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Equilibria in Pure Strategies for a Two-Player

Zero-Sum Average Stochastic Positional Game

Dmitrii Lozovanu, Stefan Pickl

Abstract. The problem of the existence and determining equilibria in pure stationary
strategies for a two-player zero-sum average stochastic positional game is considered.
We show that for such a game there exists the value and players may achieve the
value by applying pure stationary strategies of choosing the actions in their positions.
Based on a constructive proof of these results we propose an algorithmic approach for
determining the optimal pure stationary strategies of the players.
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1 Introduction

Average stochastic positional games have been introduced in [5, 6] where some
preliminary results concerned with the existence of stationary Nash equilibria have
been obtained. This class of games represents a generalization of deterministic posi-
tional games with mean payoffs studied by Ehrenfeucht and Mycielski [3], Gurvich
et al [4], Zwick and Paterson [12] and Alpern [1]. In [3,4] mainly two-player zero-
sum mean payoff positional games has been studied for which the existence of the
value and the optimal positional strategies are proven. Based on these results in [4]
algorithms have been proposed for determining the value and the optimal positional
strategies of the players in such games. Some possible applications of mean payoff
games are describe in [2, 12]. Generalizations of mean payoff games to m-player
games, have been considered in [1,7,8], however conditions for the existence of Nash
equilibria in positional strategies have not been derived. The positional strategies
for these dynamic games can be regarded as a pure stationary strategy and therefore
Nash equilibria in pure strategies in the general case may not exist. This fact has
been shown in [4], where an example of a non-zero-sum mean payoff game of two
player for which Nash equilibria in pure stationary strategies does not exist has been
constructed. The mean payoff games in mixed stationary strategies have been con-
sidered in [10] where the existence of Nash equilibria in mixed stationary strategies
has been proved.

In this paper, we study the problem of the existence and determining of equilib-
ria in pure stationary strategies for a two-player zero-sum average stochastic posi-
tional game. We show that for such a game there exist equilibria in pure stationary
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strategies. Based on a constructive proof of this result we propose an approach for
determining the optimal pure stationary strategies of the players.

2 Some auxiliary results for an average Markov decision process

First we present the optimality conditions for the problem of determining the
optimal stationary strategies in the average Markov decision process defined by the
tuple (X, {A(x)}x∈X , {f(x, a)}x∈X,a∈A(x), p), where X is a finite set of states;
A(x) is a finite set of actions in x ∈ X; f(x, a) is a reward step in x ∈ X for
a ∈ A(x) and p : X ×

∏

x∈X

A(x) × X → [0, 1] is a probability transition function

that satisfies the condition
∑

y∈X pa
x,y = 1, ∀x ∈ X,a ∈ A(x). In [11] the following

theorem is proven.

Theorem 1. Let a Markov decision process (X, {A(x)}x∈X , {f(x, a)}x∈X,a∈A(x), p)
be given. Then the system of equations

εx + ωx = max
a∈A(x)

{

f(x, a) +
∑

y∈X

pa
x,yεy

}

, ∀x ∈ X (1)

has a solution under the set of solutions of the system of equations

ωx = max
a∈A(x)

{

∑

y∈X

pa
x,yωy

}

, ∀x ∈ X, (2)

i.e., the system of equations (2) has such a solution ω∗

x, x ∈ X, for which there
exists a solution ε∗x, x ∈ X, of the system of equations

εx + ω∗

x = max
a∈A(x)

{

f(x, a) +
∑

y∈X

pa
x,yεy

}

, ∀x ∈ X. (3)

The values ω∗

x for x ∈ X represent the optimal average rewards for the Markov
decision problem when the process starts in the corresponding states x ∈ X and an
optimal stationary strategy

s∗ : x → a ∈ A(x) for x ∈ X

for the average Markov decision problem can be found by fixing s∗(x) = a∗ ∈ A(x)
such that

a∗ ∈ arg max
a∈A(x)

{

∑

y∈X

pa
x,yω

∗

y

}

and

a∗ ∈ arg max
a∈A(x)

{

f(x, a) +
∑

y∈X

pa
x,yε

∗

y

}

.

