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Abstract. In this paper the impact of small perturbations on asymptotic evolution
of homogeneous linear recurrent processes is investigated. Analytical methods for
describing homogeneous linear recurrent systems, from convergence, periodicity and
boundedness perspective, are presented. These methods are based on Jury Stability
Criterion and the classification of the roots of minimal characteristic polynomial in
relation to unit disc.
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1 Introduction

The main goal of this paper is to study the impact of small perturbations on
asymptotic evolution of homogeneous linear recurrent processes.

It is started with definitions and main properties of homogeneous linear recurrent
processes. The direct formula for the states and the formula for generating function
are given. Also, the linear combination and the product are presented as algebraic
operations over the set of homogeneous linear recurrences.

Next, the definition of minimality, over a given set, is introduced. Inequalities for
the dimension of the linear combination and product are presented. We formulate
the minimization method based on matrix rank definition and the minimization
method by elimination of characteristic zeros.

After that, we are interested in asymptotic behavior of homogeneous linear re-
currences. The convergence criteria and the efficient formula for calculating the limit
are given. The Jury Stability Criterion is proposed as alternative, for the case when
the characteristic roots are not known.

Next, we continue with investigation of the main probabilistic characteristics of
homogeneous linear recurrent distributions. The top of interest is represented by
efficient methods for finding the expectation, the variance, the standard deviation,
the moments of order n, the median and the mode of these distributions.

The last section is devoted to the perturbations generated by deviations in initial
state or deviations in generating vector components. Also, mixed perturbations
are considered. The asymptotic stability is studied and the maximal perturbation
impact is estimated.
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2 Homogeneous Linear Recurrent Processes

The homogeneous linear recurrences and their main properties were intensively
studied in [3] and [4]. Next, they will be briefly recalled and new extensions will be
presented. These results will represent the ground of a new analytical method for
studying the small perturbations and their impact on asymptotic evolution.

2.1 Main Definitions and Properties

A non-degenerate homogeneous linear m-recurrence over a set K is defined as a
sequence a = {an}∞n=0 ⊆ C that satisfies the recurrence

an =

m−1
∑

k=0

qkan−1−k, ∀n ≥ m,

for a given positive integer m, generating vector q = (qk)
m−1
k=0 ∈ Km and initial state

I
[a]
m = (an)m−1

n=0 , where qm−1 6= 0.

The function G[a](z) =
∞
∑

n=0
anz

n is the generating function and the function

G
[a]
t (z) =

t−1
∑

n=0
anz

n is the partial generating function of order t of the sequence a.

For this sequence a with generating vector q, the unit characteristic polynomial

H
[q]
m (z) = 1−zG[q]

m (z) and the characteristic equation H
[q]
m (z) = 0 are defined. Every

polynomial H
[q]
m,α(z) = αH

[q]
m (z) is, also, considered a characteristic polynomial of a.

The set G[K][m](a) represents the set of all generating vectors of length m
and H[K][m](a) represents the set of characteristic polynomials of degree m of the
sequence a. The set Rol[K][m] is the set of all non-degenerate homogeneous linear
m-recurrences over K.

Additionally, the sets Rol[K] =
∞
⋃

m=1
Rol[K][m], G[K](a) =

∞
⋃

m=1
G[K][m](a) and

H[K](a) =
∞
⋃

m=1
H[K][m](a) are considered.

Next, it is considered that the set K is a subfield of C. The following theorem,
theoretically grounded in [4], describes the generating function as a simple formula:

Theorem 1. Let a ∈ Rol[K][m] and q = (qk)
m−1
k=0 ∈ G[K][m](a). The generating

function is a rational fraction for which the following formula holds:

G[a](z) =

G
[a]
m (z) − z

m−1
∑

k=0

qkz
kG

[a]
m−1−k(z)

H
[q]
m (z)

.

