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Abstract. In this paper, we prove a fixed point theorem for p-contraction mappings
in partially ordered metric spaces. As an application, we investigate the possibility of
optimally controlling the solution of the ordinary differential equations.
Mathematics subject classification: 47H10, 54H25.

Keywords and phrases: Fixed point, p-contraction type maps, partially ordered
metric spaces, ordinary differential equation.

1 Introduction and Preliminaries

The applications of fixed point theorems are very important in diverse disci-
plines of mathematics, statistics, engineering and economics in dealing with prob-
lems arising in: approximation theory, potential theory, game theory, mathematical
economics, theory of differential equations, theory of integral equations, etc.

In this paper, we prove a fixed point theorem for p-contraction mappings in
partially ordered metric spaces and we apply this theorem to ordinary differential
equation. For this aim we need the following definitions.

First of all, we define the fixed point of mapping A.

Definition 1. [2] Let A, S : X — X be two mappings. A point u € X is said to be
i) a fixed point of A if Au = u,
ii) a coincidence point of A and S if Au = Su. The point z = Au = Su is called
a point of coincidence of A and S.
iii) a common fixed point of A and S if Au = Su = u.
iv) A and S are weakly compatible iff they commute at their coincidence point.

Also, we must mention the famous Banach contraction.

Definition 2. [4] A mapping 7' : X — X is said to be a Banach contraction
mapping if it satisfies the following inequality:

d(T'(z), T(y)) < Ad(z,y),

for all x,y € X, where 0 < A < 1. It is well known that a Banach contraction
mapping 71" on a complete metric space X has a unique fixed point.
Let X be a topological space and Y C X be equipped with relativized topology.
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Definition 3. A mapping 7" : ¥ € X — X is said to be a weak topological
contraction if Y is T-invariant and T is continuous and closed such that for each
non-empty closed subset A of Y with T(A) = A, A is a singleton set. Further, if
the diameter 6(7"(Y)) — 0 as n — oo then the mapping 7T is said to be a strong
topological contraction.

Remark 1. If X is a bounded metric space (i.e., §(X), the diameter of X, is finite)
and T is a Banach contraction, then clearly T' is a weak topological contraction. In
2008, H. K. Pathak and N. Shahzad introduced in the following definition the notion
of p-contraction which is more general than the Banach contraction principle.

Definition 4. [8] Let (X,d) be a metric space. A mapping 7 :Y C X — X is
said to be a metric p-contraction (or simply p-contraction) mapping if Y is
T-invariant and it satisfies the following inequality:

d(T(x), T%(z)) < p(x)d(z, T()) (1)

for all x in Y, where p : Y — [0,1] is a function such that p(z) < 1 for all
xz € Y and sup,cy p(Tx) = o < 1. Further, if N9 7™ (Y") is a singleton set, where
T(Y) = T(T" 1(Y)) for each n € N and T°(Y) =Y, then T is said to be a strong
p-contraction.

Remark 2. 1) If p(z) < 1 for all x € Y, then the p-contraction mapping is said to
be a fundamental contraction which is also known as a Banach operator.

2)If Y = X and y = T'(x), then a Banach contraction mapping is a fundamental
contraction.

3) If p(z) <1 for all z € Y and sup,cy p(Tz) = 1, then the p-contraction map-
ping is said to be fundamentally p-non-expansive. In particular when
p(x) = 1 for all z € Y, then the fundamentally p-non-expansive mapping is said
to be fundamentally non-expansive.

4) If sup,cy p(x) < 1 (or < 1), then sup,cy p(Tx) <1 (or < 1) since T'(Y) C Y.

Remark 3. The concept of p-contraction is more general than the Banach contraction
principle, see [8], example 2.1.

Remark 4. A p-contraction mapping is not continuous in general, see [8], example
2.2.

In 1976, Caristi [3] proved the following theorem.
Theorem 1. Let (X,d) be complete and ¢ : X — R a lower semi-continuous func-

tion with a finite lower bound. Let T : X — X be any (not necessarily continuous)
function such that

d(y, Ty)(y) < e(y) — p(Ty)
for each y € X. Then T has a fized point.

Remark 5. In general, a p-contraction does not satisfy Caristi’s condition but every
fundamental contraction does.
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Definition 5. [6] A metric space (X, d) is said to be T-orbitally complete if T" is a
self-mapping of X and if any Cauchy subsequence {T™z} in orbit O(x,T), z € X,
converges in X.

