pi,j = νipi,j ∆t + o(∆t), (11)

for j 6= i.
Using the standard arguments, we obtain the following dynamic programming

equation (DPE):

0 = inf
u(x,i)

{
1
2

q0,iu
2(x, i) + θi + [µ(x, i) + b0u(x, i)]F ′(x, i)

+
1
2

σ2(x, i)F ′′(x, i) +
∑

j 6=i

νipi,j [F (x, j)− F (x, i)]

+λ [F (x + ε, i)− F (x, i)]
}

. (12)

From Eq. (12), we deduce at once that, in terms of F (x, i), the optimal control
u∗(x, i) is

u∗(x, i) = − b0

q0,i
F ′(x, i). (13)

We can now state the following proposition, obtained by substituting the above
expression into the DPE.

Proposition 2.1. The value functions F (x, i), i = 1, . . . , k, satisfy the system of
non-linear second-order differential-difference equations

0 = θi + µ(x, i)F ′(x, i)− 1
2

b2
0

q0,i

[
F ′(x, i)

]2

+
1
2

σ2(x, i)F ′′(x, i) +
∑

j 6=i

νipij [F (x, j)− F (x, i)]

+λ [F (x + ε, i)− F (x, i)] . (14)

The system is valid for a < x < b. Moreover, because the jump size is a positive
constant ε, the boundary conditions are

F (a, i) = Ki(a) and F (x, i) = Ki(x) if b ≤ x < b + ε. (15)

In the next section, we will find exact solutions to the above system in important
particular cases.
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3 Particular cases

For the sake of simplicity, we assume that the state space of the Markov chain
{Y (t), t ≥ 0} is the set {1, 2}; that is, k = 2 in Proposition 2.1. Then, we have that
pi,j = 1.

First, making use of Taylor’s formula, we can write that

F (x + ε, i) = F (x, i) + εF ′(x, i) +
1
2

ε2F ′′(x, i) + o(ε2), (16)

which implies that the system (14) can be rewritten as follows:

0 ≈ θi + µ(x, i)F ′(x, i)− c2
i

[
F ′(x, i)

]2 +
1
2

σ2(x, i)F ′′(x, i)

+ νi [F (x, j)− F (x, i)] + λ

[
εF ′(x, i) +

1
2

ε2F ′′(x, i)
]

(17)

for i = 1, 2, where

c2
i :=

1
2

b2
0

q0,i
. (18)

If ε is small, then the solution to the above system should be a good approxi-
mation to the exact solution that we are looking for. Furthermore, if F (x, i) is a
polynomial of degree 1 or 2, then the solution to (17) is actually the exact solution
to our problem.

Case I. Assume that the interval [a, b] is [0, 1], and that µ(x, i) ≡ µi ∈ R, for
i = 1, 2. If σ2(x, i) ≡ σ2

i , then the continuous part of the process {X(t), t ≥ 0} is a
Wiener process with random infinitesimal parameters. The Wiener process is surely
among the most important diffusion processes.

Suppose that
Ki[X(T (x, i))] = biX(T (x, i)) + ki, (19)

where bi 6= 0, for i = 1, 2. So, we take ai = 0 in Eq. (4). The boundary conditions
are therefore

F (0, i) = ki and F (x, i) = bix + ki if 1 ≤ x < 1 + ε. (20)

Hence, in general, the optimizer should try to make the controlled process leave the
interval (0, 1) through the origin, so that we expect u∗(x, i) to be negative. However
the sign of the optimal control also depends, in particular, on the value of θi. If
θi > 0 is large and x is close to 1, it might be better to leave the interval through
x ≥ 1 and accept the larger termination cost.

Now, let us try a value function F (x, i) of the same form as Ki(x). Substituting
this expression into the system (17), we find that

0 = θ1 + µ1 b1 − c2
1 b2

1 + ν1 [(b2 − b1)x + (k2 − k1)] + λεb1, (21)
0 = θ2 + µ2 b2 − c2

2 b2
2 − ν2 [(b2 − b1)x + (k2 − k1)] + λεb2. (22)
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We deduce from the above equations that a necessary condition for the solution to
be valid is that we must have b1 = b2, so that the constants b1 6= 0, k1 and k2 must
be such that

0 = θ1 + µ1 b1 − c2
1 b2

1 + ν1 (k2 − k1) + λεb1, (23)
0 = θ2 + µ2 b1 − c2

2 b2
1 − ν2 (k2 − k1) + λεb1. (24)

Let us choose the following parameters:

µ1 = −1, µ2 = 0, λ = ε = θi = νi = b0 = q0,i = 1, for i = 1, 2.

Then, one can check that the system (23), (24) is satisfied if b1 = 2, k1 = 0 and
k2 = 1. Thus, we have that

F (x, 1) = 2x and F (x, 2) = 2x + 1 if 0 < x < 1. (25)

Furthermore, the functions F (x, i) satisfy the boundary conditions in (20) with
b1 = b2 = 2, for i = 1, 2.

From Eq. (13), we obtain that the optimal control is given by

u∗(x, 1) = u∗(x, 2) ≡ −2. (26)

For other choices of the parameters q0,1 and q0,2, u∗(x, 1) and u∗(x, 2) could be
different, but they are always constant in this first example.
Remarks. (i) If instead of µ2 = 0 above, we rather have µ2 = −2, then we find
that the system is satisfied if b1 = −2 (together with k1 = 0, k2 = 1). Therefore,
we have a second explicit solution to the problem considered. Moreover, notice that
the optimal control u∗(x, i) would then be positive.
(ii) Since the solution to our problem does not depend on σ2

1(x, i) and σ2
2(x, i), it

is valid, in particular, in the case of a Wiener process with random parameters and
Poissonian jumps, as mentioned above.
(iii) We can easily find other particular solutions. For instance, if µ1 = 0, µ2 = 1/3,
k1 = 0 and k2 = 1/2, then b1 = 3, etc.

