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On the solubility of a class of two-dimensional

integral equations on a quarter plane

with monotone nonlinearity

Kh.A. Khachatryan, H. S. Petrosyan, S.M. Andriyan

Abstract. In the paper we study a class of two-dimensional integral equations on
a quarter-plane with monotone nonlinearity and substochastic kernel. With specific
representations of the kernel and nonlinearity, an equation of this kind arises in var-
ious fields of natural science. In particular, such equations occur in the dynamical
theory of p-adic open-closed strings for the scalar field of tachyons, in the mathemat-
ical theory of the geographical spread of a pandemic, in the kinetic theory of gases,
and in the theory of radiative transfer in inhomogeneous media.
We prove constructive theorems on the existence of a nontrivial nonnegative and
bounded solution. For one important particular case, the existence of a one-parameter
family of nonnegative and bounded solutions is also established. Moreover, the asymp-
totic behavior at infinity of each solution from the given family os studied. At the
end of the paper, specific particular examples (of an applied nature) of the kernel and
nonlinearity that satisfy all the conditions of the proven statements are given.

Mathematics subject classification: 45G10.
Keywords and phrases: two-dimensional equation, nonlinearity, Carathéodory con-
dition, monotonicity, convergence, bounded solution.

1 Introduction

Consider the following class of two-dimensional integral equations on the first
quarter of the plane with monotone nonlinearity:

F (x1, x2) =

∞∫

0

∞∫

0

P(x1, y1, x2, y2)G(x1, x2,F (ρ1(x1, y1), ρ2(x2, y2))) dy1 dy2,

(x1, x2) ∈ R
+
2 := R

+ × R
+, R

+ := [0,+∞)

(1)

with respect to an unknown measurable and bounded function F (x1, x2) on R
+
2 .

In the equation (1), the kernel P(x1, y1, x2, y2) is a measurable real-valued func-
tion on R

+
4 := R

+ × R
+ × R

+ × R
+ satisfying the following conditions:

a) (minorant condition)

there exist continuous on R
+
2 functions K(y1, y2) and λ(x1, x2) with properties
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a1) K(y1, y2) > 0, (y1, y2) ∈ R
+
2 , K ∈ L1(R

+
2 ) ∩ M(R+

2 ),

∞∫

0

∞∫

0

K(y1, y2) dy1 dy2 = 1, (2)

a2) 0 ≤ λ(x1, x2) ≤ 1, (x1, x2) ∈ R
+
2 , λ ↑ by xj on R

+, j = 1, 2,

(1 − λ(x1, x2))xm
1 x`

2 ∈ L1

(
R

+
2

)
, m, ` = 0, 1, (3)

such that
P(x1, y1, x2, y2) ≥ λ(x1, x2)K(y1, y2), (4)

b) (substochasticity condition)

µ(x1, x2) :=

∞∫

0

∞∫

0

P(x1, y1, x2, y2) dy1 dy2 ≤ 1, µ(x1, x2) 6≡ 1, (x1, x2) ∈ R
+
2

and sup
(x1,x2)∈R

+
2

µ(x1, x2) = 1.

Nonlinearity G(x1, x2, u) is a measurable real-valued function on R
+
2 × R

(R := (−∞,+∞)) satisfying Carathéodory condition with respect to the argument
u (i.e., for every u ∈ R the function G is measurable in (x1, x2) ∈ R

+
2 and for al-

most every (x1, x2) ∈ R
+
2 this function is continuous in u on set R ) and some other

conditions (see the statement of the main result).
The functions {ρj(u, v)}j=1,2 in the right side of (1) satisfy the following condi-

tions:

1) ρj(u, v) ≥ 0, (u, v) ∈ R
+
2 , ρj ∈ C(R+

2 ), j = 1, 2,

2) ρj(u, v) ↑ in u on R
+ and ρj(u, v) ↑ in v on R

+, j = 1, 2,

3) ρj(u, 0) ≥ u, ρj(u, 1) ≥ u + 1, u ∈ R
+, j = 1, 2.

The equation (1), apart from its purely mathematical interest, has numerous
important applications. First of all, we should single out the problems of mathe-
matical physics and mathematical biology. So, very important in practical terms is
a special case of the equation when ρj(u, v) = u + v, j = 1, 2, (u, v) ∈ R

+
2 with

specific representations of the kernel P and the nonlinearity G. Such equations arise
in the dynamical theory of p-adic open-closed strings for the scalar field of tachyons,
in the mathematical theory of space-time (geographical) propagation of pandemics,
in the kinetic theory of gases, in the theory of radiative transfer in inhomogeneous
media [1–8].

In the particular case ρj(u, v) = u + v, j = 1, 2, (u, v) ∈ R
+
2 , when the func-

tions G and P do not depend on the variables (x1, x2), the equation (1) was stud-
ied in [8–10] under various restrictions on nonlinearity. It should be noted that
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in the one-dimensional case the corresponding nonlinear integral equation with
the difference kernel P(x − y) on the semiaxis, for various representations of the
nonlinearity was studied in detail in the papers [11–13]. We also note there are
scientific papers devoted to the study of one-dimensional nonlinear integral equa-
tions on a semiaxis with a sum-difference kernel P(x, y) = P0(x − y) − P0(x + y),
(x, y) ∈ R

+
2 and with convex nonlinearity (see for instance [2, 14–16] and references

therein).

In the present paper, under sufficiently general restrictions on the nonlinearity
G, we prove a constructive theorem on the existence of a nonnegative nontrivial
(nonzero) bounded solution on the set R

+
2 . In one important particular case, we

also construct a one-parameter family of bounded solutions and establish the inte-
gral asymptotics of the constructed solutions. The proofs of the formulated theorems
are based on the construction of invariant cone segments for the corresponding non-
linear monotone integral operator in the space of essentially bounded functions on
the set R

+
2 , as well as on the methods developed during the systematic study of

corresponding homogeneous and non-homogeneous linear integral equations on R
+
2

with operators of almost Volterra type (when ρj(u, v) = u+ v, j = 1, 2, (u, v) ∈ R
+
2

these operators turn into two-dimensional Volterra operators with variable lower
limits). At the end of the paper, we provide concrete particular examples of the
functions P, K, λ and G, which are of both applied and purely theoretical interest.