Definition 6. [6] An operator 7': X — X on X is said to be orbitally continuous
if T"x — wu, then T'(T"x) — Tu as i — 0.

Definition 7. [6] An operator T : X — X on X is said to be weakly orbitally
continuous if 7"z — w, then d(T"z, T'(T™z)) — d(u,T'u) as i — oo.

Remark 6. It is clear that a complete metric space is orbitally complete with respect
to any self-mapping of X and that a continuous mapping is always orbitally con-
tinuous and an orbitally continuous mapping is always weakly orbitally continuous,
but the converse implications are not true in general, see [8], example 2.3.

The aim of this paper is to prove a fixed point result for self-mapping which
satisfies p-contraction condition in partially ordered metric spaces. For this purpose
we need the following definitions.

Definition 8. [1] Let X be a nonempty set. Then (X,d, =) is called an ordered
metric space iff:
(i) (X,d) is a metric space; (ii) (X, <) is partially ordered set.

Definition 9. [6] Let (X, <) be a partially ordered set. =,y € X are called compa-
rable if x < y or y < z holds.

2 Main Results

Theorem 2. Let (X, <) be a partially ordered set. Suppose that there exists a metric
d in X such that (X, d) is T-orbitally complete, T is a non-decreasing mapping such
that there exists xog € X with xy < T(xo) and T is a strongly fundamental contraction
mapping with T(x) < x. Assume that either T is orbitally continuous or X is such
that

if a sequence x,, — x in X is non-decreasing, then z,, < x. (2)

Then T has a fixed point. Moreover, if
for each x € X, there exists z € X which is comparable to x and T(z), (3)

therefore, the fixed point is unique.

Proof. First, we show that T" has a fixed point. Let x¢ be an arbitrary point of X.
We construct an iterative sequence {z,} defined by z,11 = T(zy) = T"™(x0). Since
xo < T(zp) and T is a nondecreasing function, we have by induction

zo < T(x) < T?(xg) < T3(z0) < ... <T™(xg) < T (z0) < ...

As x,, < x4 for each n € N, applying (1) we get

d(r1,22) < p(z0)d(z0,71),



18 AHMED CHAOUKI AOUINE

d(z2,23) < pla1)d(xr,x2)
< p(xo)p(z1)d(zo, 21).
By induction we obtain
d(xn)xn—l—l) < Z.l;llpid(x&xl)v (4)

where p; = p(x;_1) = p(T" 1(x0)), i € N. Since max{p(xo),supp(Tx)} < X < 1,
using (4) we have
d($n,$n+1) < )‘nd(x()axl)’vn e N.

For m > n, m,n € N, we get

d(xnvxm) < d(xna$n+1) + d($n+1axn+2) +--- + d(xmflyxm)
S [)\n+>\n+1 4. +)\m_1]d(ﬂfo,l’1)
(e
= oy e
A"
< 1 )\d(ﬁowl)-

Therefore, the sequence {z,} is a Cauchy sequence in X. Since X is T-orbitally
complete, it follows that there exists a Cauchy subsequence {T"i(z¢)} of {z,} in
the orbit O(z,Tx), x € X, which converges to a point z € X. Suppose that T is
orbitally continuous. Then

z = limzy,, = lim T™ (x9)
n—oo n—oo
= lim 7% (20) = lim T(T™ (o))
n—oo n—oo
= T(2),

which shows that z is a fixed point of 7. Hence T'(z) = z. If case (2) holds, then

d(T(2),2) d(T(2),T (xn)) + d(T (24) , 2)
p(:L‘n)d(Z, xn) + d(xn+17 Z)

d(z,xn) + d(Tpt1, 2)-

VAN VAN VAN

Since d(z,x,) — 0 then we obtain T'(z) = z. To prove the uniqueness of the fixed
point, let w be another fixed point of 7. From (3) there exists x € X which
is comparable to w and z. Monotonicity implies that 7" (x) is comparable to
T" (w) =w and T (z) = z for n = 1,2, .... Then

d(z,T" (x)) = d(T"(2),T" ()) (5)
< p(T" ()T (2), T (@)).

