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B-spline approximation of discontinuous functions

defined on a closed contour in the complex plane

Maria Capcelea, Titu Capcelea

Abstract. In this paper we propose an efficient algorithm for approximating piece-
wise continuous functions, defined on a closed contour Γ in the complex plane. The
function, defined numerically on a finite set of points of Γ, is approximated by a
linear combination of B-spline functions and Heaviside step functions, defined on Γ.
Theoretical and practical aspects of the convergence of the algorithm are presented,
including the vicinity of the discontinuity points.
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1 Introduction and problem formulation

Let Γ be a simple closed contour in the complex plane that includes inside it the
origin of coordinates and f : Γ → C is a function defined at the points of this
contour. Let the function f ∈ PC (Γ), where PC (Γ) is the set of all continuous or
piecewise continuous functions on Γ. If the function f ∈ PC (Γ) is discontinuous on
Γ, we consider that it has finite jump discontinuities, being left continuous at the
discontinuity points.

In multiple practical situations the function f is not defined analytically, but
by its values on a finite set of points. In this paper we aim to develop an efficient
algorithm for approximating the function f ∈ PC (Γ), defined numerically on the
set {tj} of points belonging to the contour Γ.

The proposed approximation algorithm is based on the concept of B-spline func-
tions, defined on the contour Γ. The spline functions, defined on the Jordan curve
Γ in the complex plane, have been introduced in the paper [1] and the B-spline
functions – in [2]. For B-spline functions, some properties analogous to those that
occur for B-splines defined on a segment of the real axis have been proved.

For two points t1, t2 ∈ Γ we use the notation t1 ≺ t2 if when traversing the
contour Γ in counterclockwise direction we meet first the point t1, and then t2 (see
Figure 1). Let t1 ≺ t2 ≺ . . . ≺ tn (≺ t1) be a set of distinct points of the contour Γ.
We denote by Γj := arc [tj, tj+1] the set of points of the contour Γ, located between
the points tj and tj+1.

Let the positive integers m,n ≥ 2. The spline function s (t) of order m, defined
on the contour Γ, satisfies the following properties:
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Figure 1: The type of contour and notations used

a) s ∈ Cm−2 (Γ);

b) the restriction of s on Γj for j = 1, ..., n is a polynomial of degree m− 1.

The set of all spline functions of the order m forms the linear space Sm,n. In [1]
it is shown that any continuous function on Γ can be approximated uniformly on Γ
with a linear (m = 2) or cubic (m = 4) spline function.

In [2] the B-spline functions of order m ≥ 2 on the contour Γ are defined, based
on the recursive formula

Bm,j (t) :=
m

m− 1

(

t− tj

tj+m − tj
Bm−1,j (t) +

tj+m − t

tj+m − tj
Bm−1,j+1 (t)

)

, j = 1, ..., n,

(1)

where B1,j (t) =

{

1

tj+1−tj
if t ∈ arc [tj , tj+1)

0 otherwise
. Also, it is shown that the set of

B-splines {Bm,1, ..., Bm,n} forms a basis of the space Sm,n of spline functions on Γ.
It follows that any continuous function on Γ can be uniformly approximated on Γ by
a linear combination of B-spline functions. Now we intend to study what happens
when the approximated function f has discontinuities on Γ.

The case when the piecewise continuous function is defined on a closed interval
[a, b] of the real axis is examined in [3]. In this paper it is shown that at the
approximation of the discontinuous function f ∈ PC ([a, b]) with spline functions
of order m ≥ 2, we do not have uniform convergence, because in the vicinity of
the discontinuity points we have strong oscillations of the spline values around the
values of the function f . When amplifying the number of nodes on which the spline
is built, the amplitude of the oscillations does not tend to zero. When we move
away from the points of discontinuity, the approximation becomes uniform and the
error can be evaluated based on the relationships established at the approximation of
continuous functions. Also, in [3] it is shown that the oscillating effect in the vicinity
of discontinuity points can be annihilated if the approximation is constructed as a
linear combination of m-order B-spline functions. Moreover, in order to construct a
piecewise continuous approximation, which converges uniformly to the function f , a
linear combination of B-spline functions and Heaviside step functions is considered.

Next, we apply the approach proposed in [3] and study the convergence of the
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linear combination of B-splines on Γ to the function f ∈ PC (Γ), and as a result we
present an algorithm for approximating the function f . The algorithm is efficient
in the sense that it achieves a uniform approximation of the function f on the
whole contour Γ, but also due to the fact that it consumes a limited amount of
computational resources.

