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A self–similar solution and the tanh–function method

for the kinetic Carleman system

S. A. Dukhnovsky

Abstract. In this article, we consider the one–dimensional kinetic system of Carle-
man equations. The Carleman system is the kinetic Boltzmann equation. This system
describes a monatomic rarefied gas consisting of two groups of particles. One particle
from the first group, interacting with a particle of the first group, transforms into two
particles of the second group. Similarly, two particles of the second group, interacting
with themselves, transform into two particles of the first group, respectively. We found
traveling wave solutions by using the tanh–function method for nonlinear partial dif-
ferential system. The results of the work can be useful for mathematical modeling
in various fields of science and technology: kinetic theory of gases, gas dynamics,
autocatalysis. The obtained exact solutions are new.

Mathematics subject classification: 35L45, 35L60, 35Q20.
Keywords and phrases: Painlevé test, Carleman system, tanh–function method,
traveling wave solutions.

1 Introduction

We consider the one–dimentional Carleman system [1,16,20,21,23]

∂tu + ∂xu =
1

ε
(w2

− u2), x ∈ R, t > 0,

∂tw − ∂xw = −
1

ε
(w2

− u2).

(1)

Here u = u(x, t), w = w(x, t) are the densities of two groups of particles with veloc-
ities c = 1,−1, ε is the Knudsen parameter from the kinetic theory of gases. The
Carleman system is a non-integrable system, i.e. the Painlevé test is not applica-
ble [22]. Despite this, we will look for a solution for all values u(x, t), w(x, t).

There are many known methods that allow to find exact solutions of PDEs such
as the tanh–function method [8, 9], the extended tanh–function method [11], the
Exp–function method [7,12], the sine–cosine method [9,10], Jacobi Elliptic function
expansion method [13] et al. As noted in [7], the Exp–function method is more
efficient and gives more different solutions than the tanh–function method. Few
works were devoted to finding solutions for the Carleman system. In [3], the space–
time Carleman system with Riemann–Liouville derivative is investigated and the
exact solutions are obtained via the generalized Bernoulli Sub–ODE method. The
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asymptotic stability of the stationary solution of the kinetic models was proved in
the works [16, 20, 21, 25]. In [15], Golse found the self–similar solutions of the one–
dimentional Broadwell model. In [23], Ilyin found the stationary solution of (1).
Nonstationary solutions of the Boltzmann models are found in [4–6, 17–19, 24]. In
this article, we will seek, for the first time, new exact solutions of (1) by using the
tanh–function method, the extended tanh–function method.

2 A self–similar solution of the kinetic Carleman model

We look for a self–similar solution of the system of equations (1) in the form
[2,18]:

u(x, t) = xmU(ξ), w(x, t) = xnW (ξ), ξ = tx−k.

System (1) is scale invariant under

x = Cx, t = Ckt, u = Cmu,w = Cnw,C > 0.

As a result, we obtain a reduction

u(x, t) =
1

x
U(ξ), w(x, t) =

1

x
W (ξ), ξ =

t

x
. (2)

Substituting (2) into our original system, we obtain a system of ordinary differential
equations

1

x
U ′

ξ

1

x
−

1

x2
U − U ′

ξ

t

x2

1

x
=

1

ε
(

1

x2
W 2

−
1

x2
U2),

1

x
W ′

ξ

1

x
+

1

x2
W +

1

x
W ′

ξ

t

x2
= −

1

ε
(

1

x2
W 2

−
1

x2
U2).

(3)

Hence

(1 − ξ)U ′

ξ = U +
1

ε
(W 2

− U2),

(1 + ξ)W ′

ξ = −W −
1

ε
(W 2

− U2).

(4)

Let us perform the Painlevé test [14] for system (4). Then we look for a solution in
the form

U =
∞

∑

j=0

Ujϕ
j−p,W =

∞
∑

j=0

Wjϕ
j−β,

where Uj = Uj(ξ),Wj = Vj(ξ). We find the leading terms for j = 0:

−(1 − ξ)U0ϕ
′ =

1

ε
(W 2

0
− U2

0
),

−(1 + ξ)W0ϕ
′ = −

1

ε
(W 2

0 − U2

0 ).
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Then

U0 =
ε(1 + ξ)2(1 − ξ)

4ξ
ϕ′,W0 = −

ε(1 + ξ)(1 − ξ)2

4ξ
ϕ′.