The strategy s∗ corresponds to an optimal pure stationary strategy for the average
Markov decision problem with an arbitrary starting state x ∈ X.

In the following we shall use this theorem for the proof of the existence of pure
stationary equilibria in a two-player zero-sum average stochastic positional game.
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3 Formulation of the zero-sum average stochastic positional game

A two-player zero-sum average stochastic game is determined by a tuple
(X = X1 ∪ X2, {A(x)}x∈X , {f(x, a)}x∈X, a∈A(x), p, x0), where X is the set of
states of the game, X1 is the set of positions of first player, X2 is the set of positions
of second player, A(x) is the set of actions in a state x ∈ X, f(x, a) is the step
reward in x ∈ X for a fixed a ∈ A(x), p : X×∪x∈XA(x)×X → [0, 1] is a transition
probability function that satisfies the condition

∑

y∈X pa
x,y = 1, ∀x ∈ X,a ∈ A(x)

and x0 is the starting state of the game.
The game starts at a given initial state x0 where the player who is owner of this

position fixes an action a0 ∈ A(x0). So, if x0 belongs to the set of positions of the
first player then the action a0 ∈ A(x0) in x0 is chosen by the first player, otherwise
the action a0 ∈ A(x0) is chosen by the second one. After that the game passes
randomly to a new position according to the probability distribution {pa0

x0,y}y∈X .
At time moment t = 1 the players observe the position x1 ∈ X. If x1 belongs
to the set of positions of the first player then the action a1 ∈ A(x1) is chosen
by the first player, otherwise the action is chosen by the second one and so on,
indefinitely. In this process the first player chooses actions in his position set in order

to maximize the average reward per transition lim
t→∞

inf E
(

1
t

t
∑

τ=0
f(xτ , aτ )

)

while the

second one chooses the actions in his position set in order to minimize the average

reward per transition lim
t→∞

supE
(

1
t

t
∑

τ=0
f(xτ , aτ )

)

. Here E is the expectation operator

with respect to the probability measure in the Markov process induced by actions
chosen by players in their position sets and fixed starting state x0. Assuming that
players choose actions in their state positions independently we show that for this
game there exists a value ωx0 such that the first player has strategy of choosing

the actions in his position set that insures lim
t→∞

inf E
(

1
t

t
∑

τ=0
f(xτ , aτ )

)

≥ ωx0 and the

second player has strategy of choosing the actions in his position set that insures

lim
t→∞

supE
(

1
t

t
∑

τ=0
f(xτ , aτ )

)

≤ ωx0. Moreover, we show that players can achieve the

value ωx0 applying pure stationary strategies of selection of the actions in their
position sets. We define the pure stationary strategies of the players as two maps

s1 : x → a ∈ A(x) for x ∈ X1; s2 : x → a ∈ A(x) for x ∈ X2

and the sets of pure stationary strategies of the first player and of the second one
we denote by S1 = {s1| s1 : x → a ∈ A(x) for x ∈ X1}, S2 = {s2| s2 : x → a ∈
A(x) for x ∈ X1}, respectively.

4 Pure Stationary Equilibria in the Game

Let s1, s2 be arbitrary pure stationary strategies of the players. Then
the profile s = (s1, s2) determines a Markov process induced by probability
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distributions {p
si(x)
x,y }y∈X in the states x ∈ Xi, i = 1, 2 and a given starting

state x0. For this Markov process with step rewards f(x, si(x)), in the states
x ∈ Xi, i = 1, 2, we can determine the average reward per transition ωx0(s

1, s2).
The function ωx0(s

1, s2) on S = S1 × S2 defines an antagonistic game in nor-
mal form 〈S1, S2, ωx0(s

1, s2)〉 that in the extended form is determined by the tuple
(X = X1 ∪ X2, {A(x)}x∈X , {f(x, a)}x∈X, a∈A(x), p, x0). Taking into account that
the strategy sets S1 and S2 are finite sets we can regard 〈S1, S2, ωx0(s

1, s2)〉 as a
matrix game and therefore for this game there exist the min-max strategies s1, s2

of the players and the max-min strategies s
1
, s

2
of the players for which

ωx0(s
1, s2) = min

s2∈S2
max
s1∈S1

ωx0(s
1, s2); ωx0(s

1
, s

2
) = max

s1∈S1
min
s2∈S2

ωx0(s
1, s2).