2 Auxiliary facts and notations

Before we prove the main result, we first study auxiliary equations and establish
important and useful results for them, which will be used later.

2.1 Summable solution of a linear inhomogeneous auxiliary integral

equation on a quarter-plane

Consider the following linear inhomogeneous two-dimensional integral equation:

f(x1, x2) = g(x1, x2)+

∞∫

0

∞∫

0

K(y1, y2) f (ρ1(x1, y1), ρ2(x2, y2)) dy1dy2,

(x1, x2) ∈ R
+
2 ,

(5)

with respect to a nonnegative and measurable on R
+
2 function f(x1, x2). Here

g(x1, x2) is a measurable function on R
+
2 and

g(x1, x2) ≥ 0, (x1, x2) ∈ R
+
2 , g(x1, x2) ↓ in xj on R

+, j = 1, 2,
∞∫

0

∞∫

0

g(x1, x2)xm
1 x`

2 dx1 dx2 < +∞, m, ` = 0, 1.
(6)
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For the equation (5) we consider the following simple iterations:

fn+1(x1, x2) = g(x1, x2) +

∞∫

0

∞∫

0

K(y1, y2) fn (ρ1(x1, y1), ρ2(x2, y2)) dy1 dy2,

f0(x1, x2) = g(x1, x2), n = 0, 1, 2, . . . , (x1, x2) ∈ R
+
2 .

(7)

Applying the method of mathematical induction it is easy to check that

fn(x1, x2) ↑ in n. (8)

Now we prove that

fn(x1, x2) ↓ in xj on R
+, j = 1, 2, n = 0, 1, 2, . . . . (9)

Indeed, the monotonicity of the zero approximation immediately follows from (6).
Assume that (9) holds for some positive integer n. Then taking into account the
conditions (6), a1) and 2), from (7) for arbitrary x1, x̃1 ∈ R

+, x1 > x̃1 we will have

fn+1(x1, x2) ≤ g(x̃1, x2) +

∞∫

0

∞∫

0

K(y1, y2) fn (ρ1(x̃1, y1), ρ2(x2, y2)) dy1 dy2 =

= fn+1(x̃1, x2), x2 ∈ R
+.

By analogy, for arbitrary x2, x̃2 ∈ R
+, x2 > x̃2 we get fn+1(x1, x2) ≤ fn+1(x1, x̃2),

x1 ∈ R
+. Therefore, (9) is valid.

Applying again induction on n we prove that

fn ∈ L1(R
+
2 ), n = 0, 1, 2, . . . . (10)

In the case when n = 0 the validity of (10) follows obviously from definition of zero
approximation and its property (6). Assume that fn ∈ L1(R

+
2 ) for some n ∈ N, then

g + fn ∈ L1(R
+
2 ). On the other hand, taking into account (9), 2) and a1), from (7)

we derive the following estimation:

g(x1, x2) ≤ fn+1(x1, x2) ≤ g(x1, x2)+

+

∞∫

0

∞∫

0

K(y1, y2)fn (ρ1(x1, 0), ρ2(x2, 0)) dy1dy2 ≤

≤ g(x1, x2)+fn(x1, x2)

∞∫

0

∞∫

0

K(y1, y2)dy1 dy2 = g(x1, x2)+fn(x1, x2), (x1, x2) ∈ R
+
2 ,

whence it follows that fn+1 ∈ L1(R
+
2 ).

Next we prove the existence of a such constant C > 0 that

∞∫

0

∞∫

0

fn(x1, x2) dx1 dx2 ≤ C, n = 1, 2, . . . . (11)
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Let r1 ≥ 0, r2 ≥ 0 be arbitrary numbers. Then taking into account the conditions
a1), a2), 1) − 3) and (6), from (7) we get

∞∫

r1

∞∫

r2

fn+1(x1, x2)dx1 dx2 ≤
∞∫

r2

∞∫

r1

g(x1, x2)dx1 dx2+

+

∞∫

r2

∞∫

r1

∞∫

0

∞∫

0

K(y1, y2) fn+1 (ρ1(x1, y1), ρ2(x2, y2)) dy1 dy2dx1 dx2 =

=

∞∫

r2

∞∫

r1

g(x1, x2)dx1 dx2 +

∞∫

0

∞∫

0

K(y1, y2)×

×
∞∫

r2

∞∫

r1

fn+1 (ρ1(x1, y1), ρ2(x2, y2)) dx1 dx2dy1 dy2 ≤
∞∫

r2

∞∫

r1

g(x1, x2)dx1 dx2 +

+

1∫

0

∞∫

0

K(y1, y2)

∞∫

r2

∞∫

r1

fn+1 (ρ1(x1, y1), ρ2(x2, 0)) dx1 dx2 dy1 dy2 +

+

∞∫

1

∞∫

0

K(y1, y2)

∞∫

r2

∞∫

r1

fn+1 (ρ1(x1, y1), ρ2(x2, 1)) dx1 dx2 dy1 dy2 ≤

≤
∞∫

r2

∞∫

r1

g(x1, x2) dx1 dx2 +

1∫

0

1∫

0

K(y1, y2)×

×
∞∫

r2

∞∫

r1

fn+1 (ρ1(x1, 0), ρ2(x2, 0)) dx1 dx2 dy1 dy2 +

+

1∫

0

∞∫

1

K(y1, y2)

∞∫

r2

∞∫

r1

fn+1 (ρ1(x1, 1), ρ2(x2, 0)) dx1 dx2 dy1 dy2 +

+

∞∫

1

1∫

0

K(y1, y2)