Therefore
d(z,T" (z)) < al(z,T”_1 (x)).
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Consequently, the sequence {~,} defined by v, = d(z,T™ (x)) is nonnegative and
nonincreasing and so lim d(z,7" (z)) = v > 0. Now, we show that v = 0. On the
n—oo

contrary, assume that v > 0. By passing to the limit in (5), we get

v < sup p(Tx)y < 7,
rxeX

which is a contradiction and so v = 0. Simillarly, it can be proved that
lim d(w,T" (z)) = 0. Finally,
n—oo

d(z,w) < d(z,T" (x)) + d(T" (z) , w),

and taking the limit as n — oo, we obtain z = w. O

3 Application to ordinary differential equations

Inspired by the papers of Pathak and Shahzad [8] and Aouine and Aliouche [3],
we investigate the possibility of optimally controlling the solution of the ordinary
differential equation (6) via dynamic programming.

Let A be a compact subset of R" and for each given a € A, F, : R® — R"
be a strong p-contraction mapping such that F,(z) = f(z,a), Vo € R", where
f:R"x A — R"is a given bounded function which satisfies the following generalized
contractive condition:

[f (@, a) = f(y,a)| < q(lz —y))|z —yl, 2,y € R",a € 4, (*)

where ¢ : Ry — [0,1] is a function with supg(t) < A < 1. We will now study
>0

the possibility of optimally controlling the solution z(-) of the ordinary differential
equation

{ (s) = f(z(s),a(s)) (t<s<T) (6)

z(t) = xo.

Here T' > 0 is a fixed terminal time, and = € R" is a given initial point, taken on by
our solution z(-) at the starting time ¢ > 0. At later times t < s < T, z(+) evolves
according to the ODE (6). The function «(-) appearing in (6) is a control, that is,
some appropriate scheme for adjusting parameters from the set A as time evolves,
there by affecting the dynamics of the system modelled by (6). Let us write

A={a:[0,T] — Ala(:) is measurable}, (7)
to denote the set of admissible controls. Then since
|f(1:aa)| < Ca |f(IL‘,CZ) - f(yya)| < Q(’$ - y|)|1: - y|7 T,y € Rnaa € Av (8)

where ¢ is defined in (x), we have

[Fa(z) — Fa(y)l < q(lz—y))lz -yl (9)
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where

p(z) = sup q(|lz —yl),
yeR”

for all x in R™, where p : R® — [0,1] is a function such that sup p(z) = A < 1.
TER™
We see that for each control a(-) € A. We have proved that the ODE (6) has a

unique generalized contractive continuous solution z(-) = z®()(-), existing on the
time interval [¢,T] and solving the ODE for a.e. time ¢t < s < T. We call z(-) the
response of the system to the control a*(-) and z(s) the state of the system at time
S.

Our aim is to find control o*(-) which optimally steers the system. In order
to define what “optimal” means however, we must first introduce a cost criterion.
Given z € R™ and 0 < t < T, let us define for each admissible control a(-) € A the
corresponding cost

T
Crila()] == /h($(8)7a(8))d8+9($(T))> (10)

where z(-) = 2%)(-) solves the ODE (6) and h: R x A — R, g: R — R are given
functions. We call h the running cost per unit time and ¢ the terminal cost and will
henceforth assume

|Ha()], [9(2)] < C,

|Ho(z) — Ha(y)| < p(z)|z —yl, |9(z) — g(y)| < p(z)|z -y, (11)
z,y € R" a € A,

for some constant C, where p : R™ — [0, 1] is a function such that sup p(z) = A <1
ZBGR"
and for each given a € A, H, : R® — R" is a strongly fundamental contraction

mapping such that H,(x) = h(z,a) for all x € R™.

Given now z € R” and 0 < ¢ < T, we would like to find if a control o*(-) is
possible which minimizes the cost functional (10) among all admissible controls.
To investigate the above problem we shall apply the method of dynamic program-
ming. We now turn our attention to the value function u(z,t) defined by

u(z,t) = aggléACx,t[a(')}(x eR"0<t<T). (12)

The plan is this: having defined u(z, t) as the least cost given we start at the position
x at time ¢, we want to study u as a function of x and t. We are therefore embedding
our given control problem (6) and (10) into the larger class of all such problems, as
x and t vary. This idea then can be used to show that u solves a certain Hamilton—
Jacobi type PDE, and finally to show conversely that a solution of this PDE helps us
to synthesize an optimal feedback control. Let us fix z € R™, 0 <t < T. Following
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the technique of Evans [7], p. 553, we can obtain the optimality conditions in the
form given below: For each & > 0 so small that t +¢& < T,

t+§

uat)i= int / h(w(s), a(s))ds + (@t +€),t+ ) (13)

where z(-) = 1), solves the ODE (6) for the control af(-).
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