Also, the following result presents us the direct formula for calculating the terms of
a homogeneous linear recurrence:
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Theorem 2. Let a ∈ Rol[K][m] with generating vector q ∈ G[K][m](a) and cha-

racteristic polynomial H
[q]
m,α(z) =

p−1
∏

k=0

(z − zk)
sk , where zi 6= zj , ∀i 6= j. Considering

for convenience 00 = 1, the direct formula for calculating the terms of sequence a is

an = I [a]
m · ((B[a])T )−1 · (β[a]

n )T , ∀n ∈ N,

where β
[a]
n =

(

njz−n
k

)

k=0,p−1, j=0,sk−1
, ∀n ∈ N, and B[a] = (β

[a]
i )m−1

i=0 .

Another important result from [4] is the fact that the linear combination and
product are algebraic operations over Rol[K]. More exactly, the next theorems hold.

Theorem 3. Let a(j) ∈ Rol[K], Pj(z) ∈ H[K](a(j)) and αj ∈ C, j = 1, t. Then

a =
t
∑

k=1

αka
(k) ∈ Rol[K] and P (z) = lcm(P1(z), P2(z), . . . , Pt(z)) ∈ H[K](a).

Theorem 4. Consider that a ∈ Rol[K][m], b ∈ Rol[K][1], (q0) ∈ G[K][1](b) and
P (z) ∈ H[K][m](a). Then, ab = (anbn)∞n=0 ∈ Rol[K][m] and P (q0z) ∈ H[K](ab).

Theorem 5. Consider a ∈ Rol[C][m1], b ∈ Rol[C][m2], u ∈ G[C][m1](a) and
v ∈ G[C][m2](b). Let z0, z1, . . . , zp−1 be all distinct complex roots, of multiplicity

s0, s1, . . . , sp−1 correspondingly, of the polynomial H
[u]
m1(z); z

∗
0 , z

∗
1 , . . . , z

∗
p∗−1 be all

distinct complex roots, of multiplicity s∗0, s
∗
1, . . . , s

∗
p∗−1 correspondingly, of the poly-

nomial H
[v]
m2(z). Then, ab ∈ Rol[C] and

P (z) = lcm({(z − zkz
∗
r )

sk+s∗r−1|k = 0, p − 1, r = 0, p∗ − 1}) ∈ H[C](ab).

2.2 Minimization Methods

The non-zero sequence (with at least one non-zero element) a ∈ Rol[K] is called
m-minimal over K if a ∈ Rol[K][m] and a 6∈ Rol[K][t], ∀t < m. In this case, the
number m represents the dimension of the sequence a over K and it is denoted
dim[K](a) = m. The dimension of the zero sequence is considered 0.

It is obvious that dim[K](a) ≤ m, ∀a ∈ Rol[K][m]. Also, if K1 ⊆ K2 and
a ∈ Rol[K1], then a ∈ Rol[K2] and dim[K2](a) ≤ dim[K1](a).

According to Theorem 3, if a(k) ∈ Rol[K] and αk ∈ C, k = 1, t, then

dim[K]

(

t
∑

k=1

αka
(k)

)

≤
t
∑

k=1

dim[K](a(k)).

Additionally, from Theorem 5, for ∀a(k) ∈ Rol[C], k = 1, t, we have the inequality

dim[C]

(

t
∏

k=1

a(k)

)

≤
t
∏

k=1

dim[C](a(k)).
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It is known from [4] that the minimal generating vector is unique, i.e.

|G[K][dim[K](a)](a)| = 1.

This unique minimal generating vector determines the unique minimal unit cha-
racteristic polynomial P (z) ∈ H[K][dim[K](a)](a). We may omit the word ”unit”
and consider P (z) as the minimal characteristic polynomial of a. This polynomial
allows us to describe the set of all characteristic polynomials in the following way:

H[K](a) = {Q(z) ∈ K[z] | Q(z)
...P (z), Q(0) 6= 0}.

