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1 Introduction

The global attractors play a very important role in the study of asymptotic
behavior of dynamical systems (both autonomous and non-autonomous). During
the last 20-25 years many works dedicated to the study of the global attractors of
dynamical systems (including infinite-dimensional systems) were published. See, for
example, A. V. Babin and M. I. Vishik [2], I. D. Chueshov [12], J. K. Hale [17],
O. A. Ladyzhenskaya [23], J. C. Robinson [24], R. Temam [26] (for autonomous
systems), A. N. Carvalho, J. A. Langa and J. C. Robinson[4], D. N. Cheban [8, 9],
V. V. Chepyzhov and M. I. Vishik [11], A. Haraux [18], P. E. Kloeden and M.
Rasmussen [20] (for non-autonomous systems) and the bibliography therein.

The aim of this paper is studying different types of compact global attractors
for non-autonomous (cocycle ϕ) dynamical systems over dynamical system (Y, T, σ)
(driving system) with the fiber W in the case when the phase space Y of driving
system is not compact. We establish the relations between global, pullback and
forward attractors for cocycle dynamical systems. For cocyle dynamical systems
〈W,ϕ, (Y, T, σ)〉 with compact phase space Y of driving system (Y, T, σ) this problem
was studied in the work of D. Cheban, P. Kloeden and B. Schmalfuss [10] (see
also [8, Ch.II]).

2 Some Notions of Non-autonomous Dynamical Systems

In this section we collect some notions from the autonomous and non-autonomous
dynamical systems [6] (see also [9, Ch.IX]) which we will use below.
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Let Y be a complete metric space, let R := (−∞,+∞), Z := {0,±1,±2, . . .},
S = R or Z, T+ = {t ∈ T| t ≥ 0}, T− = {t ∈ T| t ≤ 0} and T (T+ ⊆ T) be a
sub-semigroup of group S. Let (Y, T, σ) be an autonomous dynamical system on Y
and E be a real or complex Banach space with the norm | · |.

Definition 1. (Cocycle on the state space E with the base (Y, T, σ).) The triplet
〈E,φ, (Y, T, σ)〉(or briefly φ) is said to be a cocycle (see, for example,[9] and [25])
on the state space E with the base (Y, T, σ) if the mapping φ : T+ × Y × E → E
satisfies the following conditions:

1. φ(0, y, u) = u for all u ∈ E and y ∈ Y ;

2. φ(t + τ, y, u) = φ(t, φ(τ, u, y), σ(τ, y)) for all t, τ ∈ T+, u ∈ E and y ∈ Y ;

3. the mapping φ is continuous.

Definition 2. (Skew-product dynamical system). Let 〈E,φ, (Y, T, σ)〉 be a cocycle
on E,X := E × Y and π be a mapping from T+ × X to X defined by equality
π = (φ, σ), i.e., π(t, (u, y)) = (φ(t, ω, u), σ(t, y)) for all t ∈ T+ and (u, y) ∈ E × Y .
The triplet (X, T+, π) is an autonomous dynamical system and it is called [25] a
skew-product dynamical system.

Definition 3. (Non-autonomous dynamical system.) Let T1 ⊆ T2 be two sub-
semigroups of the group T, (X, T1, π) and (Y, T2, σ) be two autonomous dynamical
systems and h : X → Y be a homomorphism from (X, T1, π) to (Y, T2, σ) (i.e.,
h(π(t, x)) = σ(t, h(x)) for all t ∈ T1, x ∈ X and h is continuous), then the triplet
〈(X, T1, π), (Y, T2, σ), h〉 is called (see [3] and [9]) a non-autonomous dynamical
system.

Example 1. (The non-autonomous dynamical system generated by cocycle φ.) Let
〈E,φ, (Y, T, σ)〉 be a cocycle, (X, T+, π) be a skew-product dynamical system (X =
E × Y, π = (φ, σ)) and h = pr2 : X → Y, then the triplet 〈(X, T+, π), (Y, T, σ), h〉 is
a non-autonomous dynamical system.

3 Global Attractors of Non-autonomous Dynamical Systems

3.1 Non-autonomous sets

Let W and Y be two metric spaces.

Definition 4. A family {Ay| y ∈ Y } of subsets Ay of W indexed by y ∈ Y is called
a non-autonomous set.

Let {Ay| y ∈ Y } be a non-autonomous set. Denote by A the subset of X := W×Y
defined by equality

A :=
⋃

{Ap × {y}| y ∈ Y }} = {(w, y) ∈ X| w ∈ Ay, y ∈ Y }.
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Remark 1. 1. Let A be a subset of X = W × Y , Ay := A
⋂

pr−1
2 (y) and Ay :=

pr1(Ay), then {Ay| y ∈ Y } is a non-autonomous set.

2. Denote by A =
⋃

{Ay × {y}| y ∈ Y }, then A ⊆ A.

Definition 5. A non-autonomous set {Ay| y ∈ Y }is said to be

1. pre-compact (respectively, uniformly pre-compact) if for every y ∈ Y the set
Ay (respectively,

⋃

{Ay| y ∈ Y }) is a pre-compact subset of W ;

2. bounded (respectively, uniformly bounded) if for every y ∈ Y the set Ay

(respectively,
⋃

{Ay| y ∈ Y }) is a bounded subset of W .

Definition 6. A non-autonomous set {Ay| y ∈ Y } is said to be

1. positively (respectively, negatively) invariant (with respect to cocycle ϕ) if
ϕ(t, Ay , y) ⊆ Aσ(t,y) (respectively, ϕ(t, Ay , y) ⊇ Aσ(t,y)) for any y ∈ Y and
t ≥ 0;

2. invariant if it is positively and negatively invariant.