∞∫

r2

∞∫

r1

fn+1 (ρ1(x1, 0), ρ2(x2, 1)) dx1 dx2 dy1 dy2 +

+

∞∫

1

∞∫

1

K(y1, y2)

∞∫

r2

∞∫

r1

fn+1 (ρ1(x1, 1), ρ2(x2, 1)) dx1 dx2 dy1 dy2 ≤
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≤
∞∫

r2

∞∫

r1

g(x1, x2) dx1 dx2 +

1∫

0

1∫

0

K(y1, y2) dy1 dy2

∞∫

r2

∞∫

r1

fn+1(x1, x2) dx1 dx2 +

+

1∫

0

∞∫

1

K(y1, y2) dy1 dy2

∞∫

r2

∞∫

r1+1

fn+1(x1, x2) dx1 dx2 +

+

∞∫

1

1∫

0

K(y1, y2) dy1 dy2

∞∫

r2+1

∞∫

r1

fn+1(x1, x2) dx1 dx2 +

+

∞∫

1

∞∫

1

K(y1, y2) dy1 dy2

∞∫

r2+1

∞∫

r1+1

fn+1(x1, x2) dx1 dx2 .

Hence, combining similar integrals and taking into account (2), we obtain

∞∫

r2

∞∫

r1

fn+1(x1, x2)dx1 dx2

( 1∫

0

1∫

0

K(y1, y2) dy1 dy2 +

1∫

0

∞∫

1

K(y1, y2) dy1 dy2+

+

∞∫

1

1∫

0

K(y1, y2)dy1 dy2 +

∞∫

1

∞∫

1

K(y1, y2) dy1 dy2 −
1∫

0

1∫

0

K(y1, y2) dy1 dy2

)
≤

≤
∞∫

r2

∞∫

r1

g(x1, x2) dx1 dx2 +

1∫

0

∞∫

1

K(y1, y2) dy1 dy2

∞∫

r2

∞∫

r1+1

fn+1(x1, x2) dx1 dx2+

+

∞∫

1

1∫

0

K(y1, y2) dy1 dy2

∞∫

r2+1

∞∫

r1

fn+1(x1, x2) dx1 dx2+

+

∞∫

1

∞∫

1

K(y1, y2) dy1 dy2

∞∫

r2+1

∞∫

r1+1

fn+1(x1, x2) dx1 dx2.

We introduce the following notations

α0 :=
1∫
0

1∫
0

K(y1, y2) dy1 dy2, α1 :=

1∫

0

∞∫

1

K(y1, y2) dy1 dy2,

α2 :=
∞∫
1

1∫
0

K(y1, y2) dy1 dy2, α3 :=

∞∫

1

∞∫

1

K(y1, y2) dy1 dy2.
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Then the last inequality in the above notations can be written as follows:

(α1 + α2 + α3)

∞∫

r2

∞∫

r1

fn+1(x1, x2) dx1 dx2 ≤
∞∫

r2

∞∫

r1

g(x1, x2) dx1 dx2+

+α1

∞∫

r2

∞∫

r1+1

fn+1(x1, x2) dx1 dx2 + α2

∞∫

r2+1

∞∫

r1

fn+1(x1, x2) dx1 dx2+

+α3

∞∫

r2+1

∞∫

r1+1

fn+1(x1, x2) dx1 dx2.

After some transformations we get

α1

∞∫

r2

r1+1∫

r1

fn+1(x1, x2) dx1 dx2+α2

r2+1∫

r2

∞∫

r1

fn+1(x1, x2) dx1 dx2+

+α3

r2+1∫

r2

r1+1∫

r1

fn+1(x1, x2) dx1 dx2+α3

r2+1∫

r2

∞∫

r1+1

fn+1(x1, x2) dx1 dx2+

+α3

∞∫

r2+1

r1+1∫

r1

fn+1(x1, x2) dx1 dx2 ≤
∞∫

r2

∞∫

r1

g(x1, x2) dx1 dx2.

(12)

By virtue of (9), from (12) it follows, in particular, that

α1

∞∫

r2

fn+1(r1 + 1, x2)dx2 + α2

∞∫

r1

fn+1(x1, r2 + 1)dx1+

+α3fn+1(r1 + 1, r2 + 1) + α3

∞∫

r1+1

fn+1(x1, r2 + 1)dx1+

+α3

∞∫

r2+1

fn+1(r1 + 1, x2)dx2 ≤
∞∫

r2

∞∫

r1

g(x1, x2) dx1 dx2.

(13)

Taking into account the condition (6), by Fubini’s theorem [17] we can state that

∞∫

0

∞∫

0

∞∫

r2

∞∫

r1

g(x1, x2) dx1 dx2 dr1 dr2 =

∞∫

0

∞∫

0

g(x1, x2)

x1∫

0

dr1

x2∫

0

dr2 dx1 dx2 =

=

∞∫

0

∞∫

0

x1 x2 g(x1, x2) dx1 dx2 := M11 < +∞,
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∞∫

0

∞∫

r2

∞∫

r1

g(x1, x2) dx1 dx2 dr1 =

∞∫

r2

∞∫

0

∞∫

r1

g(x1, x2) dx1 dr1 dx2 ≤

≤
∞∫

0

∞∫

0

g(x1, x2)

x1∫

0

dr1 dx1 dx2 =

∞∫

0

∞∫

0

x1 g(x1, x2) dx1 dx2 := M10 < +∞,

∞∫

0

∞∫

r2

∞∫

r1

g(x1, x2) dx1 dx2 dr2 ≤
∞∫

0

∞∫

0

x2 g(x1, x2) dx1 dx2 := M01 < +∞.