Case II. Assume again that the continuation region is the interval (0, 1). This
time, we take µ(x, i) = −γix, for i = 1, 2. If the constant γi is positive and if
σ2(x, i) ≡ σ2

i , {X(t), t ≥ 0} is then an Ornstein-Uhlenbeck process with random
parameters and Poissonian jumps. The Ornstein-Uhlenbeck process is also among
the most important diffusion processes for applications.

We choose the termination cost function in Eq. (19), and we try a solution
F (x, i) = Ki(x) of the system (17). We obtain the following system:

0 = θ1 − γ1 b1x− c2
1 b2

1 + ν1 [(b2 − b1)x + (k2 − k1)] + λεb1, (27)
0 = θ2 − γ2 b2x− c2

2 b2
2 − ν2 [(b2 − b1)x + (k2 − k1)] + λεb2. (28)

Therefore, we must have (for the terms in x)

0 = −γ1 b1 + ν1 (b2 − b1), (29)
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0 = −γ2 b2 − ν2 (b2 − b1) (30)

and (for the constant terms)

0 = θ1 − c2
1 b2

1 + ν1 (k2 − k1) + λεb1, (31)
0 = θ2 − c2

2 b2
2 − ν2 (k2 − k1) + λεb2. (32)

Let us choose the parameters γ1 = 1, γ2 = −1/2, λ = ε = ν1 = ν2 = b0 = 1,
θ1 = −1/2, θ2 = −1, q0,1 = 1 and q0,2 = 2. We find that a solution of the above
systems (that also satisfies the appropriate boundary conditions) is

F (x, 1) = x + k1 and F (x, 2) = 2x + k2 if 0 < x < 1, (33)

for any choice of the constants k1 and k2 such that

k2 − k1 = 0. (34)

Furthermore, the optimal control is

u∗(x, 1) = u∗(x, 2) ≡ −1. (35)

Case III. Finally, we take µ(x, i) = µix, where µi ∈ R, and σ2(x, i) = σ2
i x2, for

i = 1, 2. Therefore, the continuous part of the process {X(t), t ≥ 0} is a geometric
Brownian motion, which is widely used in financial mathematics. Because this
diffusion process is always positive (if it starts at X(0) > 0), we assume that a > 0
in the interval [a, b]. We choose the interval [1, 2] and the termination cost function
in (4), with a1 = a2 and b1 = b2. The boundary conditions are

F (1, i) = a1 + b1 + ki and F (x, i) = a1x2 + b1x + ki if 2 ≤ x < 2 + ε. (36)

Proceeding as in the previous cases, we try a solution of the same form as the
function Ki(·). We then obtain the system

0 = θ1 + µ1x(2a1x + b1)− c2
1 (2a1x + b1)2 + σ2

1 x2a1

+ν1 (k2 − k1) + λ
[
ε(2a1x + b1) + ε2a1

]
, (37)

0 = θ2 + µ2x(2a1x + b1)− c2
2 (2a1x + b1)2 + σ2

2 x2a1

−ν2 (k2 − k1) + λ
[
ε(2a1x + b1) + ε2a1

]
. (38)

For the sake of simplicity, let us choose λ = ε = 1. We then deduce that we must
have (for the terms in x2)

0 = 2µ1a1 − 4c2
1a2

1 + σ2
1 a1, (39)

0 = 2µ2a1 − 4c2
2a2

1 + σ2
2 a1, (40)

(for the terms in x)

0 = µ1 b1 − 4c2
1a1 b1 + 2a1, (41)
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0 = µ2 b1 − 4c2
2a1 b1 + 2a1 (42)

and (for the constant terms)

0 = θ1 − c2
1 b2

1 + ν1 (k2 − k1) + b1 + a1, (43)
0 = θ2 − c2

2 b2
1 − ν2 (k2 − k1) + b1 + a1. (44)

We can check that the function

F (x, i) = x2 + x + ki for 1 < x < 2 (45)

is a solution to our problem if

µ1 = 0, µ2 = −1, σ2
1 = 2, σ2

2 = 3, b0 = ν1 = ν2 = q0,1 = 1

and q0,2 = 2, together with

θ1 = −3
2
− (k2 − k1) and θ2 = −7

4
+ (k2 − k1). (46)

It follows that the optimal controls are affine functions of x:

u∗(x, 1) = −(2x + 1) and u∗(x, 2) = −1
2

(2x + 1). (47)

4 Conclusion

In this paper, we considered a difficult problem, namely an optimal control prob-
lem for jump-diffusion processes with random parameters, when in addition the final
time is a first-passage time random variable. The aim was to obtain exact and ex-
plicit solutions to such problems.

In Section 3, we were able to solve three particular problems for very important
diffusion processes. Wiener processes, Ornstein-Uhlenbeck processes and geometric
Brownian motions appear in numerous applications.

For the discrete part of the jump-diffusion processes, we assumed that jumps oc-
curred according to a time-homogeneous Poisson process and that the jump size was
a positive constant. This enabled us, making use of Taylor’s formula, to transform
a system of differential-difference equations into an approximate system of differen-
tial equations. However, this approximate system becomes an exact one in the case
when the value function is a polynomial of degree equal to 1 or 2.

It would be interesting to try to generalize the results obtained in this paper to
the case of a random jump size. We could also assume that there can be both positive
and negative jumps that are generated by two independent Poisson processes.

Finally, as mentioned above, the aim was to obtain analytical solutions to the
problem set up in Section 1. When the state space E of the Markov chain contains
many values, it should at least be possible to use numerical methods to determine
the value functions and the optimal controls.
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