The minimization problem consists in finding the dimension of the non-zero
sequence a and its minimal generating vector over K. According to [4], there are
two minimization methods over C: the minimization method based on matrix rank
definition and the minimization method by elimination of characteristic zeros.

Theorem 6. If a ∈ Rol[C][m], then dim[C](a) = R = rank(A
[a]
m ) and the minimal

generating vector is q = (q0, q1, . . . , qR−1) ∈ G[C][R](a), where the reverse vector
x = (qR−1, qR−2, . . . , q0) is the unique solution of the system with linear equations

A
[a]
R xT = (f

[a]
R )T with free terms f

[a]
R = (aR, aR+1, . . . , a2R−1) and the system matrix

A
[a]
R = (ai+j)i,j=0,R−1.

Theorem 7. Let a ∈ Rol[C][m], x = I
[a]
m ((B[a])T )−1 = (Ak,j)k=0,p−1, j=0,sk−1, tk

be the number of zeros from the end of (Ak,j)j=0,sk−1, k = 0, p − 1 and t =
p−1
∑

k=0

tk.

Then dim[C](a) = m − t and Q(z) =
P (z)

p−1
∏

k=0

(z − zk)tk

∈ H[C][m − t](a), where zk,

k = 0, p − 1, are all distinct roots of the polynomial P (z) ∈ H[C][m](a).

These methods also can be used for minimization over a subset K of C. Having
determined the minimal characteristic polynomial over C, the second step is to find
a multiple of minimal degree for it, through the divisors of characteristic polynomial
over K, which has the free term −1 and the rest of coefficients belonging to K.

The minimization method based on matrix rank definition is more applicable
than the minimization method by elimination of characteristic zeros, because it
does not suppose to know the complex roots of the characteristic polynomial.

3 Asymptotic Behavior of Homogeneous Linear Recurrences

In this section, the asymptotic behavior of homogeneous linear recurrences is
studied. The convergence criteria and the efficient formula for calculating the limit
are given. The Jury Stability Criterion is proposed as alternative, for the case when
the characteristic roots are not known.
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3.1 Convergence Criterion Based on Characteristic Zeros

According to [4], the convergence criterion is given by the following theorem.
Practically, the classification of the roots of minimal characteristic polynomial gives
us the information about the asymptotic behavior of given homogeneous linear re-
current process.

Theorem 8. Consider a ∈ Rol[C][m] a non-zero sequence with dim[C](a) = m and
P (z) ∈ H[C][m](a). Let z0, z1, . . . , zp−1 be all distinct roots of the polynomial P (z),
of corresponding multiplicity s0, s1, . . . , sp−1. The sequence a is convergent if and
only if |zk| > 1 or (zk = 1 and sk = 1), k = 0, p − 1.

In other words, the minimal characteristic polynomial of the convergent sequence
a ∈ Rol[C][m] has at most one simple root equal to 1. The rest of the roots lie outside
of the unit disc.

Moreover, if a is convergent, the limit can be easily calculated. We have

lim
n→∞

an = 0 in the case when P (1) 6= 0, and lim
n→∞

an = (I
[a]
m ((B[a])T )−1)t0 in the

case when P (1) = 0. Next, according to minimization method by elimination of
characteristic zeros, we have lim

n→∞
an 6= 0 when P (1) = 0. In this situation, to avoid

the need for knowing the roots of minimal characteristic polynomial, the sequence
a is transformed into a linear (m− 1) – recurrence with a constant inhomogeneity.

Theorem 9. Let

a ∈ Rol[C][m], P (z) = H [p]
m (z) ∈ H[C][m](a), P (1) = 0,

where m = dim[C](a) ≥ 2. Then, the sequence a is a linear (m − 1) – recurrence
over C, generated by vector q = (q0, q1, . . . , qm−2) and inhomogeneity

rm−1 = am−1 −
m−2
∑

k=0

qkam−2−k,

where

qk =
k
∑

j=0

pj − 1, k = 0,m− 2.