It follows that there are two resonances, r = −1 and r = 1. We have the truncated
solution

U = U0ϕ
−1 + U1,W = W0ϕ

−1 + W1. (5)

Substituting (5) into the system (1) and collecting terms with the same powers of
ϕ, we have

ϕ−2

(

− (1 − ξ)ϕ′U0 −
1

ε
(W 2

0
− U2

0
)
)

+ϕ0

(

(1 − ξ)U ′

1 − U1 −
1

ε
(W 2

1 − U2

1 )
)

+ϕ−1

(

(1 − ξ)U ′

0
− U0 −

1

ε
(2W0W1 − 2U0U1)

)

= 0,

ϕ−2

(

− (1 + ξ)ϕ′W0 +
1

ε
(W 2

0
− U2

0
)
)

+ϕ0

(

(1 + ξ)W ′

1 + W1 +
1

ε
(W 2

1 − U2

1 )
)

+ϕ−1

(

(1 + ξ)W ′

0
+ W0 +

1

ε
(2W0W1 − 2U0U1)

)

= 0.

From here we obtain at the resonance r = 1 the equations

(1 − ξ)U ′

0
− U0 −

1

ε
(2W0W1 − 2U0U1) = 0, (6)

(1 + ξ)W ′

0 + W0 +
1

ε
(2W0W1 − 2U0U1) = 0. (7)

The compatibility condition holds for the resonance r = 1, since the two relations
for r = 1 coincide. Hence, the system (4) passes the Painlevé test. Note that
U1 = W1 = 0 is the trivial solution of (1). Substituting into one from these equations
(6)–(7) yields

(1 + 3ξ2)ϕ′ + ϕ′′ξ(ξ2
− 1) = 0. (8)

The solution of (8) has the form

ϕ(ξ) = −
C1

2(ξ2 − 1)
+ C2, (9)

where C1, C2 ∈ R are constants of integration. By means of (9), the system solution
is written in the form

u(x, t) =
1

x

εC1

4(1 − ξ)

(

−
C1

2(ξ2 − 1)
+ C2

)

−1

, ξ =
t

x
, (10)

w(x, t) = −
1

x

εC1

4(1 + ξ)

(

−
C1

2(ξ2 − 1)
+ C2

)

−1

. (11)

The solutions (10) and (11) are represented in Fig. 1–2. These solutions become
infinite when x = 0, t = ±x.
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Figure 1. Figure of u(x, t) for C1 = −10, ε =
0.01, C2 = 0.01,−10 < x < 10, 1 < t < 5 in
(10)

Figure 2. Figure of w(x, t) for C1 = −10, ε =
1, C2 = 10,−10 < x < 10, 0 < t < 6 in (11)

3 The tanh–method for the Carleman system

We seek a solution in the following transformations

u = U(ξ), w = W (ξ), ξ = x − ct.

In this case we have

U ′(1 − c) =
1

ε
(W 2

− U2),

− W ′(1 + c) = −
1

ε
(W 2

− U2).

(12)
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The tanh method admits the use of finite series

U(ξ) = S(Y ) =

M
∑

m=0

amY m,W (ξ) = S̄(Y ) =

M1
∑

m=0

bmY m, (13)

where Y = tanh(µξ), M and M1 are positive integers. Substituting (13) into (12)
yields

µ(1 − c)(1 − Y 2)
dS

dY
=

1

ε
(S̄2

− S2),

− µ(1 + c)(1 − Y 2)
dS̄

dY
= −

1

ε
(S̄2

− S2).