In this section we show that for the considered two-player zero-sum average
stochastic positional game there exists a pure stationary strategy s1∗ ∈ S1 of the
first player and a pure stationary strategy s2∗ ∈ S2 of the second player such that

ωx(s
1∗, s2∗) = max

s1∈S1
min
s2∈S2

ωx(s
1, s2) = min

s2∈S2
max
s1∈S1

ωx(s
1, s2), ∀x ∈ X,

i.e we show that (s1∗, s2∗) is a pure stationary equilibrium of the game for an
arbitrary starting position x ∈ X, in spite of the fact that the values of the games
with different starting positions may be different.

In the following we will consider the game for which it is necessary to determine
the optimal stationary strategies of the players for an arbitrary starting state x ∈ X

and we will denote such a game (X = X1∪X2, {A(x)}x∈X , {f(x, a)}x∈X, a∈A(x), p).

First we show that in a two-player zero-sum average stochastic positional game
there exists a strategy s1 ∈ S1 of the first player and a strategy s2 ∈ S2 of the
second player such that (s1, s2) is a max-min strategy of the game for an arbitrary
stating position x ∈ X, i. e.

ωx(s1, s2) = min
s2∈S2

max
s1∈S1

ωx(s
1, s2), ∀x ∈ X.

To prove this we shall use the version of a two-player zero-sum average stochastic
positional games in which the starting state is chosen randomly according to a given
distribution {θx} on X. So, we consider the game in the case when the play
starts in a state x ∈ X with probability θx > 0 where

∑

x∈X θx = 1. We
denote this game (X = X1 ∪ X2, {A(x)}x∈X , {f(x, a)}x∈X, a∈A(x), p, {θx}x∈X).
This game looks more general, however it can easily be reduced to an auxiliary two-
player zero-sum average stochastic positional game with a fixed starting position.
Such an auxiliary game is determined by a new tuple obtained from (X = X1 ∪
X2, {A(x)}x∈X , {f(x, a)}x∈X, a∈A(x), p) by adding to the set of positions of the
first player a new state position z that has a unique action a(z) for which

the probability transitions p
a(z)
z,x = θx, ∀x ∈ X and the corresponding step reward

f(z, a(z)) = 0. It is evident that for arbitrary strategies of the players in this game
the first player will select in position z the unique action a(z). If for the obtained
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game with a given starting position z we consider the normal form game in pure
stationary strategies 〈Ŝ1, Ŝ2, ωz(s

1, s2)〉 then for this game we can determine the
min-max strategies of the players ŝ1, ŝ2 for which ω̂z(ŝ

1, ŝ2) =
∑

x∈X θxωx(s
1, s2).

This means that the following lemmas hold.

Lemma 1. For a two-player zero-sum average stochastic positional game character-
ized by a tuple (X = X1 ∪X2, {A(x)}x∈X , {f(x, a)}x∈X, a∈A(x), p) there exists a
strategy s2 ∈ S2 of the second player and a strategy s1 ∈ S1 of the first player such
that (s1, s2) is a min-max strategy of the game for an arbitrary starting position
x ∈ X, i. e.

ωx(s1, s2) = min
s2∈S2

max
s1∈S1

ωx(s
1, s2), ∀x ∈ X.

Lemma 2. For a two-player zero-sum average stochastic positional game determined
by a tuple (X = X1 ∪ X2, {A(x)}x∈X , {f(x, a)}x∈X, a∈A(x), p) there exists a

strategy s
1
∈ S1 of first player and a strategy s

2
∈ S2 of second player such that

(s
1
, s

2
) is a max-min strategy of the game for an arbitrary stating position x ∈ X,

i. e.
ωx(s

1
, s

2
) = max

s1∈S1
min
s2∈S2

ωx(s
1, s2), ∀x ∈ X.

Using these lemmas we can prove the following theorem.