Lemma 1. Assume that the set Y is invariant, that is, σ(t, Y ) = Y for any t ∈ T.
The non-autonomous set {Ay| y ∈ Y } is positively invariant (respectively, negatively
invariant or invariant) if and only if the set A is a positively invariant (respectively,
negatively invariant or invariant) subset of skew-product dynamical system (X, T, π).

Proof. Note that A =
⋃

{Ay| y ∈ Y }, where Ay := Ay × {y}. Let {Ay| y ∈ Y } be a
positively invariant (respectively, negatively invariant or invariant) set, then

π(t, A) =
⋃

{π(t, Ay)| y ∈ Y } =
⋃

{(ϕ(t, Ay , y), σ(t, y))| y ∈ Y } ⊆
⋃

{(Aσ(t,y), σ(t, y))| y ∈ Y } ⊆
⋃

{(Aq, q)| q ∈ Y } =
⋃

{Aq| q ∈ Y } = A.

Conversely. Let A be an invariant set of skew-product dynamical system
(X, T, π), then

π(t, A) = ⊔{π(t, Ay)| y ∈ Y } = ⊔{(ϕ(t, Ay , y).σ(t, y)}. (1)

On the other hand we have

A = ⊔{Ay| y ∈ Y } = ⊔{Aσ(t,y)| y ∈ Y } = ⊔{(Aσ(t,y), σ(t, y))| y ∈ Y }. (2)

Since π(t, A) ⊆ A for any t ∈ T, then from (1)-(2) it follows that ϕ(t, Ay , y) ⊆ Aσ(t,y)

for any (t, y) ∈ T × Y .

Analogously one can be consider the case A ⊆ π(t, A) (respectively, A = π(t, A))
for any t ∈ T.

Lemma 2. The following statements are equivalent:

1. for any compact subset K ⊆ W the set
⋃

{Ay| y ∈ K} is pre-compact in W ;
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2. the set A ⊆ X is conditionally pre-compact in (X,h, Y ) (X = W × Y and
h := pr2 : X → Y ).

Proof. Let K be an arbitrary compact subset of Y . Then taking into account the
relation

h−1(K)
⋂

A =
⋃

{Ay × {y}| y ∈ K} ⊆
(

⋃

{Ay|y ∈ K}
)

× K

we conclude that the set h−1(K)
⋂

A is pre-compact in X.
Conversely, assume that the set h−1(K)

⋂

A is pre-compact for any compact
subset K from Y . Then the set

⋃

{Ay| y ∈ K} is pre-compact in W because

pr1(h
−1(K)

⋂

A) =
⋃

{Ay| y ∈ K},

h−1(K)
⋂

A is a pre-compact subset of X and pr1 : X → W is a continuous mapping.
Lemma is proved.

Corollary 1. Let {Ay| y ∈ Y } be a uniformly pre-compact non-autonomous set,
then the set A is a conditionally compact subset of X with respect to (X,h, Y ),
where h = pr2.

Proof. This statement follows from Lemma 2 because for any compact subset K ⊆ Y
we have

h−1(K)
⋂

A =
⋃

{Ay × {y}| y ∈ K} ⊆
(

⋃

{Ay|y ∈ K}
)

× K.

On the other hand by condition of Lemma the set
⋃

{Ay| y ∈ Y } is pre-compact
and, consequently, the set

⋃

{Ay| y ∈ K} is so. Now to finish the proof it is sufficient
to apply Lemma 2.

3.2 Maximal compact invariant sets

Definition 7. A non-autonomous compact set {Ay| y ∈ Y } ( Ay ⊆ W ) is called a
maximal compact invariant set of cocycle ϕ if the following conditions are fulfilled:

1. {Ay| y ∈ Y } is invariant;

2. A =
⋃

{Ay| y ∈ Y } is pre-compact;

3. the non-autonomous set {Ay| y ∈ Y } is maximal with the properties 1. and 2.,
i.e., if a non-autonomous set {A

′

y| y ∈ Y } is invariant and A
′

=
⋃

{A
′

y | y ∈ Y }

is pre-compact, then A
′

y ⊆ Ay for every y ∈ Y .

Lemma 3. Let {Iy| y ∈ Y } be a non-autonomous set. Assume that the set J =
⋃

{Jy = Iy ×{y}| y ∈ Y } is conditionally pre-compact, then the following statements
are equivalent:

1. the mapping y → Iy is upper semi-continuous;
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2. the set J is closed in X.

Proof. Assume that the mapping y → Iy be upper semi-continuous and (w̄, ȳ) ∈ J.
Then there exists a sequence {(wn, yn) ∈ J} such that (wn, yn) → (w̄, ȳ). Since
wn ∈ Iyn

and y → Iy is upper semi-continuous, then w0 ∈ Iy0 and, consequently,
(w0, y0) ∈ Jy0 ⊆ J. Thus the set J is closed.

Let now J be a closed subset of X. We will show that the mapping y → Iy is
upper semi-continuous. If we suppose that the family {Iy| y ∈ Y } is not upper semi-
continuous, then there are ε0 > 0, y0 ∈ Y and sequences {yn} ⊂ Y and {wn} ⊂ W
such that yn → y0 as n → ∞, wn ∈ Iyn

and

ρ(wn, Iy0) ≥ ε0. (3)

Since
⋃

{Iyn
| n ∈ N} is pre-compact, then without loss of generality we can suppose

that the sequence {wn} is convergent. Denote by w0 := lim
n→∞

wn and passing to the

limit in (3) as n → ∞ we obtain w0 /∈ Iy0. On the other hand we have (wn, yn) ∈
Jyn

⊆ J for any n ∈ N and since the set J is closed and (wn, yn) → (w0, y0) as
n → ∞, then (w0, y0) ∈ J and, consequently, w0 ∈ Iy0. The obtained contradiction
proves our statement.