(14)

After substitution of Eq.(13) into Eq.(14), we balance the highest powers of Y . Then
we have

2 + M − 1 = 2M1 = 2M,

2 + M1 − 1 = 2M1 = 2M,

so that M = M1 = 1. We get the truncated expansion

S(Y ) = a0 + a1Y,

S̄(Y ) = b0 + b1Y.
(15)

Substituting (15) into (14) and collecting the coefficients of Y , we have

−µa1 + µca1 +
a2

1

ε
−

b2

1

ε
= 0,

2a0a1 − 2b0b1 = 0, (16)

µa1 − µca1 +
a2

0

ε
−

b2

0

ε
= 0

and

µb1 + µcb1 −
a2

1

ε
+

b2

1

ε
= 0,

−2a0a1 + 2b0b1 = 0, (17)

−µb1 − µcb1 −
a2

0

ε
+

b2

0

ε
= 0,

Solving algebraic equations system with the aid of the Mathematica Package, we
have the following solutions:

Case 1. a0 = −b0, a1 = b1 = 0, b0 ∈ R.

Case 2. a0 = b0, a1 = b1 = 0, b0 ∈ R.

Case 3.

a0 = µ
(c − 1)2(1 + c)ε

4c
, b0 = −µ

(c − 1)(1 + c)2ε

4c
,

b1 = µ
(c − 1)2(1 + c)ε

4c
, a1 = −µ

(c − 1)(1 + c)2ε

4c
, µ ∈ R.
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Case 4.

a0 = −µ
(c − 1)2(1 + c)ε

4c
, b0 = µ

(c − 1)(1 + c)2ε

4c
,

b1 = µ
(c − 1)2(1 + c)ε

4c
, a1 = −µ

(c − 1)(1 + c)2ε

4c
, µ ∈ R.

For case 3 the solutions have the form

u(x, t) = µ
(c − 1)2(1 + c)ε

4c
− µ

(c − 1)(1 + c)2ε

4c
tanh(µ(x − ct)), (18)

w(x, t) = −µ
(c − 1)(1 + c)2ε

4c
+ µ

(c − 1)2(1 + c)ε

4c
tanh(µ(x − ct)). (19)

For case 4 we have the solutions

u(x, t) = −µ
(c − 1)2(1 + c)ε

4c
− µ

(c − 1)(1 + c)2ε

4c
tanh(µ(x − ct)),

w(x, t) = µ
(c − 1)(1 + c)2ε

4c
+ µ

(c − 1)2(1 + c)ε

4c
tanh(µ(x − ct)).

The solutions (18) and (19) are represented in Fig. 3–4.

4 The extended tanh–function method

The extended tanh method admits the use of finite series

U(ξ) = S(Y ) =
M
∑

m=0

amY m +
L

∑

l=1

blY
−l,

W (ξ) = S̄(Y ) =
P

∑

p=0

cpY
p +

D
∑

d=1

fdY
−d,

(20)

where M,L,N,D are nonnegative integers. Substituting (20) into (14) and balancing
the highest, lowest powers of Y , we obtain

2 + M − 1 = 2P = 2M,

2 + P − 1 = 2P = 2M

and
−L − 1 = −2D = −2L,

−D − 1 = −2D = −2L,

so that M = P = N = D = 1. Then we seek a solution of (12) in the form

U(ξ) = S(Y ) = a0 + a1Y + b1Y
−1,

W (ξ) = S̄(Y ) = c0 + c1Y + f1Y
−1.

(21)
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Figure 3. Figure of u(x, t) for c = −3, ε =
0.1, µ = 3,−10 < x < 5, 0 < t < 5 in (18)

Figure 4. Figure of w(x, t) for c = −3, ε =
0.1, µ = 3,−10 < x < 5, 0 < t < 5 in (19)

Substituting (21) into (14) and collecting the coefficients of Y , we have

− µa1 + µca1 +
a2

1

ε
−

c2

1

ε
= 0,

2a0a1 − 2c0c1 = 0,

2a0b1 − 2c0f1 = 0,

− µb1 + µcb1 +
b2

1

ε
−

f2

1

ε
= 0,

a2

0

ε
−

c2

0

ε
+

2a1b1

ε
−

2c1f1

ε
+ µa1 + µb1 − µca1 − µcb1 = 0

(22)
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and

µc1 + µcc1 −
a2

1

ε
+

c2

1

ε
= 0,

− 2a0a1 + 2c0c1 = 0,

− 2a0b1 + 2c0f1 = 0,

µf1 + µcf1 −
b2

1

ε
+

f2

1

ε
= 0,

−
a2

0

ε
+

c2

0

ε
−

2a1b1

ε
+

2c1f1

ε
− µc1 − µf1 − µcc1 − µcf1 = 0.