2 Approximation of function by a linear combination of B-splines

Let a closed and piecewise smooth contour Γ be the boundary of the simply con-
nected domain Ω+ ⊂ C. Let the point z = 0 ∈ Ω+. Consider the Riemann function
z = ψ (w), that performs the conformal map of the domain D− from the outside
of the circle Γ0 := {w ∈ C : |w| = 1} onto the domain Ω− from the outside of the
contour Γ, such that ψ (∞) = ∞, ψ′ (∞) > 0. The function ψ (w) transforms the
circle Γ0 onto the contour Γ. Next, we consider that the points of the contour Γ are
defined by means of the function ψ (w).

Let {tj}
nB

j=1
be the set of distinct points of the contour Γ where the values of the

function f ∈ PC (Γ) are defined. We consider that the points tj are generated based
on the relation

tj = ψ (wj) , wj = eiθj , θj = 2π (j − 1) /nB , j = 1, ..., nB .

Thus, the variation of the parameter θ ensures a uniform coverage of the interval
[0, 2π] and the points tj are distributed over the entire contour Γ.

As a set of nodes on which the B-spline functions of order m (m ≤ nB) are

constructed (see formula (1)), we consider the set
{

tBj

}nB+m

j=1
, where tBj = tj ,

j = 1, ..., nB , and tBnB+1 = tB1 , t
B
nB+2 = tB2 , ..., t

B
nB+m = tBm.

We construct the approximation of the function f (t) in the form
ϕnB

(t) :=
∑nB

k=1
αkBm,k (t), where the coefficients αk ∈ C, k = 1, ..., nB , are deter-

mined imposing the interpolation conditions

f
(

tCj
)

= ϕnB

(

tCj
)

, j = 1, ..., nB . (2)

The set of nodes of the B-spline, arranged in a certain order, is considered as inter-
polation points tCj .

The system of equations (2) can be written as Bx̄ = f̄ , where

B = {mj,k}
nB

j,k=1
, mj,k = Bm,k

(

tCj
)

, x̄ = {αk}
nB

k=1
, f̄ =

{

f
(

tCj
)}nB

j=1
.

To approximate the function f (t) we use the B-spline functions of order
m ∈ {2, 3, 4}. Based on formula (1) one can deduce the following explicit repre-
sentations for the B-splines Bm,k (t) (k = 1, ..., nB):
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For m = 2:

B2,k (t) =



























2
(

t− tBk
)

(

tBk+2
− tBk

) (

tBk+1
− tBk

) if t ∈ arc
[

tBk , t
B
k+1

)

2
(

tBk+2
− t
)

(

tBk+2
− tBk

) (

tBk+2
− tBk+1

) if t ∈ arc
[

tBk+1
, tBk+2

)

0 otherwise

For m = 3:

B3,k (t) =







































3
(

t− tBk
)2

(

tBk+3
− tBk

) (

tBk+2
− tBk

) (

tBk+1
− tBk

) if t ∈ arc
[

tBk , t
B
k+1

)

3 (I1 + I2) if t ∈ arc
[

tBk+1
, tBk+2

)

3
(

tBk+3
− t
)2

(

tBk+3
− tBk

) (

tBk+3
− tBk+1

) (

tBk+3
− tBk+2

) if t ∈ arc
[

tBk+2
, tBk+3

)

0 otherwise

where

I1 :=

(

t− tBk
) (

tBk+2
− t
)

(

tBk+3
− tBk

) (

tBk+2
− tBk

) (

tBk+2
− tBk+1

) ,

I2 :=

(

t− tBk+1

) (

tBk+3
− t
)

(

tBk+3
− tBk

) (

tBk+3
− tBk+1

) (

tBk+2
− tBk+1

) .

For m = 4:

B4,k (t) =















































4
(

t− tBk
)3

(

tBk+4
− tBk

) (

tBk+3
− tBk

) (

tBk+2
− tBk

) (

tBk+1
− tBk

) if t ∈ arc
[

tBk , t
B
k+1

)

4 (I3 + I4) if t ∈ arc
[

tBk+1
, tBk+2

)

4 (I5 + I6) if t ∈ arc
[

tBk+2
, tBk+3

)

4
(

tBk+4
− t
)3

(

tBk+4
− tBk

) (

tBk+4
− tBk+1

) (

tBk+4
− tBk+2

) (

tBk+4
− tBk+3

) if t ∈ arc
[

tBk+3
, tBk+4

)

0 otherwise

where

I3 :=
t− tBk

tBk+4
− tBk

(

I3,1 +

(

t− tBk+1

) (

tBk+3
− t
)

(

tBk+3
− tBk

) (

tBk+3
− tBk+1

) (

tBk+2
− tBk+1

)

)

,

I3,1 :=

(

t− tBk
) (

tBk+2
− t
)