If, additionally, a is convergent, then

lim
n→∞

an =
rm−1

1 −
m−2
∑

k=0

qk

6= 0.

If there is at least one root, of the minimal characteristic polynomial, which lies
inside of the unit disc, then a diverges to infinity. The same thing happens when
there is at least one multiple root on the unit circle. Instead, if all the roots are
simple roots of unity, then a is periodic. When all the roots are simple roots of unity
or lie outside of the unit disc, then a is bounded.
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3.2 Jury Stability Criterion

Let a ∈ Rol[C][m] with minimal characteristic polynomial

P (z) = H [p]
m (z) ∈ H[C][m](a).

The Jury Stability Criterion, described in [1] and [2], can be applied for studying
the localization of the roots of reciprocal polynomial P ∗(z) of P (z) in relation to
unit circle, without finding the roots. Basically, the calculations are organized as a
table, where

• the columns correspond to monomials of P ∗(z), ordered in descending order
by exponent;

• the first row contains the coefficients of P ∗(z);

• each further even row 2k+2 contains the numbers from previous row in reverse
order;

• each further odd row 2k + 3 is calculated by subtracting α times the previous
even row from the previous odd row, where α = β2k+2/β2k+1, β2k+2 is the
first element from previous even row 2k+2 and β2k+1 is the first element from
previous odd row 2k + 1;

• the table is expanded until the last row of the table contains only one non-zero
element.

Since β1 = 1 > 0, then for every negative value from the sequence β1, β3, β5, . . .
the polynomial P ∗(z) has one root outside of the unit disc, i.e. the polynomial
P (z) has one root inside the unit disc. So, for stability, it is needed all these values
β1, β3, β5, . . . to be non-negative.

A particular additional result, which is involved from [1], is the fact that we
need to have at least P (1) > 0, P (−1) > 0 and |pm−1| < 1 in order all the roots
of P (z) lie outside of unit disc. For instance, based on [3], this does not happen
when P (z) ∈ Z[z]. Instead, the homogeneous linear recurrent distributions satisfy
this property.

4 Homogeneous Linear Recurrent Distributions

Let consider a nonnegative integer random variable ξ with probabilistic distri-
bution rep(ξ) = a = (an)∞n=0. This means that an represents the probability that
random variable ξ has the value n, for each n = 0, 1, 2, . . . , i.e. an = P(ξ = n),
n = 0,∞.

According to [4], the main probabilistic characteristics of random variable ξ
are: the expectation E(ξ), the moments νn(ξ) = E(ξn) (n = 1,∞), the variance
V(ξ) = ν2(ξ) − ν2

1(ξ) and the standard deviation σ(ξ) =
√

V(ξ). Two additional
probabilistic characteristics, that are useful for solving various stochastic problems,
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are the mode µ, for which aµ = max
n∈N

an, and the median m0, that satisfies the double

inequality P(ξ < m0) <
1

2
≤ P (ξ ≤ m0), equivalent with

m0−1
∑

k=0

ak <
1

2
≤

m0
∑

k=0

ak.

Both, the mode µ and the median m0, can be found by successive search algo-
rithm, i.e. by checking consecutively the values a0, a1, a2, . . ., until the median is
found or the maximum number of iterations for finding the mode is reached.

For finding the median, the maximum number of iterations of the successive
search algorithm is N(ξ) = [E(ξ) + σ(ξ)

√
2]. The algorithm starts with setting

ψ0 = a0 and continues with calculation of the value ψn = ψn−1 + an at each step

n = 1, 2, . . ., until the inequality ψn ≥
1

2
becomes true.

Similarly, for finding the mode, the maximum number of iterations of the suc-

cessive search algorithm is ns(ξ) =

[

E(ξ) +
σ(ξ)
√
as

]

, where s is the smallest in-

dex for which as > 0. The mode µ is that index which satisfies the equality
aµ = max

s≤n≤ns(ξ)
an.