(23)

We obtain solutions:
Case 1.

c0 = −
(1 + c)f1

c − 1
, a0 = f1, a1 = 0,

b1 = −
(1 + c)f1

c − 1
, c1 = 0, µ =

4cf1

(c − 1)2(1 + c)ε
.

Case 2.

c0 =
(1 + c)f1

c − 1
, a0 = −f1, a1 = 0,

b1 = −
(1 + c)f1

c − 1
, c1 = 0, µ =

4cf1

(c − 1)2(1 + c)ε
.

Case 3.

c0 =
2(c + 1)f1

c − 1
, a0 = −2f1, a1 = −

(c + 1)f1

c − 1
,

b1 = −
(c + 1)f1

c − 1
, c1 = f1, µ =

4cf1

(c − 1)2(1 + c)ε
.

Case 4.

c0 = −
2(c + 1)f1

c − 1
, a0 = 2f1, a1 = −

(c + 1)f1

c − 1
,

b1 = −
(c + 1)f1

c − 1
, c1 = f1, µ =

4cf1

(c − 1)2(1 + c)ε
.

Here f1 is any real number for cases 1–4. For case 1 we have

u(x, t) = f1 −
(1 + c)f1

c − 1
coth(

4cf1

(c − 1)2(1 + c)ε
(x − ct)), (24)

w(x, t) = −
(1 + c)f1

c − 1
+ f1 coth(

4cf1

(c − 1)2(1 + c)ε
(x − ct)). (25)

For case 3 we have
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Figure 5. Figure of u(x, t) for c = −3, f1 =
2, ε = 1,−20 < x < 10, 0 < t < 10 in (24)

Figure 6. Figure of w(x, t) for c = −3, f1 =
2, ε = 1,−10 < x < 10, 0 < t < 5 in (25)

u(x, t) = −2f1 −
(c + 1)f1

c − 1
tanh(

4cf1

(c − 1)2(1 + c)ε
(x − ct))

−
(c + 1)f1

c − 1
coth(

4cf1

(c − 1)2(1 + c)ε
(x − ct)), (26)

w(x, t) =
2(c + 1)f1

c − 1
+ f1 tanh(

4cf1

(c − 1)2(1 + c)ε
(x − ct))

+f1 coth(
4cf1

(c − 1)2(1 + c)ε
(x − ct)). (27)

The solutions (24)–(27) are represented in Fig. 5–8.
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Figure 7. Figure of u(x, t) for c = 3, f1 = 2, ε =
0.001,−10 < x < 10, 0 < t < 10 in (26)

Figure 8. Figure of w(x, t) for c = 3, f1 =
2, ε = 0.001,−10 < x < 10, 0 < t < 10 in
(27)

5 Conclusion

In this work, we have found the exact travelling wave solutions of the kinetic
Carleman system by using the tanh–function method, the extended tanh–function
method. All of the above solutions have been verified using the Mathematica pack-
age.

References

[1] Godunov S.K., Sultangazin U.M. On discrete models of the kinetic Boltzmann equation,
Russian Math. Surveys, 1971, 26, 1–56.

[2] Polyanin A. D., Zaitsev V. F. Handbook of Nonlinear Partial Differential Equations, Chap-
man & Hall/CRC Press, Boca Raton–London, 2004.

[3] Tchier F., Inc M. and Yusuf A. Symmetry analysis, exact solutions and numerical approx-
imations for the space–time Carleman equation in nonlinear dynamical systems, Eur. Phys. J.
Plus, 2019, 134, 1–18.



THE TANH–FUNCTION METHOD FOR THE CARLEMAN SYSTEM 109

[4] Kolodner I. I., Vindas J. On the Carleman’s model for the Boltzmann equation and its
generalizations, Ann. Mat. Pura Appl., 1963, 63, 11–32.
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