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Nuclear Identification of Some New Loop Identities of

Length Five

Olufemi Olakunle George and Tèmı́tó.pé. Gbó. láhàn Jáıyéo. lá

Abstract. In this work, we discovered a dozen of new loop identities we called
identities of ’second Bol-Moufang type’. This was achieved by using a generalized and
modified nuclear identification model originally introduced by Drápal and Jedlic̆ka.
Among these twelve identities, eight of them were found to be distinct (from well
known loop identities), among which two pairs axiomatize the weak inverse property
power associative conjugacy closed (WIP PACC) loop. The four other new loop
identities individually characterize the Moufang identities in loops. Thus, now we
have eight loop identities that characterize Moufang loops. We also discovered two
(equivalent) identities that describe two varieties of Buchsteiner loops. In all, only
the extra identities which the Drápal and Jedlic̆ka nuclear identification model tracked
down could not be tracked down by our own nuclear identification model. The dozen
laws {Qi}

12
i=1 induced by our nuclear identification form four cycles in the following

sequential format:
(
Q4i−j

)3

i=1
, j = 0, 1, 2, 3, and also form six pairs of dual identities.

With the help of twisted nuclear identification, we discovered six identities of lengths
five that describe the abelian group variety and commutative Moufang loop variety
(in each case). The second dozen identities {Q∗

i }
12
i=1 induced by our twisted nuclear

identification were also found to form six pairs of dual identities. Some examples of
loops of smallest order that obey non-Moufang laws (which do not necessarily imply
the other) among the dozen laws {Qi}

12
i=1 were found.

Mathematics subject classification: 20N02, 20N05.
Keywords and phrases: Bol-Moufang type of loop, nuclear identification, Moufang
loop, extra loop, Bol loop, left (right) conjugacy closed loop, Buchsteiner loop. .

1 Introduction

The first classification of the varieties of loops of Bol-Moufang was done by Fenyves
in [11, 12] and concluded by Phillips and Vojtẽchovský in [34, 35]. Jáıyéo. lá et al.
[25–27] and Ilojide et al. [14] used the identities therein to classify varieties of quasi
neutrosophic triplet loops (called Fenyves BCI-Algebras) and also to study their
isotopy and holomorphy. We shall refer to the identities described by the Bol-
Moufang type of loops as ’first Bol-Moufang type’ while we shall introduce what we
call ’second Bol-Moufang type’ of loops.

An identity of length four is said to be of Bol-Moufang type (first Bol-Moufang
type) if:

1. It has 3 distinct variables with one of them appearing twice on both sides.
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2. The variables appear in the same order on both sides.

Coté et al. [7] and Akhtar et al. [2] classified loops of generalized Bol-Moufang type.

An identity of length four is said to be of generalized Bol-Moufang type if:

1. It has 3 distinct variables with one of them appearing twice on both sides.

2. The variables do not necessarily appear in the same order on both sides.

One of such loops of generalized Bol-Moufang type, namely Frute loops were studied
by Jáıyéo. lá et al. [24,28].

An identity of length five will be said to be of second Bol-Moufang type if:

1. It has 3 distinct variables with one of them appearing 3 times.

2. The variables appear in the same order on both sides.

Two of such loops of second Bol-Moufang type are described by the identities

(xy · x) · xz = x((yx · x)z), (LWPC)

zx · (x · yx) = (z(x · xy))x (RWPC)

which Phillips [32] showed axiomatize the variety of loops that are weak inverse
property power associative conjugacy closed (WIP PACC) loops. George et al. [13]
studied loops that obey LWPC (RWPC) identity and were able to link them up with
some loop identities that are not of Bol-Moufang type.

Theorem 1.1. (George et al. [13] )

Let Q be a loop.

1. Q is an LWPC-loop if and only if Q is an LCC-loop and (xy · x)x = x(yx · x)
︸ ︷︷ ︸

Pλ(x,y)

.

2. Q is a RWPC-loop if and only if Q is an RCC-loop and x(x · yx) = (x · xy)x
︸ ︷︷ ︸

Pρ(x,y)

.

3. A CC-loop Q is a power associative WIP-loop if and only if Q fulfills the laws
Pλ(x, y) and Pρ(x, y).

Drápal and Jedlic̆ka [9] investigated interactions between loop nuclei and loop
identities. With the aid of nuclear identification, they considered some varieties of
loops of first Bol-Moufang type and non-Bol-Moufang type in which not all the nuclei
necessarily coincide. Drapal and Kinyon [10] recently used nuclear identification to
obtain the identities of Osborn loops.
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2 Preliminaries

A quasigroup (Q, ·) consists of a non-empty set Q with a binary operation · on
Q such that given a, b ∈ Q, the equations ax = b and ya = b have unique solutions
x, y ∈ Q respectively. We shall sometimes refer to (Q, ·) as simply Q.

For any x ∈ Q, define the right translation map R(x) and left translation map
L(x) of x in (Q, ·) by yR(x) = y · x = yx and yL(x) = x · y = xy, respectively. It is
clear that (Q, ·) is a quasigroup if and only if the left and right translation maps are
bijections. Since the translation maps are bijections, then the inverse maps R−1(x)
and L−1(x) exist and are thus defined by yR−1(x) = y/x and yL−1(x) = x\y.

A loop (Q, ·) is a quasigroup with an identity element, 1, such that 1x = x1 = x,
for all x ∈ Q. The right and left inverse maps ρ : x 7→ xρ and λ : x 7→ xλ are unary
operations that take an element x in a loop to its right and left inverses xρ and xλ

respectively, such that x ·xρ = 1 = xλ ·x. A loop in which xρ = xλ for all elements x
is said to have 2-sided inverse. See [5,6,17,31] for a general overview on quasigroups
and loops.