Let Y be a complete metric space, (Y, T, σ) be a dynamical system and
〈W,ϕ, (Y, T, σ)〉 be a cocycle over (Y, T, σ) with the fiber W . Below we suppose
that the set Y is invariant, i.e., σ(t, Y ) = Y for any t ∈ T.

Definition 8. A non-autonomous set {Iy| y ∈ Y } (Iy ⊆ W ) of nonempty compact
subsets of W is called a compact pullback (respectively, uniform pullback) attractor
[1], [9, Ch.II], [13]) of the cocycle ϕ if the following conditions are fulfilled:

a. I :=
⋃

{Iy|y ∈ Y } is relatively compact;

b. {Iy| y ∈ Y } is invariant w.r.t. cocycle ϕ, i.e., ϕ(t, Iy, y) = Iσ(t,y) for any t ∈ T+

and y ∈ Y ;

c. for every y ∈ Y and any pre-compact non-autonomous set {Ky| y ∈ Y }

lim
t→+∞

β(ϕ(t,Ky , σ(−t, y)), Iy) = 0

(respectively,

lim
t→+∞

sup{β(ϕ(t,Ky , σ(−t, y)), Iy)| y ∈ Y } = 0),

where β(A,B) = sup{ρ(a,B) : a ∈ A} is a semi-distance of Hausdorff.

Remark 2. If T = T+ and Y is invariant, then:

1. σ(−t, y) := {ỹ ∈ Y | σ(t, ỹ) = y} = (σt)−1(y), where σt(y) := σ(t, y) for any
(t, y) ∈ T+ × Y and f−1 denotes the inverse mapping of f ;
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2. Iσ(−t,y) :=
⋃

{Iỹ| ỹ ∈ σ(−t, y)} (see, for example, [19]).

Lemma 4. Let {Iy| y ∈ Y } be a compact pullback attractor of the cocycle
〈W,ϕ, (Y, T, σ)〉. Then {Iy| y ∈ Y } is a maximal compact invariant set of the
cocycle ϕ.

Proof. Let {I
′

y| y ∈ Y } be a compact invariant subset of the cocycle ϕ, then there
exists a nonempty compact subset K ⊆ W such that

⋃

{I
′

y|y ∈ Y } ⊆ K (4)

and
ϕ(t, I

′

y , y) = I
′

σ(t,y) (5)

for any y ∈ Y and t ≥ 0. Then taking into consideration (4)-(5) we obtain

β(I
′

y, Iy) = β(ϕ(t, I
′

σ(−t,y), σ(−t, y)), Iy) ≤

β(ϕ(t,K, σ(−t, y)), Iy) → 0 as t → ∞

and, consequently, I
′

y ⊆ Iy for any y ∈ Y . Lemma is proved.

Corollary 2. Let {Iy| y ∈ Y } be a compact pullback attractor of the cocycle
〈W,ϕ, (Y, T, σ)〉. Then J =

⋃

{Jy = Iy × {y}| y ∈ Y } is the maximal conditional
pre-compact invariant set of the skew-product dynamical system (X, T+, π) with the
property that pr1(J) is a pre-compact set.

Proof. Let J
′

be an invariant set of the skew-product dynamical system (X, T+, π)
with the property that pr1(J

′

) is a pre-compact set. Consider the non-autonomous
set I

′

= {I
′

y| y ∈ Y }, where I
′

y := pr1(J
′

y). By conditions of Corollary 2 there exists

a compact subset K ⊆ W such that I
′

y ⊆ K for any y ∈ Y . Since I
′

= {I
′

y| y ∈ Y }

is an invariant subset of the cocycle ϕ, then by Lemma 4 we have I
′

y ⊆ Iy for any

y ∈ Y and, consequently, J
′

⊆ J.

.

Corollary 3. There exists at most one compact pullback attractor of the cocycle
〈W,ϕ, (Y, T, σ)〉.

Proof. Let {Ii
y| y ∈ Y } (i = 1, 2) be two compact pullback attractors of the cocycle

ϕ, then by Lemma 4 Ii
y ⊆ Ij

y for any y ∈ Y and i, j = 1, 2 (i 6= j). From the last
inclusion it follows that I1

y = I2
y for any y ∈ Y .

Theorem 1. Let {Iy| y ∈ Y } be a compact pullback attractor of the cocycle
〈W,ϕ, (Y, T, σ)〉.

Then the following statements hold:

1. J =
⋃

{Jy = Iy × {y}| y ∈ Y } is the maximal conditional pre-compact set of
the skew-product dynamical system (X, T+π);
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2. If the metric space Y is compact, then J is the maximal compact invariant set
of (X, T+, π).

Proof. By Corollary 2 J is the maximal conditionally pre-compact invariant set of
(X, T+, π).

Let now Y be a compact metric space. To prove the second statement of Theorem
it is sufficient to show that the set J is compact, i.e., that J is pre-compact and closed.
Note that

J =
⋃

{Jy | y ∈ Y } =
⋃

{Iy × {y}| y ∈ Y } ⊆
(

⋃

{Iy| y ∈ Y }
)

× Y

and, consequently, J is pre-compact because the sets
⋃

{Iy| y ∈ Y } and Y are so.
Finally, we will show that the set J is closed. Denote by M := J the closure in X

of the set J, then it is a compact subset of X. Since the set J is invariant, then its
closure M is also invariant because J is invariant and pre-compact. Since pr1(M) is
a compact subset of W , then by Corollary 2 we have J = M . Theorem is completely
proved.