(

tBk+3
− tBk

) (

tBk+2
− tBk

) (

tBk+2
− tBk+1

) ,

I4 :=

(

tBk+4
− t
) (

t− tBk+1

)2

(

tBk+4
− tBk

) (

tBk+4
− tBk+1

) (

tBk+3
− tBk+1

) (

tBk+2
− tBk+1

) ,
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I5 :=

(

tBk+3
− t
)2 (

t− tBk
)

(

tBk+4
− tBk

) (

tBk+3
− tBk

) (

tBk+3
− tBk+1

) (

tBk+3
− tBk+2

) ,

I6 :=
tBk+4

− t

tBk+4
− tBk

(

I6,1 +

(

t− tBk+2

) (

tBk+4
− t
)

(

tBk+4
− tBk+1

) (

tBk+4
− tBk+2

) (

tBk+3
− tBk+2

)

)

,

I6,1 :=

(

t− tBk+1

) (

tBk+3
− t
)

(

tBk+4
− tBk+1

) (

tBk+3
− tBk+1

) (

tBk+3
− tBk+2

) .

It can be seen that the B-spline functions Bm,k (t) have the support on the curve

arc
[

tBk , t
B
k+m

)

. This leads to a sparse matrix B =
{

Bm,k

(

tCj

)}nB

j,k=1
in the system

of equations (2). On the one hand, it can be considered as an advantage because
small computational resources can be involved when calculating the solution to the
system (2). On the other hand, it is possible that the determinant of the matrix B
to be equal to zero.

The location of the interpolation points tCj on the contour Γ has a direct influence
on the conditioning of the matrix B = {mj,k}

nB

j,k=1
in the system (2). In order to

ensure the good conditioning of the matrix B, it is proposed the interpolation points
tCj to be selected as follows.

For m = 2 we consider tCj = tBj+1, j = 1, ..., nB , and in this case the matrix B
has a diagonal structure with non-zero elements on the main diagonal, that means
most often in practice that it is a well-conditioned matrix.

For m = 3 and m = 4 we consider tCj = tBj+2, j = 1, ..., nB , and in this case, for
m = 3, the matrix B has a bidiagonal structure, and for m = 4 it has a tridiagonal
structure. Matrix B has non-zero diagonal and codiagonal elements and, as a rule,
it is well conditioned.

After determining the solution αk ∈ C, k = 1, ..., nB to the system (2), we
construct the approximation ϕnB

(t) :=
∑nB

k=1
αkBm,k (t) of the function f (t) and

calculate its values at points t ∈ Γ. In the presented approximation algorithm there
are two problems:

1. The graph of the function ϕnB
(t) passes through the origin of coordinates,

even if f (t) 6= 0, ∀t ∈ Γ. To overcome this problem, we proceed as fol-
lows. If f (t0) 6= 0, where t0 = ψ

(

eiθ0
)

, θ0 = 0, then from the table with
generated values of the approximation ϕnB

(t) (calculated for the parameter
θ ∈ [0, 2π), starting with θ0 = 0), we eliminate the first values ϕnB

(

t̃
)

for which
∣

∣ϕnB

(

t̃
)

− f (t0)
∣

∣ ≥ ε1, where ε1 is a small value, for example, ε1 = 0.01.

2. The approximation curve ϕnB
(t) is continuous, being generated as a linear

combination of continuous B-spline functions. Therefore, at the points of dis-
continuity of the function f (t), we have no ”breaks” of the graph of the func-
tion ϕnB

(t), but continuous connections of its values. Thus, often the graph
of the function ϕnB

(t) has a distorted aspect compared to the graph of the
approximated function f (t). Next, we present an algorithm that allows to
overcome the mentioned difficulty.
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3 Approximation of function through a linear combination of B-

spline and Heaviside functions

We admit that the values of the function f are known at the discontinuity points
tdr , r = 1, ..., npd, on the contour Γ. For the function f , defined numerically, in [4]
and [5] several algorithms have been proposed for establishing the locations of the
discontinuity points on Γ.

We construct the approximation ϕnB
in the form

ϕH
nB

(t) :=

nB
∑

k=1

αkBm,k (t) +

npd
∑

r=1

βrH
(

t− tdr

)

, (3)

where H is the Heaviside function on the contour Γ, defined as follows

H
(

t− tdr

)

:=

{

0 if t ∈ Γ1 ∪ ... ∪ Γs−1 ∪ arc
[

tBs , t
d
r

)

1 if t ∈ arc
[

tdr , t
B
s+1

)

∪ Γs+1 ∪ ... ∪ ΓnB

,

Γs = arc
[

tBs , t
B
s+1

]

, tdr ∈ Γs.