A loop is a weak inverse property loop if it satisfies any one of the following
identities:

x(yx)ρ = yρ or (xy)λx = yλ. (1)

A loop (Q, ·) is called a left Bol (right Bol) loop if for all x, y, z ∈ Q it satisfies

(x · yx)z = x(y · xz), (LB)

(yx · z)x = y(xz · x). (RB)

A loop (Q, ·) is called a Moufang loop if for all x, y, z ∈ Q any of the following
identities is satisfied

(xz · x)y = x(z · xy), (LM)

(yx · z)x = y(x · zx), (RM)

xy · zx = (x · yz)x, (MM2)

xy · zx = x(yz · x). (MM1)

A loop is said to be conjugacy closed (CC-loop) if it satisfies the two identities:

(xy)/x · xz = x(yz), (LCC)

zx · x\(yx) = (zy)x. (RCC)

A loop (Q, ·) is called a left central loop (LC-loop) if it satisfies the following identity
for all x, y, z ∈ Q :

(x · xy)z = x(x · yz). (2)

A loop (Q, ·) is called a right central loop (RC-loop) if for all x, y, z ∈ Q it satisfies
the identity

y(zx · x) = (yz · x)x. (3)
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(Q, ·) is called a central loop (C-loop) if it satisfies the identity

(yx · x)z = y(x · xz). (4)

LC-loops, RC-loops and C-loops are among the varieties of loops of first Bol-Moufang
type. Phillips and Vojtěchovský [35, 36], Kinyon et al. [37], Ramamurthi and So-
larin [38], Jaiyéo. lá [15,16], Adéńıran and Jaiyéo. lá [1], Jaiyéo. lá and Adéńıran [19–22]
and Solarin [40], Beg [3, 4] have studied them. Fenyves [12] gave three equivalent
identities that define each of LC-loops and RC-loops, and only one identity that
defines C-loops. But, Phillips and Vojtěchovský [35] gave four equivalent identi-
ties that define each of LC-loops and RC-loops. Three of the four identities given
by Phillips and Vojtěchovský are the same as the three already given by Fenyves.
Jáıyéo. lá [18] introduced and studied the generalized forms of LC-loop, RC-loop and
C-loops. Jaiyéo. lá and Adéńıran [23] characterized Osborn-Buchsteiner loops with a
new identity that is obeyed by LC-loop.

A loop (Q, ·) is called a Buchsteiner loop, if for all x, y, z ∈ Q

(BUCH) x\(xy · z) = (y · zx)/x. (5)

A loop is power associative if subloops generated by every single element are
groups.

The left alternative property (LAP) of a loop is defined as xx · y = x · xy, the
right alternative property (RAP) is given by y · xx = yx · x. A loop is an alternative
loop if it is left and right alternative. Flexible loops satisfy x · yx = xy · x. A loop
Q is said to have the 3-power associative (3-PA) property if xx · x = x · xx.

A loop Q satisfies the left inverse property (LIP) if xλ · xy = y and the right
inverse property (RIP) if xy ·yρ = x. An inverse property loop is a loop that satisfies
both the (LIP) and the (RIP).

The left nucleus Nλ, the middle nucleus Nµ and the right nucleus Nρ of a loop
Q are defined by

Nλ(Q) = {a ∈ Q : a · xy = ax · y ∀ x, y ∈ Q},

Nµ(Q) = {a ∈ Q : xa · y = x · ay ∀ x, y ∈ Q},

Nρ(Q) = {a ∈ Q : xy · a = x · ya ∀ x, y ∈ Q}.

The intersection
N(Q) = Nρ(Q) ∩Nλ(Q) ∩Nµ(Q)

is called the nucleus of Q.

A triple of bijections (U, V, W ) is called an autotopism of a loop Q provided
that

xU · yV = (xy)W (6)

for all x, y ∈ Q. The set of such triples forms a group Atp(Q) called the autotopism
group of Q.
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It is easy to see that

a ∈ Nλ(Q) ⇔ (L(a), I, L(a)) ∈ Atp(Q), (7)

a ∈ Nµ(Q) ⇔ (R−1(a), L(a), I) ∈ Atp(Q), (8)

a ∈ Nρ(Q) ⇔ (I, R(a), R(a)) ∈ Atp(Q). (9)

Denote the autotopisms of (7), (8) and (9) by αλ(x), αµ(x) and αρ(x) respectively.

By generalizing and modifying the nuclear identification model in [9], we say
a loop identity is nuclear identifiable if it can be expressed using autotopisms
αia(x)α

j
b(x)α

k
c (x)α

l
d(x), where i, j, k, l ∈ {−1, 1} and a, b, c, d ∈ {λ, ρ, µ}.

We now state some existing results which we shall be using in this work.

Lemma 2.1. [33]

Let Q be a loop. The following are equivalent for any x ∈ Q:

1. Q is a WIPL. 2. R−1(x) = ρL(x)λ. 3. L−1(x) = λR(x)ρ.

Theorem 2.2. [33]

Let Q be a WIPL. If (U, V, W ) ∈ Atp(Q):

1. (V, λWρ, λUρ) ∈ Atp(Q). 2. (ρWλ, U, ρV λ) ∈ Atp(Q).

In this work, we shall consider some loops of second Bol-Moufang type. We shall
investigate loops of length five with two coinciding nuclei relative to weak inverse
property.

3 Main Results

3.1 Nuclear Identification

Definition 3.1. Let Q be a loop which obeys an identity Id = Idα where Id
is equivalently expressible by the autotopism α. Let αλ(x) = (L(x), I, L(x)),
αρ(x) = (I, R(x), R(x)) and αµ(x) = (R−1(x), L(x), I). Then the iden-
tity Id = Idα is said to be nuclear identifiable in Q if α can be expressed as
αεη(x)α

ω
ξ (x)ακχ(x)α

ψ
ζ (x), where ε, ω, κ, ψ ∈ {−1, 1} and η, ξ, χ, ζ ∈ {λ, ρ, µ}.

We shall code such identity Id = Idα as (η, ξ, χ, ζ ; ε, ω, κ, ψ) and replace 1
and −1 by + and − in concrete instances. Using Definition 3.1, a dozen identities
of second Bol-Moufang type which are directly or indirectly affiliated with the loop
identities induced by nuclear identification in [9] (except the extra identities) are
presented (cf. Table 4).