Corollary 4. Let {Iy| y ∈ Y } be a compact pullback attractor of the cocycle
〈W,ϕ, (Y, T, σ)〉. If the metric space Y is compact, then the map y → Iy is up-
per semi-continuous.

Proof. This statement follows from Theorem 1 (item 2.) and Lemma 3.

Corollary 5. Under the condition of Corollary 4 there exists a residual set Y0 ⊆ Y
such that the mapping y → Iy is continuous at every point y ∈ Y0.

Proof. This statement follows from Corollary 4 and the fact that the set of points of
continuity Y0 of the semi-continuous function y → Iy is residual (see, for example,[14]
and [22, Ch.I]).

Remark 3. In the general case Corollary 5 is unimprovable. In the paper [16]
(see also [15] and the references therein) an example is given of a non-autonomous
(quasi-periodic) dynamical system with discrete time and a compact global attrac-
tor {Iy| y ∈ Y } in which the mapping y → Iy is upper semi-continuous, but not
continuous.

Theorem 2. Let 〈W,ϕ, (Y, T, σ)〉 be a cocycle over dynamical system (Y, T, σ) with
the fiber W and {Iy| y ∈ Y } be a non-autonomous set. Assume that the following
conditions are fulfilled:

1. the set Y is invariant;

2. the set
⋃

{Iy| y ∈ Y } is pre-compact.

Then the following statements are equivalent:

1. {Iy| y ∈ Y } is a maximal pre-compact and invariant (with respect to cocycle
ϕ) set;
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2. the set J =
⋃

{Jy| y ∈ Y }, where Jy := Iy × {y} for any y ∈ Y , is a max-
imal conditionally compact invariant set of skew-product dynamical system
(X, T+, π) with the property that pr1(J) is precompact.

Proof. Let {Iy| y ∈ Y } be a maximal pre-compact and ϕ invariant set. By Lemma
2 the set J is conditionally pre-compact. Let J

′

be an invariant set of the skew-
product dynamical system (X, T+, π) with the property that pr1(J

′

) is pre-compact.
Consider the non-autonomous set I

′

= {I
′

y| y ∈ Y }, where I
′

y := pr1(J
′

y). By Lemma
1 the non-autonomous set {I ′y| y ∈ Y } is invariant and taking into consideration
I ′y = pr1(Jy) for any y ∈ Y , then {I ′y| y ∈ Y } is pre-compact. Since {Iy| y ∈ Y } is a
maximal pre-compact ϕ invariant set, then I ′y ⊆ Iy for any y ∈ Y and, consequently,
J′ ⊆ J.

Conversely, if J ⊂ X is an invariant set of (X, T+, π), then by Lemma 1 the non-
autonomous set {Iy| y ∈ Y } (Iy = pr1Jy) is ϕ invariant. Since

⋃

{Iy| y ∈ Y } = pr1J,
then the set

⋃

{Iy| y ∈ Y } is pre-compact. Now we will establish that the ϕ invariant
non-autonomous set {Iy| y ∈ Y } is maximal. In fact, l et {I ′y| y ∈ Y } be a non-
autonomous set possessing the following properties:

a. the set
⋃

{I ′y| y ∈ Y } is pre-compact;

b. the non-autonomous set {I ′y| y ∈ Y } is ϕ invariant;

c. Iy ⊆ I ′y for any y ∈ Y .

According to Lemma 1 the set J′ =
⋃

{I ′y × {y}| y ∈ Y } ⊆ X is invariant
with respect to skew-product dynamical system (X, T+, π). By Lemma 2 the set
J′ is conditionally pre-compact. From condition c. we have J ⊆ J′. Taking into
consideration the fact that J is a maximal conditionally pre-compact invariant set
of (X, T+, π) we conclude that J′ ⊆ J and, consequently, I ′y ⊆ Iy for any y ∈ Y , i.e.,
I ′y = Iy for any y ∈ Y . Theorem is proved.

4 Pullback Attractors of Cocycles

Let M = {My| y ∈ Y } be a non-autonomous set and

ωy(M) :=
⋂

t≥0

⋃

τ≥t

ϕ(τ,Mσ(−τ,y), σ(−τ, y))

for any y ∈ Y .

Lemma 5. Let Y be a complete metric space, (Y, T, σ) be a two-sided dynamical
system and 〈W,ϕ, (Y, T, σ)〉 be a cocycle over dynamical system (Y, T, σ) with the
fiber W . Then the following statements hold:

1. the point p ∈ ωy(M) if and only if there exit tk → +∞ and uk ∈ Mσ(−tk ,y)

such that p = lim
k→+∞

ϕ(tk, uk, σ(−tk, y));



DIFFERENT TYPES OF COMPACT GLOBAL ATTRACTORS FOR COCYCLES ... 43

2. U(t, y)ωy(M) ⊆ ωσ(t,y)(M) for any y ∈ Y and t ∈ T+, where U(t, y) :=
ϕ(t, ·, y);

3. if M = {My| y ∈ Y } is a compact non-autonomous set such that
⋃

{My| y ∈
Y } is pre-compact, then for any point w ∈ ωy(M) the motion ϕ(t, w, y) is
defined on S;

4. if there exits a compact non-autonomous set K = {Ky| y ∈ Y } such that
Ky 6= ∅ for any y ∈ Y and

lim
t→+∞

β(ϕ(t,Mσ(−t,y), σ(−t, y)),Ky) = 0, (6)

then ωy(M) 6= ∅, is compact,

lim
t→+∞

β(ϕ(t,Mσ(−t,y), σ(−t, y)), ωy(M)) = 0 (7)

and
U(t, y)ωy(M) = ωσ(t,y)(M) (8)

for any y ∈ Y and t ∈ S+ .