Therefore, from (13) we get

∞∫

1

∞∫

1

fn+1(x1, x2) dx1 dx2 ≤ M11

α3
, (14)

∞∫

0

∞∫

1

fn+1(x1, x2) dx1 dx2 ≤ M10

α1
, (15)

∞∫

1

∞∫

0

fn+1(x1, x2) dx1 dx2 ≤ M01

α2
. (16)

Integrating both parts of (7) over the set [0, 1]× [0, 1] and then using the estimates
(14)–(16), we have

1∫

0

1∫

0

fn+1(x1, x2) dx1 dx2 ≤
1∫

0

1∫

0

g(x1, x2) dx1 dx2+

+

∞∫

0

∞∫

0

K(y1, y2)

1∫

0

1∫

0

fn+1 (ρ1(x1, y1), ρ2(x2, y2)) dx1 dx2 dy1 dy2 ≤

≤
1∫

0

1∫

0

g(x1, x2)dx1dx2 +

1∫

0

∞∫

0

K(y1, y2)

1∫

0

1∫

0

fn+1 (x1, ρ2(x2, y2)) dx1dx2dy1dy2+

+

∞∫

1

∞∫

0

K(y1, y2)

1∫

0

1∫

0

fn+1 (x1 + 1, ρ2(x2, y2)) dx1 dx2 dy1 dy2 ≤

≤
1∫

0

1∫

0

g(x1, x2) dx1 dx2 +

1∫

0

1∫

0

K(y1, y2)

1∫

0

1∫

0

fn+1(x1, x2) dx1 dx2 dy1 dy2+

+

1∫

0

∞∫

1

K(y1, y2)

1∫

0

1∫

0

fn+1(x1, x2 + 1) dx1 dx2 dy1 dy2+
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+

∞∫

1

1∫

0

K(y1, y2)

1∫

0

1∫

0

fn+1(x1 + 1, x2) dx1 dx2 dy1 dy2+

+

∞∫

1

∞∫

1

K(y1, y2)

1∫

0

1∫

0

fn+1(x1 + 1, x2 + 1) dx1 dx2 dy1 dy2 ≤

≤
1∫

0

1∫

0

g(x1, x2) dx1 dx2 + α0

1∫

0

1∫

0

fn+1(x1, x2) dx1 dx2+

+α1

∞∫

1

1∫

0

fn+1(x1, x2) dx1 dx2 + α2

1∫

0

∞∫

1

fn+1(x1, x2) dx1 dx2+

+α3

∞∫

1

∞∫

1

fn+1(x1, x2) dx1 dx2 ≤
1∫

0

1∫

0

g(x1, x2) dx1 dx2+

+α0

1∫

0

1∫

0

fn+1(x1, x2) dx1 dx2 +
α1

α2
M01 +

α2

α1
M10 + M11,

from which we get

1∫

0

1∫

0

fn+1(x1, x2) dx1 dx2 ≤ (1 − α0)
−1

{ 1∫

0

1∫

0

g(x1, x2) dx1 dx2+

+
α1

α2
M01 +

α2

α1
M10 + M11

}
:= C∗ < +∞, n = 0, 1, 2, . . . .

(17)

Finally, summing the inequalities (14)–(17) we obtain

∞∫

0

∞∫

0

fn+1(x1, x2) dx1 dx2 ≤ C∗ +
M10

α1
+

M01

α2
+

M11

α3
< +∞, n = 0, 1, 2, . . . , (18)

i.e. the proving inequality (11), where C = C∗ +
M10

α1
+

M01

α2
+

M11

α3
.

Consequently, the sequence of summable and monotone functions {fn(x1, x2)}∞n=0

as n → ∞ almost everywhere on R
+
2 converges to the summable function f(x1, x2).

This fact follows from (8)–(10) and (18) by B. Levi’s theorem [17]. Using again
B. Levi’s theorem it can be stated that limit function f(x1, x2) satisfies the equation
(5) almost everywhere on R

+
2 .

From (8), (9) and (18) we also get

f(x1, x2) ≥ g(x1, x2), (x1, x2) ∈ R
+
2 , (19)
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f(x1, x2) ↓ in xj on R
+, j = 1, 2, (20)

∞∫

0

∞∫

0

f(x1, x2) dx1 dx2 ≤ C∗ +
M10

α1
+

M01

α2
+

M11

α3
. (21)

The foregoing implies

Theorem 1. Let the function g satisfy the conditions (6), and let the kernel K have

the properties a1). Then under conditions 1) − 3) the equation (5) has a nonneg-

ative and monotonically non-increasing in each argument and summable solution.

Moreover, the estimates (19) and (21) hold for the solution.

2.2 A nontrivial solution of a linear homogeneous auxiliary integral

equation on a quarter-plane

Let us introduce into consideration the inhomogeneous auxiliary integral equa-
tion

f∗(x1, x2) = 1 − λ(x1, x2)+

+ λ(x1, x2)

∞∫

0

∞∫

0

K(y1, y2) f∗ (ρ1(x1, y1), ρ2(x2, y2)) dy1 dy2, (x1, x2) ∈ R
+
2

(22)

with respect to the unknown measurable function f∗(x1, x2), where the functions λ

and K possess the properties a2) and a1) respectively.
Due to a2) the function 1 − λ(x1, x2) satisfies the conditions (6). Therefore,

according to Theorem 1, the equation (5) with the free term g(x1, x2) = 1−λ(x1, x2)
has a nonnegative and monotone (with respect to each argument) and summable
solution on R

+
2 . We denote this solution by fλ(x1, x2).

For the equation (22) consider the following iterations:

f∗

n+1(x1, x2) = 1 − λ(x1, x2)+

+ λ(x1, x2)

∞∫

0

∞∫

0

K(y1, y2) f∗

n (ρ1(x1, y1), ρ2(x2, y2)) dy1 dy2,

f∗

0 (x1, x2) = 1 − λ(x1, x2), n = 0, 1, 2, . . . , (x1, x2) ∈ R
+
2 .