Lemma 3.2. Let Q be a loop satisfying an identity (η, ξ, χ, ζ; ε, ω, κ, ψ) such
that ζ = η = ξ 6= χ. Then Nη = Nχ.



44 O. O. GEORGE AND T. G. JAÍYÉO. LÁ

Proof. Let Q be a loop satisfying an identity (η, ξ, χ, ζ; ε, ω, κ, ψ) which is

equivalently expressible by the autotopism α. Then α = αεη(x)α
ω
ξ (x)ακχ(x)α

ψ
ζ (x),

where ε, ω, κ, ψ ∈ {−1, 1} and η, ξ, χ, ζ ∈ {λ, ρ, µ}. With the hypothesis
ζ = η = ξ 6= χ, Nη = Nχ.

Definition 3.3. A triple α ∈ SYM(Q)3 of a loop Q is said to be an I-shift of an
(U, V, W ) ∈ Atp(Q) if α = (ρWλ, U, ρV λ).

Theorem 3.4. The dozen loop identities {Qi}
12
i=1 of Table 4 induced by the nuclear

identification of Definition 3.1 form the following cycles in a WIPL:
(Q1, Q5, Q9), (Q2, Q6, Q10), (Q3, Q7, Q11), (Q4, Q8, Q12) in which each of the iden-
tities is the I-shift of the preceding.

Proof. Based on Definition 3.3, for any loop Q, the I-shift of any
(U, V, W ) ∈ Atp(Q) will give a triple (ρWλ, U, ρV λ) ∈ SYM(Q)3 which is
not necessarily in Atp(Q). For (ρWλ, U, ρV λ) ∈ Atp(Q), Q must be a WIPL going
by Lemma 2.1 and Theorem 2.2. Note that ρ = λ in all the loops identified by
nuclear identification in Definition 3.1.

The autotopic equivalence of Q1 is (R−2(x)L−1(x)R(x), L(x), L−1(x)) and its
I-shift is

(
ρL−1(x)λ, R−2(x)L−1(x)R(x), ρL(x)λ

)
=

(
R(x), R−2(x)L−1(x)R(x), R−1(x)

)

which is the autotopic equivalence of Q5. Furthermore, the I-shift of the autotopism
of Q5 is

(
L(x), R(x), L2(x)R(x)L−1(x)

)
and this characterizes Q9. The I-shift of the

autotopism of Q9 gives the autotopism of Q1.

Similarly, the autotopism of Q2 is
(
R(x), L−2(x)R−1(x)L(x), R−1(x)

)
and the

I-shift of this autotopism is

(
ρR−1(x)λ,R(x), ρL−2(x)R−1(x)L(x)λ

)
=

(
L(x), R(x), R2(x)L(x)R−1(x)

)

which is the autotopism that characterizes Q6. Computing the I-shift of the auto-
topism of Q6 gives

(
L−2(x)R−1(x)L(x), L(x), L−1(x)

)
which is the autotopism for

Q10. The I-shift of the autotopism of Q10 gives the autotopism for Q2.

The arguments for the other two cycles are similar.

Lemma 3.5. The dozen loop identities {Qi}
12
i=1 of Table 4 induced by the nuclear

identification of Definition 3.1 are made up of six pairs of dual identities:
{Q1, Q2}, {Q3, Q4}, {Q5, Q10}, {Q6, Q9}, {Q7, Q12}, {Q8, Q11},

Proof. This follows by checking the identities of {Qi}
12
i=1 in Table 4 for duality.

Corollary 3.6. Let Q be a loop. The following are equivalent to each other:
(a) Q obeys Q1 and WIP, (b) Q obeys Q2 and WIP, (c) Q is a Moufang loop.

Proof. This follows from Theorem 3.4.
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3.2 Loops of Second Bol-Moufang Type

Lemma 3.7.

1. In a loop, each of the following identities Q1, Q3, Q7, Q8 implies Pλ(x, y).

2. In a loop, each of the following identities Q2, Q4, Q11, Q12 implies Pρ(x, y).

3. A loop in which any of the identittes Q5, Q6, Q9, Q10 is obeyed is a flexible loop.

4. A flexible loop obeys Pλ(x, y) and Pρ(x, y).

5. Any loop that obeys Pλ(x, y) or Pρ(x, y) has 2-sided inverse.

Proof. This is easily achieved by using the identities in a loop.

Theorem 3.8. Let Q be a loop.

1. Q is a Q1-loop if and only if Q is a left Bol loop and Pλ(x, y) is satisfied.

2. Q is a Q2-loop if and only if Q is a right Bol loop and Pρ(x, y) is satisfied.

3. Q is a Q3-loop if and only if Q is an LCC-loop and Pλ(x, y) is satisfied.

4. Q is a Q4-loop if and only if Q is an RCC-loop and Pρ(x, y) is satisfied.

5. Q is a Q5-loop if and only if Q is a right Moufang loop.

6. Q is a Q6-loop if and only if Q is an MM1-loop if and only if Q is a MM2-loop.

7. Q is a Q7-loop if and only if Q is an RCC and Pλ(x, y) is satisfied.

8. Q is a Q8-loop if and only if Q is a Buchsteiner loop and Pλ(x, y) is satisfied.

9. Q is a Q9-loop if and only if Q is an MM1-loop if and only if Q is an MM2-loop.

10. Q is a Q10-loop if and only if Q is an LM-loop.

11. Q is a Q11-loop if and only if Q is a Buchsteiner loop and Pρ(x, y) is satisfied.

12. Q is a Q12-loop if and only if Q is an LCC-loop and Pρ(x, y) is satisfied.

13. Q is a WIP PACC-loop if and only if Q is a Q3-loop and a Q4-loop if and only
if Q is a Q7-loop and a Q12-loop.

14. Q is a Q8-loop if and only if Q is a Q11-loop.

Proof. 1. Let Q be a Q1-loop, then by Lemma 3.7(1), Pλ(x, y) is satisfied. Note
that

x(yx · xz) = (x(yx · x))z ⇒

x(y · xz) = (x · yx)z.
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Conversely, suppose Q is a left Bol loop and Pλ(x, y) is satisfied. Then,

x(y · xz) = (x · yx)z ⇒

x(yx · xz) = (x(yx · x))z ⇒

x(yx · xz) = ((xy · x)x)z.