Theorem 2. Let a two-player zero-sum average stochastic positional game deter-
mined by the tuple (X = X1 ∪ X2, {A(x)}x∈X , {f(x, a)}x∈X, a∈A(x), p) be given.
Then the system of equations















εx + ωx = max
a∈A(x)

{

f(x, a) +
∑

y∈X

pa
x,yεy

}

, ∀x ∈ X1;

εx + ωx = min
a∈A(x)

{

f(x, a) +
∑

y∈X

pa
x,yεy

}

, ∀x ∈ X2

(4)

has a solution under the set of solutions of the system of equations















ωx = max
a∈A(x)

{

∑

y∈X

pa
x,yωy

}

, ∀x ∈ X1;

ωx = min
a∈A(x)

{

∑

y∈X

pa
x,yωy

}

, ∀x ∈ X2,

(5)

i.e. the system of equations (5) has such a solution ω∗

x, x ∈ X for which there
exists a solution ε∗x, x ∈ X of the system of equations















εx + ω∗

x = max
a∈A(x)

{

f(x, a) +
∑

y∈X

pa
x,yεy

}

, ∀x ∈ X1;

εx + ω∗

x = min
a∈A(x)

{

f(x, a) +
∑

y∈X

pa
x,yεy

}

, ∀x ∈ X2.

The optimal pure stationary strategies s1∗, s2∗ of the players can be found by fixing
arbitrary maps s1∗(x) ∈ A(x) for x ∈ X1 and s2∗(x) ∈ A(x) for x ∈ X2 such that
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s1∗(x)∈

{

Arg max
a∈A(x)

{

∑

y∈X

pa
x,yω

∗

y

}}

⋂

{

Arg max
a∈A(x)

{

f(x, a)+
∑

y∈X

pa
x,yε

∗

y

}}

, x ∈X1,

s2∗(x)∈

{

Arg min
a∈A(x)

{

∑

y∈X

pa
x,yω

∗

y

}}

⋂

{

Arg min
a∈A(x)

{

f(x, a)+
∑

y∈X

pa
x,yε

∗

y

}}

, x ∈X2

and ωx(s
1∗, s2∗) = ω∗

x, ∀x ∈ X, i.e.

ωx(s
1∗, s2∗) = max

s1∈S1
min
s2∈S2

ωx(s
1, s2) = min

s2∈S2
max
s1∈S1

ωx(s
1, s2), ∀x ∈ X.

Proof. According to Lemma 1 for the players in the considered game there exist the
pure stationary strategies s1 ∈ S1, s2 ∈ S2 for which

ωx(s
1, s2) = min

s2∈S2
max
s1∈S1

ωx(s
1, s2), ∀x ∈ X.

We show that
ωx(s

1, s2) = max
s1∈S1

min
s2∈S2

ωx(s
1, s2), , ∀x ∈ X,

i.e. we show that s1 = s1∗, s2 = s2∗.
Indeed, if we consider the Markov process induced by strategies s1, s2 then

according to Theorem 1 for this process the system of linear equations



































εx + ωx = f(x, a) +
∑

y∈X

pa
x,yεy, ∀x ∈ X1, a = s1(x);

εx + ωx = f(x, a) +
∑

y∈X

pa
x,yεy, ∀x ∈ X2, a = s2(x);

ωx =
∑

y∈X

pa
x,yωy, ∀x ∈ X1, a = s1(x);

ωx =
∑

y∈X

pa
x,yωy, ∀x ∈ X2, a = s2(x)

(6)

has a basic solution ε∗x, ω∗

x (x ∈ X). Now if we assume that in the game only the
second payer fixes his strategy s2 ∈ S2 then we obtain a Markov decision problem
with respect to the first player and therefore according to Theorem 1 for this decision
problem the system of linear equations



































εx + ωx ≥ f(x, a) +
∑

y∈X

pa
x,yεy, ∀x ∈ X1, a ∈ A(x);

εx + ωx = f(x, a) +
∑

y∈X

pa
x,yεy, ∀x ∈ X2, a = s2(x);

ωx ≥
∑

y∈X

pa
x,yωy, ∀x ∈ X1, a ∈ A(x);