(23)

By induction it is easy to show that

f∗

n(x1, x2) ↑ in n, (x1, x2) ∈ R
+
2 , (24)

f∗

n(x1, x2) ≤ min{1, fλ(x1, x2)}, n = 0, 1, 2, . . . , (x1, x2) ∈ R
+
2 . (25)

Therefore, the sequence of functions {f∗

n(x1, x2)}∞n=0 has a pointwise limit as
n → ∞: lim

n→∞

f∗

n(x1, x2) = f∗(x1, x2). In accordance with B. Levi’s theorem, the

limit function f∗(x1, x2) satisfies the equation (22). It follows from (24) and (25)
that

1 − λ(x1, x2) ≤ f∗(x1, x2) ≤ min{1, fλ(x1, x2)}, (x1, x2) ∈ R
+
2 , (26)
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whence, in particular, we obtain

f∗ ∈ L1(R
+
2 ) ∩ M(R+

2 ). (27)

Further, we consider the corresponding homogeneous integral equation

S(x1, x2) = λ(x1, x2)

∞∫

0

∞∫

0

K(y1, y2)S (ρ1(x1, y1), ρ2(x2, y2)) dy1dy2, (28)

(x1, x2) ∈ R
+
2 , with respect to the measurable and bounded function S(x1, x2).

Using a1), we can check directly that f∗

triv(x1, x2) ≡ 1 is a solution of the equation
(22). On the other hand, we have proved that the equation (22), in addition to such
a trivial solution, also has an integrable and bounded solution f∗(x1, x2) (with the
property (26)). It is obvious that

S(x1, x2) = f∗

triv(x1, x2) − f∗(x1, x2) = 1 − f∗(x1, x2), (x1, x2) ∈ R
+
2

is a solution of the homogeneous equation (28). From (26), in particular, we get

1 ≥ S(x1, x2) ≥ 0, S(x1, x2) 6≡ 0, S(x1, x2) 6≡ 1, (x1, x2) ∈ R
+
2 , (29)

and from (27)
1 − S ∈ L1(R

+
2 ) ∩ M(R+

2 ). (30)

Thus, for the auxiliary linear homogeneous equation (28), the following theorem
holds:

Theorem 2. Under the conditions a1), a2) and 1) − 3) the linear homogeneous

integral equation (28) has a nonnegative nontrivial measurable and bounded solution

S(x1, x2) on R
+
2 . In addition, S(x1, x2) possesses the (29) and (30) properties.

Remark 1. It is interesting to note that the proved Theorem 2 generalizes and sup-
plements the corresponding result from [18], devoted to the study of one-dimensional
integral equations with ρ(u, v) = u + v, (u, v) ∈ R

+
2 .

3 Solubility of the main nonlinear equation. Examples

In this section, we begin to study the initial nonlinear integral equation (1), first
highlighting one special case (important in applications).

3.1 One-parameter family of bounded solutions of the equation (1)
in one particular case

Let the nonlinearity G(x1, x2, u) admit a representation of the form

G(x1, x2, u) = u + ω(x1, x2, u), (x1, x2, u) ∈ R
+
2 × R, (31)

where ω(x1, x2, u) satisfies the following conditions:
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I) ω(x1, x2, u) ↑ in u on R
+,

II) ω(x1, x2, u) satisfies the Carathéodory condition with respect to the argu-
ment u on R

+
2 × R (see the introduction about the Carathéodory condition),

III) ω(x1, x2, u) ≥ 0, (x1, x2, u) ∈ R
+
3 ,

IV) the supremum of ω with respect to u on R
+
2 :

β(x1, x2) := sup
u∈R+

ω(x1, x2, u), (x1, x2) ∈ R
+
2 , (32)

possesses following properties: β(x1, x2) ↓ in xj on R
+, j = 1, 2

xm
1 x`

2 β(x1, x2) ∈ L1

(
R

+
2

)
, m, ` = 0, 1.

Suppose also that the kernel P(x1, y1, x2, y2) is linked with the functions λ and K

by the relation

P(x1, y1, x2, y2) = λ(x1, x2)K(y1, y2), (x1, y1, x2, y2) ∈ R
+
4 . (33)

Then the equation (1) will take the following form:

F (x1, x2) = λ(x1, x2)

∞∫

0

∞∫

0

K(y1, y2)
{
F (ρ1(x1, y1), ρ2(x2, y2))+

+ ω(x1, x2,F (ρ1(x1, y1), ρ2(x2, y2)))
}

dy1 dy2, (x1, x2) ∈ R
+
2 .

(34)

We construct special successive approximations

F
γ
n+1(x1, x2) = λ(x1, x2)

∞∫

0

∞∫

0

K(y1, y2)
{
F

γ
n (ρ1(x1, y1), ρ2(x2, y2))+

+ ω
(
x1, x2,F

γ
n (ρ1(x1, y1), ρ2(x2, y2))

)}
dy1 dy2,

F
γ
0 (x1, x2) = γS(x1, x2), n = 0, 1, 2, . . . , (x1, x2) ∈ R

+
2 ,

(35)

where γ > 0 is an arbitrary numeric parameter.
Along with iterations (35), consider a linear inhomogeneous integral equation

(5) with a free term of the form

g(x1, x2) = β(x1, x2), (x1, x2) ∈ R
+
2 . (36)

Due to conditions III) and IV), according to Theorem 1 the equation (5) with a free
term of the form (36) has a nonnegative monotonically non-increasing and summable
on R

+
2 solution fβ(x1, x2).