2. This follows from the mirror argument of 1.

3. Let Q be a Q3-loop, then by Lemma 3.7(1), Pλ(x, y). So, identity Q3 becomes

(xy · x) · xz = x((x\((xy · x)x))z) ⇒

y · xz = x((x\(yx))z) ⇒

(xy)/x · xz = x(yz).

For the converse, suppose Q is an LCC-loop, then

y · xz = x((x\(yx))z) ⇒

(xy · x) · xz = x((x\((xy · x)x))z).

This last identity becomes Q3 since Q also satisfies x\((xy · x)x) = yx · x.

4. This can be proved by mirroring the argument in 3 above.

5. Assume Q is a Q5-loop, then by Lemma 3.7(3), Q is flexible. Thus,

(yx · zx)x = y((xz · x)x) ⇒

(yx · zx)x = y((x · zx)x) ⇒

(yx · z)x = y(xz · x)

= y(x · zx).

Conversely, suppose Q is a right Moufang loop, then

(yx · z)x = y(x · zx) ⇒

(yx · z)x = y(xz · x) ⇒

(yx · zx)x = y((x · zx)x) ⇒

(yx · zx)x = y((xz · x)x).

6. Let Q be a Q6-loop, then by Lemma 3.7 (3), Q is flexible, and by Lemma 3.7,
Q6 satisfies Pλ(x, y). Therefore,

(xy · zx)x = x((yz · x)x) ⇒

(xy · zx)x = ((x · yz)x)x⇒

(xy · zx) = (x · yz)x.
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Conversely, suppose Q is an MM2-loop, then

(xy · zx) = (x · yz)x⇒

(xy · zx)x = ((x · yz)x)x⇒

(xy · zx)x = x(yz · x)x = x((yz · x)x).

Again, if Q is a Q6-loop, then

(xy · zx)x = x((yz · x)x) ⇒

(xy · zx)x = (x(yz · x))x⇒

xy · zx = x(yz · x).

Thus, Q is an MM1-loop. Conversely, suppose Q is a MM1-loop, then

(xy · zx) = x(yz · x) ⇒

(xy · zx)x = (x(yz · x))x⇒

(xy · zx)x = x((yz · x)x).

7. Let Q be a Q7-loop, then by Lemma 3.7(2), Q satisfies Pλ(x, y) or
x\(xy · x)x) = (yx · x). Thus,

(y(xz · x))x = yx · (zx · x) ⇒

(y(xz · x))x = yx · x\((xz · x)x) ⇒

yz · x = yx · x\zx.

Conversely, let Q be an RCC-loop, then

yz · x = yx · x\zx⇒

(y(xz · x))x = yx · x\((xz · x)x)

and the result follows since Q also satisfies x\(xy · x)x) = (yx · x).

8. Suppose Q is a Q8-loop, then Q satisfies

x((y · zx)x) = ((xy · z)x)x⇒

x(yz · x) = ((xy · z/x)x)x⇒

((x(yz · x))/x)/x = xy · z/x. (10)

By Lemma 3.7(4), Q satisfies Pλ(x, y) or equivalently,

((x · yx)/x)/x = x(y/x). (11)

Use (11) in (10) to get

x((yz)/x)) = xy · z/x⇒
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x((y · zx)/x)) = xy · z ⇒

(y · zx)/x = x\(xy · z).

Conversely, suppose Q is a Buchsteiner loop and Pλ(x, y) or equivalently
(x · yx)/x)/x = x(y/x), then

(y · zx)/x = x\(xy · z) ⇒

x((y · zx)/x)) = xy · z ⇒

x((yz)/x)) = xy · z/x⇒

((x(yz · x))/x)/x = xy · z/x⇒

x((y · zx)x) = ((xy · z)x)x.

9. Suppose Q is a Q9-loop, then

x(xy · zx) = (x(x · yz))x⇒

x(xy · zx) = x((x · yz)x) ⇒

xy · zx = (x · yz)x.

Thus, Q is a MM2-loop. Conversely, suppose Q is MM2-loop, then

xy · zx = (x · yz)x⇒

x(xy · zx) = x((x · yz)x) ⇒

x(xy · zx) = (x(x · yz))x.

Therefore, Q is an Q9-loop. Now, suppose Q is Q9, then by Lemma 3.7(1),

x(xy · zx) = (x(x · yz))x⇒

x(xy · zx) = x(x(yz · x)) ⇒

xy · zx = x(yz · x).

Thus, Q is an MM1-loop. Conversely, supposeQ is MMI-loop, then just reverse
the process to get Q9.

10. The proof is similar to the one in 5.

11. The Q11 identity is mirror to Q8 identity, so a mirror argument will suffice.

12. Suppose Q is Q12-loop, then using Lemma 3.7(2) in the Q12 identity, we have

x((x · yx)z) = (x((x · yx))/x · xz ⇒

x · yz = (xy)/x · xz.

The converse is easy if we reverse the process and use the fact that Q also
satisfies Pρ(x, y).
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13. This follows from 7 and 12 of above and Theorem 1.1.

14. Let Q be a Q8-loop. Then, Q is a Buchsteiner loop in which Pλ(x, y) holds by
8. By Lemma 3.7(5), Q is a Buchsteiner loop with 2-sided inverse, hence, a
WIP Buchsteiner loop. Applying Theorem 3.4, Q is a Q12-loop and so Pρ(x, y)
holds. Thus, Q is a Q11-loop by 11. The converse is similar. Therefore, Q is
a Q8-loop if and only if Q is a Q11-loop.

Lemma 3.9.

1. In an LC-loop the identity Pρ(x, y) is satisfied.

2. In an RC-loop the identity Pλ(x, y) is satisfied.

3. In a C-loop the identities Pρ(x, y) and Pλ(x, y) are satisfied.

4. In an extra loop, the identities Pρ(x, y) and Pλ(x, y) are satisfied.

Proof. 1. Put z = x in (2).