Proof. The first statement of Lemma follows directly from equality (6).
Let w ∈ ωy(M), then there exit tk → +∞ and uk ∈ Mσ(−tk ,y) such that

w = lim
k→+∞

ϕ(tk, uk, σ(−tk, y))

and, hence,

ϕ(t, w, y) = lim
k→+∞

ϕ(t, ϕ(tk, uk, σ(−tk, y), y) =

lim
k→+∞

ϕ(t + tk, uk, σ(−tk − t, σ(t, y))). (9)

Since uk ∈ Mσ(−tk ,y) = Mσ(−tk−t,σ(t,y)), then ϕ(t, w, y) ∈ ωσ(t,y)(M), that is
U(t, y)ωy(M) ⊆ ωσ(t,y)(M) for any y ∈ Y and t ∈ T+.

From the equality (9), it follows that the motion ϕ(t, w, y) is defined on S like
ϕ(t + tk, uk, σ(−tk, y)) is defined on [−tk,+∞) and tk → +∞.

Let us show that from (6) it follows that ωy(M) 6= ∅ if ∅ 6= Ky ∈ C(W ) for
any y ∈ Y . Since My ∈ C(W ) for any y ∈ Y , uk ∈ Mσ(−tk ,y) and tk → +∞, then
according to (6) the sequence {ϕ(tk, uk, σ(−tk, y))} can be considered convergent.
Assume

u = lim
k→+∞

ϕ(tk, uk, σ(−tk, y)),

then u ∈ ωy(M) and consequently ωy(M) 6= ∅.
Let us show ωy(M) is compact. Let εk ↓ 0 and {vk} ⊆ ωy(M), then there exist

tk → +∞ as k → ∞ and uk ∈ M such that

ρ(ϕ(tk, uk, σ(−tk, y)), vk) < εk.
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According to the condition (6), the sequence {ϕ(tk, uk, σ(−tk, y)} is relatively com-
pact and since εk ↓ 0, {vk} also is relatively compact. By definition of ωy(M) it is
closed and, consequently, ωy(M) is a compact subset of W .

Now we will establish equality (7). If we assume that it is not true, then there
are ε0 > 0, tk → +∞ and uk ∈ M such that

ρ(ϕ(tk, uk, σ(−tk, y)), ωy(M)) ≥ ε0

for any k ∈ N. Taking into account (6) without loss of generality we can suppose
that the sequence {ϕ(tk, uk, σ(−tk, y))} is convergent. Denote its limit by ū, then

ū ∈ ωy(M). (10)

On the other hand passing to the limit in (7) as k → ∞ we obtain

ρ(ū, ωy(M)) ≥ ε0. (11)

Relations (10) and (11) are contradictory. The obtained contradiction proves our
statement.

To establish equality (8) it is sufficient to show that ωσ(t,y)(M) ⊆ ϕ(t, ωy(M), y).
Let u ∈ ωσ(t,y)(M), then there are tk → +∞ and uk ∈ Mσ(−tk ,σ(t,y)) = Mσ(−tk+t,y)

such that

u = lim
k→∞

ϕ(tk, uk, σ(−tk, σ(t, y))) =

lim
k→∞

ϕ(tk − t + t, uk, σ(−tk + t, y)) =

lim
k→∞

ϕ(t, ϕ(tk − t, uk, σ(−tk, σ(t, y)), y). (12)

By (6) without loss of generality we can assume that the sequence

{ϕ(tk − t, uk, σ(−tk, σ(t, y))} = {ϕ(tk − t, uk, σ(−tk + t, y)}

converges. Denote its limit by ut, then ut ∈ ωy(M) because uk ∈ Mσ(−tk+t,y) for
any k ∈ N and tk − t → +∞ as k → ∞. From (12) we obtain u = ϕ(t, ut, y) ∈
ϕ(t, ωy(M), y), i.e., ωσ(t,y) ⊆ ϕ(t, ωy(M), y).

Remark 4. Lemma 5 remains true if instead of two-sided dynamical system (Y, T, σ)
we consider a one-sided dynamical system (Y, T+, σ) and the phase space Y is com-
pact and invariant (i.e., σ(t, Y ) = Y for any t ∈ T+).

To establish this fact it is sufficient to note if (Y, T+, σ) is a one-sided dynamical
system and the phase space Y is compact and invariant, then on Y a two-sided
set-valued dynamical system (Y, T, σ̃) is defined such that σ̃(t, y) = σ(t, y) for any
(t, y) ∈ T+×Y . Now to obtain the proof of Remark 4 it is sufficient to apply Lemma
3.8.1 from [7, Ch.III] (see also [19]).

Definition 9. A cocycle 〈W,ϕ, (Y, S, σ)〉 is said to be compact (respectively, uni-
formly compact) pullback dissipative, if there exists a uniformly compact non-
autonomous set K = {Ky| y ∈ Y } possessing the following properties:
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1. Ky 6= ∅ for any y ∈ Y ;

2. for any compact non-autonomous set M = {My| y ∈ Y } we have

lim
t→+∞

β(ϕ(t,Mσ(−t,y), σ(−t, y)),Ky) = 0 (13)

for any y ∈ Y (respectively, equality (13) takes place uniformly with respect
to y ∈ Y ).

Denote by B(W ) (respectively, by B(W )) the family of all bounded (respectively,
bounded and closed) subsets of W .

Recall that for any nonempty subsets A,B ⊆ B(W ) we define β(A,B) :=
sup{ρ(a,B)| a ∈ A}, where ρ(a,B);= inf{ρ(a, b)| b ∈ B}.