We can easily note that the successive search algorithm for finding the mode
of the random variable ξ depends on the main probabilistic characteristics E(ξ)
and σ(ξ). In general case, these values can be obtained from generating function
Gξ(z) = G[a](z) using the formulas:

E(ξ) = G′
ξ(1), V(ξ) = G′′

ξ (1) +G′
ξ(1) − (G′

ξ(1))
2, σ(ξ) =

√

V(ξ).

Next, we consider the homogeneous linear recurrent distributions, i.e. the case
when a = rep(ξ) ∈ Rol[C]. It is known that a ∈ Rol[R] and dim[R][a] = dim[C][a].
Moreover, since distributions are convergent to 0, the minimal characteristic poly-
nomial does not have the root z = 1. In this case, the moments can be found in an
easier way, using the following theorem from [4]:

Theorem 10. Let ξ be a random variable with distribution a = rep(ξ) ∈ Rol[R][m]
and generating vector q ∈ G[R][m](a). Then c(k) = (nkan)∞n=0 ∈ Rol[R][Mk],
q(k) ∈ G[R][Mk](c(k)) and

νk(ξ) = G[c(k)](1), ∀k ≥ 1,

where Mk = m(k + 1) and

H
[q(k)]
Mk

(z) = (H [q]
m (z))k+1 ∈ H[R][Mk](c

(k)).

In consequence, E(ξ) and σ(ξ) can be calculated too, using the relations

E(ξ) = ν1(ξ), V(ξ) = ν2(ξ) − ν2
1(ξ), σ(ξ) =

√

V(ξ).
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5 Perturbations and Their Asymptotic Behavior

We consider the homogeneous linear recurrence a ∈ Rol[R][m] with initial state

I
[a]
m = (an)m−1

n=0 , generating vector q ∈ G[R][m](a) and the corresponding characte-

ristic polynomial H
[q]
m (z) ∈ H[R][m](a). Perturbations are defined as deviations in

the evolution of a, caused by small deviations in the parameters, i.e. deviations of
initial state elements and deviations of generating vector components.

5.1 Perturbations Generated by Deviations in Initial State

Initially, we consider only deviations in initial state I
[a]
m of the homogeneous

linear recurrence a, without any change in generating vector q. In this case, the
perturbed recurrence represents a new homogeneous linear recurrence b ∈ Rol[R][m]

with initial state I
[b]
m = (bn)m−1

n=0 and the same generating vector q ∈ G[R][m](b),
where

bn = an + ∆n, n = 0,m− 1.

The perturbation is given by the sequence ε = (εn)∞n=0, where εn = bn − an,
n = 0,∞. We have εn = ∆n, n = 0,m− 1. Also, applying Theorem 3, we obtain
ε ∈ Rol[R][m] and q ∈ G[R][m](ε). So,

ε ∈ Rol[R][m], q ∈ G[R][m](ε), I [ε]
m = (∆n)m−1

n=0 .

The perturbation ε = (εn)∞n=0 is considered asymptotically stable if and only if
lim

n→∞
εn = 0. The convergence of ε can be studied according to Section 3.

As a remark, the asymptotical stability of perturbation ε does not depend on de-
viation in initial state. Since the components of generating vector q are not changed,
the characteristic roots are not changed too. This means that the asymptotic be-
havior of the perturbed recurrence is exactly the same as asymptotic behavior of the
original recurrence.

The maximal impact of the perturbation ε is represented by the positive value
ε∗ = max

n=0,∞
|εn|. Even if ε is asymptotically stable, it might have a big enough

maximal perturbation impact.
In order to study the maximal impact of the asymptotically stable perturbation

ε, we can consider the sequence ε2 = (ε2n)∞n=0. Since ε2 = ε · ε and ε ∈ Rol[R][m], we
have

ε2 ∈ Rol[R], dim[R][ε2] ≤ (dim[R][ε])2 ≤ m2.

In consequence, ε2 ∈ Rol[R][m2] and its minimal generating vector can be obtained
using the minimization method based on matrix rank definition.