2. Put y = x in (3).

3. A loop is a C-loop if and only if it is an LC-loop and RC-loop.

4. An extra loop is a C-loop.

Code Identity Label Equivalent Form(s) (⇔)

(µ, µ, λ, µ; +,+,−,−) x(yx · xz) = ((xy · x)x)z Q1 LB + Pλ(x, y)

(µ, µ, ρ, µ;−,−,−,+) (yx · xz)x = y(x(x · zx)) Q2 RB + Pρ(x, y)

(µ, µ, λ, µ; +,+,+,−) (xy · x) · xz = x((yx · x)z) Q3 LWPC=LCC + Pλ(x, y)

(µ, µ, ρ, µ;−,−,+,+) yx · (x · zx) = (y(x · xz))x Q4 RWPC=RCC + Pρ(x, y)

(ρ, ρ, µ, ρ;−,−,−,+) (yx · zx)x = y((xz · x)x) Q5 RM

(ρ, ρ, λ, ρ; +,+,+,−) (xy · zx)x = x((yz · x)x) Q6 MM1 or MM2

(ρ, ρ, µ, ρ;−,−,+,+) (y(xz · x))x = yx · (zx · x) Q7 RCC + Pλ(x, y)

(ρ, ρ, λ, ρ; +,+,−,−) x((y · zx)x) = ((xy · z)x)x Q8 BUCH + Pλ(x, y)

(λ, λ, ρ, λ; +,+,+,−) x(xy · zx) = (x(x · yz))x Q9 MM1 or MM2

(λ, λ, µ, λ;−,−,+,+) x(xy · xz) = (x(x · yx))z Q10 LM

(λ, λ, ρ, λ; +,+,−,−) (x(xy · z))x = x(x(y · zx)) Q11 BUCH + Pρ(x, y)

(λ, λ, µ, λ;−,−,−,+) x((x · yx)z) = (x · xy) · xz Q12 LCC + Pρ(x, y)

Table 1. Summary of new loop identities induced by nuclear identifications and their
equivalent forms
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Theorem 3.10. The variety (η, ξ, χ, ζ ; ε, ω, κ, ψ)∗ consists of all commutative
loops in the variety (η, ξ, χ, ζ ; ε, ω, κ, ψ), whenever ε, ω, κ, ψ ∈ {−1, 1} and
η, ξ, χ, ζ ∈ {ρ, λ, µ}, such that ζ = η = ξ 6= χ.

Proof. Let Q be a commutative loop.

If (A,B,C) ∈ Atp(Q), then (B,A,C) ∈ Atp(Q). Let (A(x), B(x), C(x)) be the
autotopisms of the loop varieties described by identities (η, ξ, χ, ζ ; ε, ω, κ, ψ) as
given in Table 4 and let (η, ξ, χ, ζ ; ε, ω, κ, ψ)∗ be the loop varieties determined
by (B(x), A(x), C(x)) for all x ∈ Q. Table 5 highlights the identities obtained
for these varieties (where ABG stands for the variety of abelian groups and CML
represents commutative Moufang loop). It can be easily verified that each of these
laws describes a variety of commutative loops (abelian grousp and commutative
Moufang loops).

Corollary 3.11. Let Q be a loop.

1. The following are equivalent:

(a) Q is a commutative Moufang loop.

(b) Q obeys Q∗

1 or Q∗

2 or Q∗

5 or Q∗

6 or Q∗

9 or Q∗

10.

2. The following are equivalent:

(a) Q is an abelian group.

(b) Q obeys Q∗

3 or Q∗

4 or Q∗

7 or Q∗

8 or Q∗

11 or Q∗

12.

Proof. This follows from Theorem 3.10 and Table 5.

Lemma 3.12. The dozen loop identities {Q∗

i }
12
i=1 of Table 5 induced by twisted

nuclear identification are made up of six pairs of dual identities:
{Q∗

1, Q
∗

2}, {Q
∗

3, Q
∗

4}, {Q
∗

5, Q
∗

10}, {Q
∗

6, Q
∗

9}, {Q
∗

7, Q
∗

12}, {Q
∗

8, Q
∗

11}.

Proof. This follows by checking the identities of {Q∗

i }
12
i=1 in Table 5 for duality.

3.3 Examples and Constructions

We shall be using the GAP Package [30] and Library of GAP-LOOPS Package [29]
to get some examples of non-Moufang, non-extra loops and non-CC-loops that are
of second Bol-Moufang type. In GAP-LOOPS, ’LeftBolLoop(n, m)’ returns the mth
left Bol loop (LBL) of order n < 17 while ’RightBolLoop(n, m)’ returns mth right
Bol loop (RBL) of order n < 17 in the library. Similarly, ’RCCLoop(n, m)’ returns
the mth right conjugacy closed loop (RCCL) of order n ≤ 27 while ’LCCLoop(n, m)’
returns the mth left conjugacy closed loop (LCCL) of order n ≤ 27 in the library.

1. Any Moufang loop obeys Q1, Q2, Q5, Q6, Q9, Q10.

2. Any extra loop obeys any of the identities in the set {Qi}
12
i=1.
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3. ’LeftBolLoop( 8, i)’, i = 1, 2, · · · , 6, is an LBL, which is a non-Moufang loop
(i.e. does not obey Q5, Q6, Q9, Q10) and obeys Pλ(x, y) (hence a Q1-loop). It
also obeys Pρ(x, y) but is not an RBL. So, it is not a Q2-loop. See Proposition
3.2 of [13].

4. LeftBolLoop( 8, i ), i = 1, 2, · · · , 6, is an LCCL, which is non-Moufang and
non-CC loop that obeys Pλ(x, y) (hence a Q3-loop). It also obeys Pρ(x, y) but
is not an RCCL. So, it is not a Q4-loop. Since it obeys Pρ(x, y) and it is an
LCCL, then, it is a Q12-loop. Though, it obeys Pλ(x, y) but it is not an RCCL,
hence, not a Q7-loop. See Proposition 3.2 of [13].