Below we establish several important properties that characterize the sequence
{F γ

n (x1, x2)}∞n=0 both for each value of the parameter γ > 0.
By induction on n we prove

F
γ
n (x1, x2) ↑ in n, γ > 0, (x1, x2) ∈ R

+
2 , (37)
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F
γ
n (x1, x2) ≤ γS(x1, x2) + fβ(x1, x2), γ > 0, n = 0, 1, 2, . . . , (x1, x2) ∈ R

+
2 . (38)

We first prove that F
γ
1 (x1, x2) ≥ F

γ
0 (x1, x2) and F

γ
1 (x1, x2) ≤ γS(x1, x2) +

fβ(x1, x2), (x1, x2) ∈ R
+
2 , γ > 0. Indeed, taking into account (28), (32), as well as

the conditions a1), a2), III), from (35) we have

F
γ
1 (x1, x2) ≥ λ(x1, x2)

∞∫

0

∞∫

0

K(y1, y2)F
γ
0 (ρ1(x1, y1), ρ2(x2, y2)) dy1 dy2 =

= γλ(x1, x2)

∞∫

0

∞∫

0

K(y1, y2)S(ρ1(x1, y1), ρ2(x2, y2)) dy1 dy2 =

= γS(x1, x2) = F
γ
0 (x1, x2),

F
γ
1 (x1, x2) = λ(x1, x2)×

×
∞∫

0

∞∫

0

K(y1, y2)

{
γS
(
ρ1(x1, y1), ρ2(x2, y2)

)
+ fβ

(
ρ1(x1, y1), ρ2(x2, y2)

)
+

+ω
(
x1, x2, γS

(
ρ1(x1, y1), ρ2(x2, y2)

)
+ fβ

(
ρ1(x1, y1), ρ2(x2, y2)

))
}

dy1 dy2 ≤

≤ γλ(x1, x2)

∞∫

0

∞∫

0

K(y1, y2)S
(
ρ1(x1, y1), ρ2(x2, y2)

)
dy1 dy2+

+λ(x1, x2)

∞∫

0

∞∫

0

K(y1, y2)fβ

(
ρ1(x1, y1), ρ2(x2, y2)

)
dy1 dy2+

+β(x1, x2)λ(x1, x2)

∞∫

0

∞∫

0

K(y1, y2) dy1 dy2 ≤ γS(x1, x2) + β(x1, x2)+

+

∞∫

0

∞∫

0

K(y1, y2)fβ

(
ρ1(x1, y1), ρ2(x2, y2)

)
dy1 dy2 = γS(x1, x2) + fβ(x1, x2).

Assume that the statements (37) and (38) are true for some n ∈ N. We use again
(28), (32), a1), a2) and III). Then from (35) by virtue of I) we obtain

F
γ
n+1(x1, x2) ≥ λ(x1, x2)

∞∫

0

∞∫

0

K(y1, y2)
{

F
γ
n−1(ρ1(x1, y1), ρ2(x2, y2))+

+ ω(x1, x2,F
γ
n−1(ρ1(x1, y1), ρ2(x2, y2)))

}
dy1 dy2 = F

γ
n (x1, x2),
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F
γ
n+1(x1, x2) ≤ γS(x1, x2) + fβ(x1, x2), n = 0, 1, 2, . . . , (x1, x2) ∈ R

+
2 , γ > 0,

whence the required assertions (37) and (38) follow.
Based on the Carathéodory condition for the function ω (see II)) it is easy

to prove that for every γ > 0 each element of the sequence {F γ
n (x1, x2)}∞n=0 is a

measurable function on R
+
2 .

Thus, in view of (37) and (38) we can assert that the sequence of mea-
surable functions on R

+
2 {F γ

n (x1, x2)}∞n=0 has a pointwise limit as n → ∞:
lim

n→∞

F
γ
n (x1, x2) = F γ(x1, x2). By Levy’s theorem, the limit function F γ(x1, x2)

satisfies the equation (34) for every γ > 0. Moreover, from (37) and (38) we get
that F γ(x1, x2) satisfies the following double inequality:

γS(x1, x2) ≤ F
γ(x1, x2) ≤ γS(x1, x2) + fβ(x1, x2), (x1, x2) ∈ R

+
2 , γ > 0. (39)

Now we note one more important and useful property of the sequence of functions
{F γ

n (x1, x2)}∞n=0 on R
+
2 for different values of the parameter γ > 0. We prove by

induction that if γ1, γ2 ∈ (0, +∞), γ1 > γ2 are arbitrary parameters, then

F
γ1
n (x1, x2)−F

γ2
n (x1, x2) ≥ (γ1−γ2)S(x1, x2), n = 0, 1, 2, . . . , (x1, x2) ∈ R

+
2 . (40)

Indeed, when n = 0 the required inequality is obvious. Suppose (40) is satisfied
for some n ∈ N. Then, using the conditions I), a1), a2) and taking into account (28),
from (35) we have

F
γ1
n+1(x1, x2)−F

γ2
n+1(x1, x2) = λ(x1, x2)

∞∫

0

∞∫

0

K(y1, y2)
{

F
γ1
n (ρ1(x1, y1), ρ2(x2, y2))−

−F
γ2
n (ρ1(x1, y1), ρ2(x2, y2)) + ω(x1, x2,F

γ1
n (ρ1(x1, y1), ρ2(x2, y2)))−

−ω(x1, x2,F
γ2
n (ρ1(x1, y1), ρ2(x2, y2)))

}
dy1 dy2 ≥ λ(x1, x2)×

×
∞∫

0

∞∫

0

K(y1, y2)
{

F
γ1
n (ρ1(x1, y1), ρ2(x2, y2))−F

γ2
n (ρ1(x1, y1), ρ2(x2, y2))

}
dy1dy2 ≥

≥ (γ1−γ2)λ(x1, x2)

∞∫

0

∞∫

0

K(y1, y2)S
(
ρ1(x1, y1), ρ2(x2, y2)

)
dy1dy2 = (γ1−γ2)S(x1, x2).

Letting the number n → ∞ into (40), we get

F
γ1(x1, x2) − F

γ2(x1, x2) ≥ (γ1 − γ2)S(x1, x2), (x1, x2) ∈ R
+
2 . (41)

Since 1 − S ∈ L1(R
+
2 ) ∩ M(R+

2 ) and fβ ∈ L1(R
+
2 ), then in view of (39) from the

estimate below

|γ − F
γ(x1, x2)| = |γ − γS(x1, x2) + γS(x1, x2) − F

γ(x1, x2)| ≤
≤ γ(1 − S(x1, x2)) + fβ(x1, x2), γ > 0, (x1, x2) ∈ R

+
2

we obtain the following important fact: for each γ > 0 the function γ−F γ ∈ L1(R
+
2 ).