Next, using Theorem 1, the value s =
∞
∑

n=0
ε2n = G[ε2](1) can be calculated. If ξ

is a random variable with distribution p = ε2/s, then its mode µ and its probability
pµ can be found using the successive search algorithm, described in Section 4. In
the end, we obtain the maximal perturbation impact ε∗ =

√
spµ.
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5.2 Perturbations Generated by Deviations in Generating Vector

Now, we consider only deviations in generating vector q of the homogeneous

linear recurrence a, without any change in initial state I
[a]
m . In this case, the per-

turbed recurrence represents a new homogeneous linear recurrence b ∈ Rol[R][m]

with initial state I
[b]
m = I

[a]
m and the generating vector r = (rn)∞n=0 ∈ G[R][m](b),

where

rn = qn + δn, n = 0,m− 1.

The perturbation is given by the sequence ε = (εn)∞n=0, where εn = bn − an,
n = 0,∞. Applying Theorem 3, we obtain

ε ∈ Rol[R], dim[R](ε) ≤ dim[R](a) + dim[R](b) ≤ m+m = 2m.

In consequence, ε ∈ Rol[R][2m] and its minimal generating vector can be obtained
using the minimization method based on matrix rank definition.

The perturbation ε = (εn)∞n=0 is considered asymptotically stable if and only if
lim

n→∞
εn = 0. The convergence of ε can be studied according to Section 3.

As a remark, the perturbation ε can be asymptotically stable even if the initial
recurrence a is not convergent. This happens when dim[R](ε) < dim[R](a) and all
roots of the minimal characteristic polynomial of a over R which are not greater than
1 in absolute value disappear from the list of all roots of the minimal characteristic
polynomial of ε over R.

Similarly to Section 5.1, in order to study the maximal impact ε∗ = max
n=0,∞

|εn|

of the asymptotically stable perturbation ε, we can consider the sequence ε2, ob-
taining ε2 ∈ Rol[R][4m2]. Its minimal generating vector can be obtained using the
minimization method based on matrix rank definition too.

5.3 Mixed Perturbations

Mixed perturbations are generated by both types of deviations: deviations

in initial state I
[a]
m and deviations in generating vector q of the homogeneous

linear recurrence a. The perturbed recurrence represents a new homogeneous

linear recurrence c ∈ Rol[R][m] with initial state I
[c]
m and the generating vector

r = (rn)∞n=0 ∈ G[R][m](c), where

cn = an + ∆n, rn = qn + δn, n = 0,m− 1.

The perturbation is given by the sequence ε = (εn)∞n=0, where

εn = cn − an, n = 0,∞.

We can study mixed perturbations using results from Section 5.1 and Section
5.2. The deviation in initial state and the deviation in generating vector can be
performed consecutively, one by one, in the following way.
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Let b ∈ Rol[R][m] be the perturbed recurrence, generated by deviation in initial
state, i.e.

q = (qn)m−1
n=0 ∈ G[R][m](b),

bn = an + ∆n, n = 0,m− 1.

Its perturbation is represented by the sequence ε = (εn)∞n=0, where

εn = bn − an, n = 0,∞.

Next, the perturbed recurrence c ∈ Rol[R][m] is obtained from b ∈ Rol[R][m] by
applying the given deviation in generating vector q = (qn)∞n=0 ∈ G[R][m](b):

cn = bn, rn = qn + δn, n = 0,m− 1.

The corresponding perturbation is represented by the sequence ζ = (ζn)∞n=0, where

ζn = cn − bn, n = 0,∞.

The mixed perturbation ε = (εn)∞n=0 represents the sum of these two perturba-
tions from decomposition:

εn = cn − an = (cn − bn) + (bn − an) = ζn + εn, n = 0,∞.

So, based on Theorem 3, it is also a homogeneous linear recurrence. As consequence,
the asymptotic behavior and the maximal perturbation impact can be studied si-
milarly.
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