5. According to ([9], Lemma 3.6), a Buchsteiner loop is an LCCL iff it is an
RCCL. Assume by contradiction that LeftBolLoop( 8, i), i = 1, 2, · · · , 6, is a
Buchsteiner loop. Since it is an LCCL, then it should be an RCCL which will
be a contradiction. So, LeftBolLoop( 8, i), i = 1, 2, · · · , 6, is not a Buchsteiner
loop. Hence, LeftBolLoop( 8, i), i = 1, 2, · · · , 6, is neither a Q8-loop nor a
Q11-loop.

6. Consider the opposite loop of LeftBolLoop( 8, i), i = 1, 2, · · · , 6, i.e. Left-
BolLoop( 8, i)*= RightBolLoop( 8, i), i = 1, 2, · · · , 6. It is an RBL, which
is non-Moufang loop (i.e. does not obey Q5, Q6, Q9, Q10) and obeys Pρ(x, y)
(hence a Q2-loop). It also obeys Pλ(x, y) but is not an LBL. So, it is not a
Q1-loop.

7. RightBolLoop( 8, i ), i = 1, 2, · · · , 6, is an RCCL, which is non-Moufang and
non-CC loop that obeys Pρ(x, y) (hence a Q4-loop). It also obeys Pλ(x, y)
but is not an LCCL. So, it is not a Q3-loop. Since it obeys Pλ(x, y) and it
is an RCCL, then it is a Q7-loop. Though, it obeys Pρ(x, y) but it is not an
LCCL, hence, not a Q12-loop. One of such loops was constructed in Example
2.1 of [39].

8. According to ([9], Lemma 3.6), a Buchsteiner loop is an RCCL iff it is an
LCCL. Assume by contradiction that RightBolLoop( 8, i), i = 1, 2, · · · , 6, is
a Buchsteiner loop. Since it is an RCCL, then it should be an LCCL which
will be a contradiction. So, RightBolLoop( 8, i), i = 1, 2, · · · , 6, is not a
Buchsteiner loop. Hence, RightBolLoop( 8, i), i = 1, 2, · · · , 6, is neither a
Q8-loop nor a Q11-loop.

9. For n = 6:

(a) When m = 1, both Pλ(x, y) and Pρ(x, y) are satisfied by RCCLoop(n, m).
Hence, it is aQ4-loop andQ7-loop. But it is not aQ1, Q2, Q3, Q8, Q11, Q12-
loop.

(b) When m = 2, 3, none of Pλ(x, y) and Pρ(x, y) is satisfied by RCCLoop(n,
m). Thus, it does not satisfy any of {Qi}

12
i=1.

10. For n = 8:
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(a) Whenm = 1, 2, 3, 7, 8, 9, 13, 15, 16, 17, 18, 19, none of Pλ(x, y) and Pρ(x, y)
is satisfied by RCCLoop(n, m). Thus, it does not satisfy any of {Qi}

12
i=1

(b) When m = 4, 5, 6, 10, 11, 12, both Pλ(x, y) and Pρ(x, y) are satisfied by
RCCLoop(n, m). It is also an RBL. Hence, it is a Q2, Q4-loop and Q7-
loop. But it is not a Q1, Q3, Q8, Q11, Q12-loop.

(c) When m = 14, RCCLoop(n, m) satisfies Pλ(x, y) but does not satisfy
Pρ(x, y). Hence, it is aQ7-loop but it is not aQ1, Q2, Q3, Q4, Q8, Q11, Q12-
loop.

11. In Theorem 3.1 and Theorem 3.4 of [13], methods of construction of Q3 loops
were described.

Example 3.13. Let G = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} and define ∗
on G as shown in Table 2. (G, ∗) is a Q3-loop, Q4-loop, Q7-loop, Q12-loop, Q8-loop,
Q11-loop that is power associative, not diassociative, not (Moufang, left Bol, right
Bol, LC, RC, C, extra), not (left or right power alternative), right A-loop and left
A-loop, not middle A-loop. (G, ∗) is not a Q1, Q2, Q5, Q6, Q9, Q10-loop.

∗ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 2 3 4 1 6 7 8 5 10 11 12 9 14 15 16 13
3 3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14
4 4 1 2 3 8 5 6 7 12 9 10 11 16 13 14 15
5 5 6 7 8 1 2 3 4 13 14 15 16 11 12 9 10
6 6 7 8 5 2 3 4 1 14 15 16 13 12 9 10 11
7 7 8 5 6 3 4 1 2 15 16 13 14 9 10 11 12
8 8 5 6 7 4 1 2 3 16 13 14 15 10 11 12 9
9 9 10 11 12 16 13 14 15 1 2 3 4 8 5 6 7
10 10 11 12 9 13 14 15 16 2 3 4 1 5 6 7 8
11 11 12 9 10 14 15 16 13 3 4 1 2 6 7 8 5
12 12 9 10 11 15 16 13 14 4 1 2 3 7 8 5 6
13 13 14 15 16 12 9 10 11 7 8 5 6 4 1 2 3
14 14 15 16 13 9 10 11 12 8 5 6 7 1 2 3 4
15 15 16 13 14 10 11 12 9 5 6 7 8 2 3 4 1
16 16 13 14 15 11 12 9 10 6 7 8 5 3 4 1 2

Table 2. A Q3-loop, Q4-loop, Q7-loop, Q12-loop, Q8-loop, Q11-loop (G, ∗)

Example 3.14. Let G = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} and define ?
on G as shown in Table 3. (G, ?) is a Q3-loop, Q4-loop, Q7-loop, Q12-loop, Q8-loop,
Q11-loop that is power associative, not diassociative, not (Moufang, left Bol, right
Bol, LC, RC, C, extra), not (left or right power alternative), right A-loop and left
A-loop, not middle A-loop. (G, ?) is not a Q1, Q2, Q5, Q6, Q9, Q10-loop. (G, ∗) and
(G, ?) are neither isomorphic nor isotopic.
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3.4 Discussion, Conclusion and Future Study