Lemma 6. Let B1 ⊆ B2 be two arbitrary nonempty closed bounded subsets of W ,
then for any A ∈ W we have β(A,B2) ≤ β(A,B1).

Proof. Let a ∈ A, then

ρ(a,B2) = inf{ρ(a,B2)| b ∈ B2} ≤ inf{ρ(a,B1)| b ∈ B1} = ρ(a,B1) (14)

and, consequently, from (14) we obtain

β(A,B2) = sup{ρ(a,B2)| a ∈ A} ≤ sup{ρ(a,B1)| a ∈ A} = β(A,B1).

Lemma is proved.

Theorem 3. [4, Part I], [5], [21] Let 〈W,ϕ, (Y, T, σ)〉 be a compactly pullback dis-
sipative cocycle and K be the nonempty compact non-autonomous set appearing in
(13), then:

1. Iy := ωy(K) 6= ∅, is compact, Iy ⊆ Ky and

lim
t→+∞

β(U(t, σ(−t, y)))Kσ(−t,y) , Iy) = 0

for every y ∈ Y ;

2. U(t, y)Iy = Iσ(t,y) for any y ∈ Y and t ∈ T+;

3.
lim

t→+∞
β(U(t, σ(−t, y))Mσ(−t,y) , Iy) = 0

for any compact non-autonomous set M = {My| y ∈ Y }, i.e., I = {Iy} is a
compact pullback attractor of the cocycle ϕ;

4. if the set
⋃

{Ky| y ∈ Y } is pre-compact, then

(a) the set

I :=
⋃

{Iy| y ∈ Y }

is a pre-compact subset of W ;
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(b)
lim

t→+∞
β(U(t, σ(−t, y))Mσ(−t,y),I) = 0 (15)

for any compact non-autonomous set M = {My| y ∈ Y } and y ∈ Y ;

5. if the space Y is compact and the cocycle ϕ is uniform compactly pullback
dissipative then

(a) the set I is closed and, consequently, I = I, where

I :=
⋃

{Iy| y ∈ Y };

(b)
lim

t→+∞
sup{β(U(t, σ(−t, y))Mσ(−t,y),I) | y ∈ Y } = 0 (16)

for any compact non-autonomous set M = {My| y ∈ Y }.

Proof. The first three assertions of the theorem follow from Lemma 5.
To establish the fourth statement we note that Iy = ωy(M) ⊆ Ky ⊆

⋃

{Ky| y ∈
Y } and, consequently,

⋃

{Iy| y ∈ Y } is a pre-compact subset of W .
Let us prove now equality (15). Since Iy ⊆ Ky ⊆ I for any y ∈ Y , then by

Lemma 6 we have

β(U(t, σ(−t, y))Mσ(−t,y),I) ≤ β(U(t, σ(−t, y))Mσ(−t,y), Iy). (17)

Passing to the limit in (17) as t → +∞ we obtain (15).
Since the space Y is compact, then by Theorem 1 the set J =

⋃

{Iy×{y}| y ∈ Y }
is a maximal, compact invariant set of the skew-product dynamical system (X, T, π).
Since I = pr1(J) and the map pr1 : X → W is continuous, then the set I is compact
and, consequently, it is closed. Thus we have

⋃

{Iy| y ∈ Y } = I = I =
⋃

{Iy| y ∈ Y } = I.

Now we will prove equality (16). Assuming that it is false we will have a positive
number ε0, non-autonomous set M0 = {M0

y | y ∈ Y }, yk ∈ Y , uk ∈ M0
yk

and
tk → +∞ such that

ρ(U(tk, y
−tk
k

)uk,I) ≥ ε0 (18)

and, consequently,
ρ(U(tk, σ(−tk, yk))uk, Iy) ≥ ε0

for any y ∈ Y , because Iy ⊆ I and ρ(u,I) ≤ ρ(u, Iy) (u ∈ W and y ∈ Y ).
Since Y is compact, then we can assume that the sequences {yk} and {yktk}

are convergent. Suppose y0 := lim
k→+∞

yk and y := lim
k→+∞

yktk. According to (6), for

given ε0 > 0 and y0 ∈ Y , there exists t0 = t0(ε0, y0) such that

β(U(t, σ(t, y0))Mσ(−t,y0
, Iy0) <

ε0

2
(19)
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for all t ≥ t0(ε0, y0). Let us note that

U(tk, σ(−tk, yk))uk = U(t0, σ(−t0, yk))U(tk − t0, σ(−tk, yk))uk. (20)

As 〈W,ϕ, (Y, T, σ)〉 is uniformly compactly dissipative, then the sequence {U(tk,
σ(−tk, yk))uk} may be considered a convergent one. Suppose u′ = lim

k→+∞
ϕ(tk −

t0, uk, y
tk
k ) and let us notice that according to (13) u′ ∈ K :=

⋃

{Ky| y ∈ Y }.
From the equality (20), it follows that U(tk, σ(−tk, yk))uk → U(t0, σ(−t0, y0))u

′

and, hence, from (18) we have

U(t0, σ(−t0, y0))u
′ /∈ B(Iy0 , ε0).

On the other hand, from (19) and from u′ ∈ K, it follows that

U(t0, σ(−t0, y0))u
′ ∈ B(Iy0 ,

ε0

2
).

The last inclusion contradicts (19), and this finishes the proof of the fourth assertion.
The theorem is completely proved.

Remark 5. Theorem 3 remains true if instead of two-sided dynamical system (Y, T, σ)
we consider a one-sided dynamical system (Y, T+, σ) and the phase space Y is com-
pact and invariant (i.e., σ(t, Y ) = Y for any t ∈ T+).