Thus the following theorem is true.



SOLUBILITY OF A CLASS OF TWO-DIMENSIONAL INTEGRAL EQUATIONS 33

Theorem 3. Under conditions a1), a2), I) − IV ) and 1) − 3), the nonlinear inte-

gral equation (34) has a one-parameter family of nonnegative nontrivial measurable

solutions {F γ(x1, x2)}γ∈(0, +∞) and

• for all γ ∈ (0, +∞) the inequalities (39) hold,

• for all γ1, γ2 ∈ (0, +∞), γ1 > γ2, (41) takes place,

• for all γ ∈ (0, +∞) functions γ − F γ(x1, x2) are summable on R
+
2 .

Remark 2. Under the assumptions of Theorem 3, if moreover the following conditions
are fulfilled

p1) ρj(0, v) ≥ v, v ∈ R
+, j = 1, 2,

p2) β ∈ M(R+
2 ),

then for any γ > 0 the solution F γ(x1, x2) is bounded on the set R
+
2 .

Proof. First, we verify that fβ ∈ M(R+
2 ). Indeed, given the monotonicity of

fβ(x1, x2) in xj on R
+, j = 1, 2, and also conditions 2), a1), p1), p2), from the equa-

tion (5) with free term g(x1, x2) = β(x1, x2) we get

fβ(x1, x2) ≤ sup
(x1,x2)∈R

+
2

β(x1, x2)+

+ sup
(y1,y2)∈R

+
2

K(y1, y2)

∞∫

0

∞∫

0

fβ

(
ρ1(x1, y1), ρ2(x2, y2)

)
dy1 dy2 ≤

≤ sup
(x1,x2)∈R

+
2

β(x1, x2) + sup
(y1,y2)∈R

+
2

K(y1, y2)

∞∫

0

∞∫

0

fβ

(
ρ1(0, y1), ρ2(0, y2)

)
dy1 dy2 ≤

≤ sup
(x1,x2)∈R

+
2

β(x1, x2) + sup
(y1,y2)∈R

+
2

K(y1, y2)

∞∫

0

∞∫

0

fβ(y1, y2) dy1 dy2 < +∞,

whence it follows that fβ ∈ M(R+
2 ). Consequently, from (29) and (39) we have

0 ≤ F
γ(x1, x2) ≤ γ + sup

(x1,x2)∈R
+
2

fβ(x1, x2) < +∞, γ > 0, (x1, x2) ∈ R
+
2 .

3.2 Main result

Let us turn to the study of the original equation (1) with a common kernel P
and a common nonlinearity G(x1, x2, u).

First, to represent the main conditions imposed on the function G, we introduce
a new function. Let G0(u) be a continuous on the set R

+ function and

c1) G0(u) ↑ u on R
+, G0(0) = 0,

c2) G0(u) is upward convex on R
+, G0 ∈ C(R+),
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c3) there exists a number η > sup
(x1,x2)∈R

+
2

fβ(x1, x2) := B0 such that

G0(u) ≥ u, u ∈ [0, η].

The properties of c1) − c3) imply the existence of a single number ξ > η such that

G0(ξ) = ξ − B0. (42)

The approximate graph of the function G0 is shown in the figure.

Figure. The approximate graph of the function G0 on [0, ξ].

Regarding the nonlinearity of G(x1, x2, u), we assume that the following condi-
tions are satisfied:

n1) G(x1, x2, u) ↑ in u on R
+ and G(x1, x2, u) satisfies the Carathéodory condition

on R
+
2 × R by argument u,

n2) G(x1, x2, u) ≥ u + ω(x1, x2, u), (x1, x2, u) ∈ R
+
3 ,

where ω has properties I) − IV ) and p2),

n3) G(x1, x2, u) ≤ G0(u) + β(x1, x2), (x1, x2, u) ∈ R
+
2 × [0, ξ].

The next theorem is valid.

Theorem 4. Let conditions a), b), 1) − 3), p1), c1) − c3) and n1) − n3) be satis-

fied. Then the nonlinear integral equation (1) has a nonnegative nontrivial solution

bounded on R
+
2 .

Proof. Let γ∗ := η − B0 > 0. By Theorem 3 and Remark 2, to the num-
ber γ∗ the bounded solution F γ∗

(x1, x2) of the equation (34) corresponds, where
γ∗ − F γ∗ ∈ L1(R

+
2 ) and the double inequality takes place

γ∗S(x1, x2) ≤ F
γ∗

(x1, x2) ≤ γ∗S(x1, x2) + fβ(x1, x2), (x1, x2) ∈ R
+
2 . (43)



SOLUBILITY OF A CLASS OF TWO-DIMENSIONAL INTEGRAL EQUATIONS 35

By the definition of the number γ∗ and the inequality S(x1, x2) ≤ 1, (x1, x2) ∈ R
+
2

from (43) it follows that

F
γ∗

(x1, x2) ≤ γ∗ + B0 = η, (x1, x2) ∈ R
+
2 . (44)

Let us proceed to the construction of a solution to the equation (1) by successive
approximations

F(n+1)(x1, x2) =

∞∫

0

∞∫

0

P(x1, y1, x2, y2)×

× G(x1, x2,F(n)(ρ1(x1, y1), ρ2(x2, y2))dy1dy2,

F(0)(x1, x2) = F
γ∗

(x1, x2), n = 0, 1, 2, . . . , (x1, x2) ∈ R
+
2 .

(45)

We prove by induction that

F(n)(x1, x2) ↑ in n, (x1, x2) ∈ R
+
2 . (46)

First, note that, based on (4), (34) and condition n2), the following chain of inequal-
ities holds:

F(1)(x1, x2) ≥
∞∫

0

∞∫

0

P(x1, y1, x2, y2)
(
F

γ∗

(ρ1(x1, y1), ρ2(x2, y2))+

+ω(x1, x2,F
γ∗

(ρ1(x1, y1), ρ2(x2, y2)))
)

dy1 dy2 ≥ λ(x1, x2)

∞∫

0

∞∫

0

K(y1, y2)×

×
(
F

γ∗

(ρ1(x1, y1), ρ2(x2, y2)) + ω(x1, x2,F
γ∗

(ρ1(x1, y1), ρ2(x2, y2)))
)

dy1 dy2 =

= F
γ∗

(x1, x2) = F(0)(x1, x2), (x1, x2) ∈ R
+
2 .