Note that Pρ(x, y) and Pλ(x, y) are satisfied by any dissociative loop (e.g. Mo-
ufang or extra loop). In fact, each of the identities in {Qi}

12
i=1 generalizes the extra

law in loops, but this is not true of the Moufang law in loops. Among all the loop
identities tracked down by the nuclear identification code in (Table 1, [9]), only the
Moufang identities got tracked down distinctively as new loop identities by the nu-
clear identification code introduced in this work (see Q5, Q6, Q9, Q10 in Table 1). The
importance of Pρ(x, y) and Pλ(x, y) in this current work is the fact that they are as-
sociated to equivalent forms of the new loop identities which were not tracked down
distinctively by our nuclear identification code (see Q1, Q2, Q3, Q4, Q7, Q8, Q11, Q12

in Table 1). Among all the loop identities tracked down by the nuclear identification
code in (Table 1, [9]), the left (right) Bol, LCC (RCC) and Buchsteiner identities
got tracked down non-distinctively as new loop identities by our nuclear identifica-
tion code (see Q1, Q2, Q3, Q4, Q7, Q8, Q11, Q12 in Table 1). Among the 12 identities
tracked down by the nuclear identification code in (Table 1, [9]), only the extra
identities are missing in our own work. But our work has been able to discover:

1. eight new loop identities (i.e. Q1, Q2, Q3, Q4, Q7, Q8, Q11, Q12 ) among which
the two pairs (Q3, Q4) and (Q7, Q12) axiomatize the weak inverse property
power associative conjugacy closed (WIP PACC) loop, while Q8 and Q11 were
found to be equivalent.

2. four new loop identities which individually characterize the Moufang identities

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15
3 3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14
4 4 3 2 1 8 7 6 5 12 11 10 9 16 15 14 13
5 5 6 8 7 1 2 4 3 13 14 16 15 10 9 11 12
6 6 5 7 8 2 1 3 4 14 13 15 16 9 10 12 11
7 7 8 6 5 3 4 2 1 15 16 14 13 12 11 9 10
8 8 7 5 6 4 3 1 2 16 15 13 14 11 12 10 9
9 9 10 12 11 15 16 14 13 1 2 4 3 7 8 6 5
10 10 9 11 12 16 15 13 14 2 1 3 4 8 7 5 6
11 11 12 10 9 13 14 16 15 3 4 2 1 5 6 8 7
12 12 11 9 10 14 13 15 16 4 3 1 2 6 5 7 8
13 13 14 15 16 12 11 10 9 6 5 8 7 4 3 2 1
14 14 13 16 15 11 12 9 10 5 6 7 8 3 4 1 2
15 15 16 13 14 10 9 12 11 8 7 6 5 2 1 4 3
16 16 15 14 13 9 10 11 12 7 8 5 6 1 2 3 4

Table 3. A Q3-loop, Q4-loop, Q7-loop, Q12-loop, Q8-loop, Q11-loop (G, ?)
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in loops (i.e. Q5, Q6, Q9, Q10). Thus, we now have eight loop identities that
characterize Moufang loop.

Therefore, we have been able to identify a dozen second Bol-Moufang type identities
via nuclear identification, among which are first Bol-Moufang type identities (e.g.
Moufang) or relations of first Bol-Moufang type identities (RB, LB) or non-Bol-
Moufang type identities (LCC, RCC, Buchsteiner).

In [9], loop identities that split into at least two other loop identities (with at
least three variables) were nuclear identified (e.g. extra and Moufang). Also, loop
identities that do not split into at least two other loop identities (with at least
three variables) were also nuclear identified (e.g. left Bol, right Bol, LCC, RCC and
Buchsteiner). But, with our own nuclear identification model, loop identities that
split into at least two other loop identities (with at least three variables) were nuclear
identified (only Moufang) without the company of Pρ(x, y) or Pλ(x, y). While, loop
identities that do not split into at least two other loop identities (with at least
three variables) were also nuclear identified (e.g. left Bol, right Bol, LCC, RCC and
Buchsteiner) with the company of Pρ(x, y) or Pλ(x, y). Thus, Pρ(x, y) and Pλ(x, y)
are distinguishing features between our own nuclear identification model and that
of [9].

Note that a Q8-loop and Q11-loop are both Buchsteiner loops with 2-sided in-
verse. Hence, they are linked to Buch2SI in the following chain of varieties of
Buchsteiner loops (Csorgo [8]):

BuchCS ⊂ Buch2SI ⊂ BuchWIP ⊂ BuchCC

where BuchCS, Buch2SI, BuchWIP and BuchCC represent the varieties of
Buchsteiner with central square, Buchsteiner with 2-sided inverse, Buchsteiner with
WIP and Buchsteiner that is a CC-loop respectively. The identities that describe
Q8-loop and Q11-loop form two varieties of Buchsteiner loops. But we are not sure
if the varieties BuchCS, Buch2SI, BuchWIP and BuchCC have single identities
that describe them.

Just like the dozen laws of (Proposition 1.3, [9]) form four cycles, our dozen
laws also form four cycles as well (but in a sequential manner) and also form six
pairs of dual identities. Using twisted nuclear identification, the authors in [9] were
able to identify six identities of lengths four that describe the abelian group variety
and commutative Moufang loop variety (in each case). We also achieved a similar
result in this work with the discovery of six identities of length five that describe the
abelian group variety and commutative Moufang loop variety (in each case). This
second dozen of identities were also found to form six pairs of dual identities.
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Code Autotopism Identity Label

(µ, µ, λ, µ; +,+,−,−) (R−2(x)L−1(x)R(x), L(x), L−1(x)) x(yx · xz) = ((xy · x)x)z Q1

(µ, µ, ρ, µ;−,−,−,+) (R(x), L−2(x)R−1(x)L(x), R−1(x)) (yx · xz)x = y(x(x · zx)) Q2

(µ, µ, λ, µ; +,+,+,−) (R−2(x)L(x)R(x), L(x), L(x)) (xy · x) · xz = x((yx · x)z) Q3