ωx =
∑

y∈X

pa
x,yωy, ∀x ∈ X2, a = s2(x)

has solutions. We can observe that ǫ∗x, ω∗

x (x ∈ X) represents a solution of this
system and ωx(s1, s2) = ω∗

x, ∀x ∈ X.
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Taking into account that ωx(s
1, s2) = mins2∈S2 Fx(s1, s2) then for a fixed strategy

s1 ∈ S1 the following system has solutions


































εx + ωx = f(x, a) +
∑

y∈X

pa
x,yεy, ∀x ∈ X1, a = s1(x);

εx + ωx ≤ f(x, a) +
∑

y∈X

pa
x,yεy, ∀x ∈ X2, a ∈ A(x);

ωx =
∑

y∈X

pa
x,yωy, ∀x ∈ X1, a = s1(x);

ωx ≤
∑

y∈X

pa
x,yωy, ∀x ∈ X2, a ∈ A(x).

and ǫx = ǫ∗x, ωx = ω∗

x (x ∈ X) represents a solution of this system. This means that
the following system







































εx + ωx ≥ f(x, a) +
∑

y∈X

pa
x,yεy, ∀x ∈ X1, a ∈ A(x);

εx + ωx ≤ f(x, a) +
∑

y∈X

pa
x,yεy, ∀x ∈ X2, a ∈ A(x);

ωx ≥
∑

y∈X

pa
x,yωy, ∀x ∈ X1, a ∈ A(x);

ωx ≤
∑

y∈X

pa
x,yωy, ∀x ∈ X2, a ∈ A(x)

has a solution which satisfies condition (6). Thus, we obtain that s1 = s1∗, s2 = s2∗

and ωx(s
1∗, s2∗) = ω∗

x,∀x ∈ X, i.e.

ωx(s1∗, s2∗) = max
s1∈S1

min
s2∈S2

ωx(s1, s2) = min
s2∈S2

max
s1∈S1

ωx(s
1, s2), ∀x ∈ X.

So, the theorem holds.

The formulation of Theorem 2 has been mentioned also in [9], however in [9] the
full proof of this theorem is not presented. The obtained saddle point conditions
for zero-sum stochastic games generalize the saddle point condition for deterministic
average positional games from [3,4]. Based on Theorem 2 we may conclude that the
optimal strategies of the players in the considered game can be found if we determine
a solution of equations (4), (5). A solution of these equations can be determined
using iterative algorithms like algorithms for determining the optimal solutions of
an average Markov decision problem [11].

5 Conclusion

Two-player zero-sum games are an important class of average stochastic games
that generalizes the deterministic positional games with mean payoffs from [3,4, 7].
For such games there exists the value and the optimal pure stationary strategies of
the players and these strategies can be found on the basis of Theorem 2.

Acknowledgement: This research was supported by the State Program of
the Republic of Moldova, project 20.80009.5007.13 ”Deterministic and stochastic
methods for solving optimization and control problems”.



82 DMITRII LOZOVANU, STEFAN PICKL

References

[1] Alpern S. Cycles in extensive form perfect information games. J. Math. Anal. Appl., 159, 1-17,
1991.

[2] Codon A. The complexity of stochastic games. Inf. Comput, 96 (2), 203-224, 1992.

[3] Ehrenfeucht A., Mycielski J. Positional strategies for mean payoff games. Int. J. Game Theory,
8, 109-113,1979.

[4] Gurvich V., Karzaniv A., Khachyan L. Cyclic games and an algorithm to find minimax mean

cycles in directed graphs. USSR Comput. Math. Math. Phys., 28, 85-91, 1988.

[5] Lozovanu D. The game theoretical approach to Markov decision problems and determining Nash

equilibria for stochastic positional games. Int. J. Mathematical Modelling and Numerical Opti-
mization. 2 (2), 162-174 (2011).

[6] Lozovanu, D. Stationary Nash equilibria for average stochastic positional games. In: Petrosyan
et al (eds), Frontiers of dynamic games, Static and Dynamic Games Theory: Fondation and
Applications, Birkhäuser, 139-163, 2018.
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