This fact can be proved with the slight modifications of the proof of Lemma 3
and using Remark 4.

5 Global Attractors of Cocycles

Definition 10. A cocycle ϕ over (Y, T, σ) with the fiber W is said to be compactly
dissipative (respectively, uniformly compact dissipative) if there exits a nonempty
compact K ⊆ W such that

lim
t→+∞

β(U(t, y)M,K) = 0 (21)

for any M ∈ C(W ) and y ∈ Y (respectively, uniformly with respect to y ∈ Y ).

Remark 6. Let K be a pre-compact subset of W such that (21) holds then

lim
t→+∞

β(U(t, y)M,K) = 0

for any M ∈ C(W ) and y ∈ Y (respectively, uniformly with respect to y ∈ Y ),
where by K the closure of K is denoted.

In fact, since

β(U(t, y)M,K) ≤ β(U(t, y)M,K) + β(K,K) = β(U(t, y)M,K) → 0
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as t → +∞ for any M ∈ C(W ) and y ∈ Y (respectively, uniformly with respect to
y ∈ Y ), because K ⊆ K and hence β(K,K) = 0.

Denote by ρW (respectively, ρY ) the distance on the metric space W (respectively,
Y ), X := W ×Y , pr1 : X → W (respectively, pr2 : X → Y ) is the first (respectively,
second) projection and ρX := ρW + ρY (i.e., ρX((u1, y1), (u2, y2)) := ρW (u1, u2) +
ρY (y1, y2) for any (ui, yi) ∈ W × Y and i = 1, 2).

Remark 7. When there is no risk of misunderstanding, we will omit the index in the
notation of the metric ρX (respectively, ρY and ρW ).

Theorem 4. [5], [9, Ch.II] Let Y be a compact metric space, then the following
statements are equivalent:

1. the cocycle 〈W,ϕ, (Y, T, σ)〉 is uniformly compactly dissipative;

2. the skew-product dynamical system (X, T, π) (X := W × Y, π = (ϕ, σ)) is
compact dissipative.

Proof. Let K be a nonempty compact subset of W figuring in (21) and M be an
arbitrary compact subset of W . Denote by K := K × Y and M := M × Y . Since
β(π(t, (u, y)),K) ≤ β(ϕ(t, u, y),K) then we have

β(π(t,M),K) ≤ sup
(u,y)∈M×Y

β(ϕ(t, u, y),K) ≤ sup
(y∈Y

β(ϕ(t,M, y),K). (22)

From (21) and (22) we obtain

lim
t→+∞

β(π(t,M),K) = 0 (23)

for any M.
Let now P be an arbitrary compact subset of W . Since Y is a compact metric

space, then M := pr1(P ) is a compact subset of W and P ⊆ M = M × Y and,
consequently,

β(π(t, P ),K) ≤ β(π(t,M),K) (24)

for any P ∈ C(X). From (23) and (24) we obtain

lim
t→+∞

β(π(t, P ),K) = 0

for any P ∈ C(X), that is, the skew-product dynamical system (X, T, π) is compactly
dissipative.

Conversely, suppose that the skew-product dynamical system (X, T, π) is com-
pactly dissipative, then there exists a non-empty compact subset A0 ∈ C(X) such
that

lim
t→+∞

β(π(t, A), A0) = 0 (25)

for any A ∈ C(X). Denote by K := pr1(A0), then K is a nonempty compact subset
of W because X = W×Y and Y is compact. Let M ∈ C(W ) be an arbitrary compact
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subset of W and (u, y) ∈ M = M×Y . Since ρW (ϕ(t, u, y),K) ≤ ρX(π(t, (u, y)), A0),
then we obtain

sup
u∈M

ρW (ϕ(t, u, y),K) ≤ sup
u∈M

ρX(π(t, (u, y)), A0)

and

sup
y∈Y

sup
u∈M

ρW (ϕ(t, u, y),K) ≤ sup
y∈Y

sup
u∈M

ρX(π(t, (u, y)), A0) ≤ β(π(t, A), A0). (26)

From (25) and (26) we receive

lim
t→+∞

sup
y∈Y

β(ϕ(t,M, y),K) = lim
t→+∞

sup
y∈Y

sup
u∈M

ρW (ϕ(t, u, y),K) = 0 (27)

for any M ∈ C(W ) which means that the cocycle ϕ is uniform compact dissipative.
Theorem is proved.

Definition 11. A non-autonomous set I = {Iy| y ∈ Y } is said to be a compact
global attractor for the cocycle 〈W,ϕ, (Y, T, σ)〉 if it possesses the following proper-
ties:

1. the set I :=
⋃

{Iy| y ∈ Y } is pre-compact;

2. {Iy| y ∈ Y } is invariant, i.e., ϕ(t, Iy, y) = Iσ(t,y) for any (t, y) ∈ T × Y ;

3.
lim

t→+∞
sup
y∈Y

β(ϕ(t,M, y),I) = 0

for any M ∈ C(W ), where I =
⋃

{Iy| y ∈ Y }.

Theorem 5. Let Y be a compact metric space, Y be invariant (i.e., σ(t, Y ) = Y
for any t ∈ T) and ϕ be a cocycle over (Y, T, σ) with the fiber W . If the cocycle ϕ is
uniformly compactly dissipative, then it has a compact global attractor.