We determine the coefficients αk, k = 1, ..., nB , and βr, r = 1, ..., npd, from the
interpolation conditions

f
(

tCj
)

= ϕH
nB

(

tCj
)

, j = 1, ..., n,

where n := nB + npd, and the interpolation points tCj , j = 1, ..., n, are chosen as
follows:

• the first nB points tCj , j = 1, ..., nB , are identical to those used to determine
the solution to the system (2);

• the remaining npd points are considered as discontinuity points of the function
f .

If among the points tCj , j = 1, ..., nB , there are points of discontinuity

tdj = ψ
(

eiθ
d
j

)

of the function f on Γ, then instead of them we consider the points

t̃dj = ψ
(

ei(θd
j −ε2)

)

, where ε2 > 0 is a small value, for example, ε2 = 0.01. Since the

function is left continuous, for a sufficiently small ε2, it can be considered that the
value of the function f at point t̃dj coincides with its value at point tdj .

The term
∑nB

k=1
αkBm,k (t) in relation (3) defines a continuous function on Γ, that

approximates the aspect of the pieces of the graph of the function f corresponding
to the arcs of the contour Γ between the points of discontinuity. The coefficients
βr, r = 1, ..., npd, define the ”jumps” of the pieces of the graph at the discontinuity
points tdr , so that each term βrH

(

t− tdr
)

determines the displacement of the piece
of the graph

∑nB

k=1
αkBm,k (t), corresponding to the points of Γ, which are located

after the discontinuity point tdr when traversing the contour Γ in a positive direction.
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4 Numerical example

Consider the Riemann function z = ψ (w) that performs the conformal transforma-
tion of the set {w ∈ C : |w| > 1} on the domain Ω− from the outside of the contour
Γ as ψ (w) = w + 1

/ (

3w3
)

. Thus, ψ (w) transforms the unit circle Γ0 onto the
astroid Γ (see Figure 2).

Figure 2: The contour and discontinuity points

For testing purposes, we consider the function of a complex variable f given
analytically on Γ:

f (t) =























t3 if θ ∈ (0, ζ1]
− cos (t) if θ ∈ (ζ1, ζ2]
t2et if θ ∈ (ζ2, ζ3]
t2Re (2t) if θ ∈ (ζ3, ζ4]
t2Re (2t) if θ = 0

,

where ζ1 = π/4, ζ2 = 3π/4, ζ3 = 7π/4, ζ4 = 2π. The function f has npd = 4 jump
discontinuity points on the contour Γ corresponding to the points tdj = ψ

(

eiζj
)

,

j = 1, ..., 4 (see Figure 2 and Figure 3).

Figure 3: Graph of the function Figure 4: Combination of B-splines
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The approximation algorithm takes as initial data the values fj of the function
f at the points

tj = ψ
(

eiθj

)

∈ Γ, θj = 2π (j − 1) /nB, nB ∈ N, k = 1, ..., nB .

Let the number of points where the values of the function f on Γ are given be
nB = 320. Considering the approximation by linear combination of the form (3),
where B-spline functions of order m = 4 are involved, we determine the solution
to the system of equations Bx̄ = ḡ, where x̄ = (α1, ..., αnB

, β1, ..., βnpd)
T , ḡ =

(f (tc1) , ..., f (tcn))T
, n = nB + npd, and

B =











Bm,1 (tc1) · · · Bm,nB
(tc1) H

(

tc1 − td1
)

· · · H
(

tc1 − tdnpd

)

...
. . .

...
...

. . .
...

Bm,1 (tcn) · · · Bm,nB
(tcn) H

(

tcn − td1
)

· · · H
(

tcn − tdnpd

)











.

The coefficients α1, ..., αnB
specify the linear combination of B-splines (see the

graph in Figure 4), and the coefficients

β1 = −0.7744 + 0.0439i, β2 = 1.1119 − 0.0126i,

β3 = 0.2962 + 0.2465i, β4 = −2.2529 − 0.0033i,

establish approximations of displacements of the pieces of the graph
nB
∑

k=1

αkBm,k (t),

corresponding to the arcs between the discontinuity points (compare the data in
Figure 2 and Figure 3).

For values nB = 160 and nB = 320 in Figure 5 and Figure 6 the error obtained
at the approximation of the function f by ϕH

nB
is presented. It can be seen that the

maximum error decreases significantly for nB = 320.

Figure 5: The approximation error for
nB=160

Figure 6: The approximation error for
nB=320

This work is an outcome of research activity performed as a part of the project
20.80009.5007.13 ”Deterministic and stochastic methods for solving optimization
and control problems”.
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