Assuming F(n)(x1, x2) ≥ F(n−1)(x1, x2), (x1, x2) ∈ R
+
2 for some positive integer n,

due to the non-negativity of the kernel P and the condition n1) from (45) we obtain
that F(n+1)(x1, x2) ≥ F(n)(x1, x2), (x1, x2) ∈ R

+
2 .

Let now prove that

F(n)(x1, x2) ≤ ξ, n = 0, 1, 2, . . . , (x1, x2) ∈ R
+
2 . (47)

When n = 0 the inequality (47) is an obvious consequence of the inequalities (44)
and η < ξ. Suppose (47) holds for some n ∈ N. Then, in view of the conditions
b), n1), n3) and the definition of the number ξ (see (42)), from (45) we will have

F(n+1)(x1, x2) ≤
∞∫

0

∞∫

0

P(x1, y1, x2, y2)G(x1, x2, ξ) dy1 dy2 ≤
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≤ (G0(ξ) + β(x1, x2))

∞∫

0

∞∫

0

P(x1, y1, x2, y2) dy1 dy2 ≤

≤ (G0(ξ) + B0) µ(x1, x2) ≤ G0(ξ) + B0 = ξ, (x1, x2) ∈ R
+
2 .

Thus, given that (46) and (47) hold, one can assert that the sequence of mea-
surable on R

+
2 functions {F(n)(x1, x2)}∞n=0 has a pointwise limit as n → ∞:

lim
n→∞

F(n)(x1, x2) = F (x1, x2), and the limit function F (x1, x2) satisfies the equa-

tion (1) (due to B. Levi’s theorem) and the double inequality

F
γ∗

(x1, x2) ≤ F (x1, x2) ≤ ξ, (x1, x2) ∈ R
+
2 .

This completes the proof.

3.3 Examples

In the end of the work, we provide concrete illustrative examples of the func-
tions {ρj}j=1,2, ω, λ, K, G0, G and P satisfying all assumptions of the formulated
theorems.
Examples of functions {ρj}j=1,2:

A1) ρj(u, v) = u + v, (u, v) ∈ R
+
2 , j = 1, 2,

A2) ρj(u, v) = u (1 + αjv) + βjv, (u, v) ∈ R
+
2 , j = 1, 2,

where αj ≥ 0, βj ≥ 1 are numerical parameters, j = 1, 2,

A3) ρj(u, v) = (u + εj)e
v + 2(1 − e−v), (u, v) ∈ R

+
2 , j = 1, 2,

where εj ≥ 1 is a numerical parameter, j = 1, 2.

Examples of functions ω:

B1) ω(x1, x2, u) = β(x1, x2)(1 − e−u), (x1, x2, u) ∈ R
+
3 ,

B2) ω(x1, x2, u) = β(x1, x2)
u

u + 1
, (x1, x2, u) ∈ R

+
3 .

Examples of functions λ:

D1) λ(x1, x2) = 1 − e−(x1+x2), (x1, x2) ∈ R
+
2 ,

D2) λ(x1, x2) = 1 − εe−(x2
1+x2

2), (x1, x2) ∈ R
+
2 , 0 < ε ≤ 1 is a parameter.

Examples of kernel K:

E1) K(y1, y2) =
4

π
e−(y2

1+y2
2), (y1, y2) ∈ R

+
2 ,

E2) K(y1, y2) =
b∫
a

e−(y1+y2)s Q(s) ds, (y1, y2) ∈ R
+
2 ,

where Q(s) > 0 is a continuous function on [a, b), 0 < a < b ≤ +∞, and
b∫
a

G(s)
s2 ds = 1.
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Examples of nonlinearity G0:

H1) G0(u) = p
√

u, u ∈ R
+, p > 2 is an arbitrary odd number,

H2) G0(u) = d(1 − e−u), u ∈ R
+, d > 1 is a numeric parameter.

Examples of kernel P:

L1) P(x1, y1, x2, y2) = λ(x1, x2)K(y1, y2), (x1, y1, x2, y2) ∈ R
+
4 ,

L2) P(x1, y1, x2, y2) = λ(x1, x2)K(y1, y2)+K0(x1, y1, x2, y2), (x1, y1, x2, y2) ∈ R
+
4 ,

where K0(x1, y1, x2, y2) ≥ 0, (x1, y1, x2, y2) ∈ R
+
4 and

∞∫
0

∞∫
0

K0(x1, y1, x2, y2) dy1 dy2 = ε(1 − λ(x1, x2)), 0 < ε < 1 is a parameter.

Examples of nonlinearity G :

U1) G(x1, x2, u) = G0(u) + ω(x1, x2, u), (x1, x2, u) ∈ R
+
2 × R,

U2) G(x1, x2, u) =
√

(u + ω(x1, x2, u))(G0(u) + ω(x1, x2, u)), (x1, x2, u) ∈ R
+
2 ×R,

U3) G(x1, x2, u) = 1
2(G0(u) + u) + ω(x1, x2, u), (x1, x2, u) ∈ R

+
2 × R.

In conclusion, we note that among the above examples, the most important and
most frequently encountered in applications of mathematical physics and mathe-
matical biology are A1), B1), D1), E1), E2), L1), H1), H2) and U1).

Remark 3. Unfortunately, the question of the uniqueness of the solution of the
general nonlinear integral equation (1) in certain cone segments (functions bounded
on R

+
2 ) is still open problem.

The work was supported by the Science Committee of the RA, in the frame of
research project No 21T-1A047.
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