(µ, µ, ρ, µ;−,−,+,+) (R(x), L−2(x)R(x)L(x), R(x)) yx · (x · zx) = (y(x · xz))x Q4

(ρ, ρ, µ, ρ;−,−,−,+) (R(x), R−2(x)L−1(x)R(x), R−1(x)) (yx · zx)x = y((xz · x)x) Q5

(ρ, ρ, λ, ρ; +,+,+,−) (L(x), R(x), R2(x)L(x)R−1(x)) (xy · zx)x = x((yz · x)x) Q6

(ρ, ρ, µ, ρ;−,−,+,+) (R−1(x), R−2(x)L(x)R(x), R−1(x)) (y(xz · x))x = yx · (zx · x) Q7

(ρ, ρ, λ, ρ,+,+,−,−) (L−1(x), R(x), R2(x)L−1(x)R−1(x)) x((y · zx)x) = ((xy · z)x)x Q8

(λ, λ, ρ, λ; +,+,+,−) (L(x), R(x), L2(x)R(x)L−1(x)) x(xy · zx) = (x(x · yz))x Q9

(λ, λ, µ, λ;−,−,+,+) (L−2(x)R−1(x)L(x), L(x), L−1(x)) x(xy · xz) = (x(x · yx))z Q10

(λ, λ, ρ, λ; +,+,−,−) (L(x), R−1(x), L2(x)R−1(x)L−1(x)) (x(xy · z))x = x(x(y · zx)) Q11

(λ, λ, µ, λ;−,−,−,+) (L−2(x)R(x)L(x), L−1(x), L−1(x)) x((x · yx)z) = (x · xy) · xz Q12

Table 4. Summary of new loop identities induced by nuclear identifications
Code Autotopism Identity Variety Label

(µ, µ, λ, µ; +,+,−,−)∗ (L(x), R−2(x)L−1(x)R(x), L−1(x)) x(xy · zx) = y((xz · x)x) CML Q∗

1

(µ, µ, ρ, µ;−,−,−,+)∗ (L−2(x)R−1(x)L(x), R(x), R−1(x)) (xy · zx)x = (x(x · yx))z CML Q∗

2

(µ, µ, λ, µ; +,+,+,−)∗ (L(x), R−2(x)L(x)R(x), L(x)) xy · (xz · x) = x(y(zx · x)) ABG Q∗

3

(µ, µ, ρ, µ;−,−,+,+)∗ (L−2(x)R(x)L(x), R(x), R(x)) (x · yx) · zx = ((x · xy)z)x ABG Q∗

4

(ρ, ρ, µ, ρ;−,−,−,+)∗ (R−2(x)L−1(x)R(x), R(x), R−1(x)) (yx · zx)x = ((xy · x)x)z CML Q∗

5

(ρ, ρ, λ, ρ; +,+,+,−)∗ (R(x), L(x), R2(x)L(x)R−1(x)) (yx · xz)x = x((yz · x)x) CML Q∗

6

(ρ, ρ, µ, ρ;−,−,+,+)∗ (R−2(x)L(x)R(x), R−1(x), R−1(x)) ((xy · x)z)x = (yx · x) · zx ABG Q∗

7

(ρ, ρ, λ, ρ,+,+,−,−)∗ (R(x), L−1(x), R2(x)L−1(x)R−1(x)) x((yx · z)x) = ((y · xz)x)x ABG Q∗

8

(λ, λ, ρ, λ; +,+,+,−)∗ (R(x), L(x), L2(x)R(x)L−1(x)) x(yx · xz) = (x(x · yz))x CML Q∗

9

(λ, λ, µ, λ;−,−,+,+)∗ (L(x), L−2(x)R−1(x)L(x), L−1(x)) x(xy · xz) = y(x(x · zx)) CML Q∗

10

(λ, λ, ρ, λ; +,+,−,−)∗ (R−1(x), L(x), L2(x)R−1(x)L−1(x)) (x(y · xz))x = x(x(yx · z)) ABG Q∗

11

(λ, λ, µ, λ;−,−,−,+)∗ (L−1(x), L−2(x)R(x)L(x), L−1(x)) x(y(x · zx)) = xy · (x · xz) ABG Q∗

12

Table 5. Loop Identities obtained by twisted nuclear identifications
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In the conclusion of [9], the authors pointed out the prospect of possibly using
another nuclear identification model to track down the LC, RC and C-loop identi-
ties which their own nuclear identification model could not track down (except if a
restriction in their code is expunged). It is worth mentioning that even though our
own nuclear identification model could not track down the LC, RC and C-loop iden-
tities, but Lemma 3.9 informs us that LC, RC loop identities imply Pρ(x, y), Pλ(x, y)
respectively. Thus, some other nuclear identification models for identities of length
five that could track down the LC, RC and C-loop identities might exist.

Future Studies Definitely, the dozen identities discovered in this work are not the
only identities of second Bol-Moufang type. There is the need to know if there are
some more others that can be nuclear identified like the twelve of this work. Perhaps,
the extra law which we could not nuclear-identify could be nuclear-identifiable among
the future loop identities of second Bol-Moufang type.
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[14] Ilojide E., Jáıyéo.lá T. G., Olatinwo M. O. On Holomorphy of Fenyves BCI-Algebras, J.
Niger. Math. Soc., 38 (2019), No. 2, 139–155.



NUCLEAR IDENTIFICATION OF SOME NEW LOOP IDENTITIES OF LENGTH FIVE 57
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[20] Jaiyéo.lá T. G. and Adéńıran J. O. Algebraic properties of some varieties of loops, Quasi-
groups Relat. Syst., 16 (2008), No. 1, 37–54.
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[27] Jáıyéo.lá T. G., Ilojide E., Saka A. J., Ilori K. G. On the Isotopy of some Varieties
of Fenyves Quasi Neutrosophic Triplet Loop (Fenyves BCI-algebras), Neutrosophic Sets and
Systems, 31 (2020), 200–223. DOI: 10.5281/zenodo.3640219
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