Proof. Let Y be a compact metric space and ϕ be uniformly compactly dissipative.
Then there exists a nonempty compact subset K ⊆ W such that (21) holds for every
M ∈ C(W ). Reasoning as in the proof of Theorem 4 we conclude that the compact
K := K × Y ∈ C(X) attracts every compact subset P ∈ C(X). In particular, K
attracts itself and, consequently, ω(K) ⊆ K. Since (X, T, π) is compactly dissipative
and K attracts every compact subset from X, then J := ω(K) is its Levinson center.
For any y ∈ Y we denote by Iy := pr1(Jy), where Jy := pr−1

2 (y)
⋂

J . Note that the
non-autonomous set I = {Iy| y ∈ Y } possesses the following properties:

1. for any y ∈ Y the set Iy is a non-empty compact subset of W ;

2. the set I is closed and, consequently, I = I;

3. {Iy| y ∈ Y } is ϕ invariant, i.e., ϕ(t, Iy, y) = Iσ(t,y) for any (t, y) ∈ T × Y ;
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4.

lim
t→+∞

sup
y∈Y

β(ϕ(t,M, y),I) = 0

for any M ∈ C(W ).

The properties (i)-(iii) listed above of the non-autonomous set I = {Iy| y ∈ Y }
follow from the properties of the Levinson center. Namely, J is a nonempty, compact
and invariant set of the skew-product dynamical system. Besides pr2(J) = Y ,
pr1(J) = I and I is a compact subset of W . Finally, the property (iv) follows from
the equality (27). Theorem is completely proved.

6 Forward Attractors for Cocycles

Lemma 7. Suppose that the cocycle 〈W,ϕ, (Y, T, σ)〉 is uniformly compactly dissi-
pative, then it is uniformly pullback compactly dissipative.

Proof. Assume that the cocycle 〈W,ϕ, (Y, T, σ)〉 is uniformly compactly dissipative,
then there exists a non-empty compact subset K ∈ C(W ) such that

lim
t→+∞

sup
y∈Y

β(ϕ(t,M, y),K) = 0 (28)

for any M ∈ C(W ). Since σ(t, Y ) = Y for any t ∈ T, then σ(−t, Y ) = Y (if T is
a semi-group, then σ(−t, y) := σ(t, ·)−1(y), where f−1 denotes the inverse mapping
for the map f : Y → Y ) and, consequently,

sup
q∈Y

β(ϕ(t,M, q),K) = sup
y∈Y

β(ϕ(t,M, σ(−t, y)),K) (29)

for any M ∈ C(W ). From (28) and (29) we obtain

lim
t→+∞

sup
y∈Y

β(ϕ(t,M, σ(−t, y)),K) = 0

for any M ∈ C(W ). Lemma is proved.

Theorem 6. Let 〈W,ϕ, (Y, S, σ)〉 be uniformly compactly dissipative and K be the
nonempty compact set appearing in the equality (21), then:

1. Iy := ωy(K) 6= ∅, is compact, Iy ⊆ Ky and

lim
t→+∞

β(U(t, σ(−t, y)))Kσ(−t,y) , Iy) = 0

for every y ∈ Y ;

2. U(t, y)Iy = Iσ(t,y) for any y ∈ Y and t ∈ S+;
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3.

lim
t→+∞

β(U(t, σ(−t, y))Mσ(−t,y) , Iy) = 0

for any compact non-autonomous set M = {My| y ∈ Y }, i.e., I = {Iy} is a
compact pullback attractor of the cocycle ϕ;

4.

lim
t→+∞

β(U(t, σ(−t, y))Mσ(−t,y),I) = 0

for any compact non-autonomous set M = {My| y ∈ Y }), where

I :=
⋃

{Iy | y ∈ Y };

5. if the cocycle ϕ is uniformly compactly pullback dissipative then

lim
t→+∞

sup{β(U(t, σ(−t, y))Mσ(−t,y),I) | y ∈ Y } = 0

for any compact non-autonomous set M = {My| y ∈ Y });

6. if Y is compact and the cocycle ϕ is compactly (respectively, uniformly com-
pactly) pullback dissipative then

lim
t→+∞

β(U(t, σ(−t, y))Mσ(−t,y),I) = 0

(respectively,

lim
t→+∞

sup{β(U(t, σ(−t, y))Mσ(−t,y) ,I) | y ∈ Y } = 0 )

for any compact non-autonomous set M = {My| y ∈ Y }), where

I :=
⋃

{Iy | y ∈ Y }.

Proof. This statement follows from Theorem 4 and Lemma 7.

Remark 8. Theorem 6 remains true if instead of two-sided dynamical system (Y, T, σ)
we consider a one-sided dynamical system (Y, T+, σ) and the phase space Y is com-
pact and invariant (i.e., σ(t, Y ) = Y for any t ∈ T+).

This fact can be proved with the slight modifications of the proof of Theorem 6
and using Remark 5.

Definition 12. Let 〈W,ϕ, (Y, T, σ)〉 be compactly dissipative, K be the nonempty
compact subset of W appearing in the equality (21) and Iy := ωy(K) for any y ∈ Y .
The family of compact subsets {Iy| y ∈ Y } is said to be a Levinson center (compact
global attractor) of non-autonomous (cocycle) dynamical system 〈W,ϕ, (Y, T, σ)〉.
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Remark 9. According to Theorem 6 by Definition 12 the notion of Levinson cen-
ter (compact global attractor) for non-autonomous (cocycle) dynamical system
〈W,ϕ, (Y, T, σ)〉 is well defined.

Corollary 6. Let 〈W,ϕ, (Y, T, σ)〉 be compactly dissipative non-autonomous dynam-
ical system, {Iy| y ∈ Y } be its Levinson center and γ : T 7→ W be a pre-compact
full trajectory of ϕ (i.e., γ(T) is pre-compact subset and there exists a point y0 ∈ Y
such that γ(t + s) = ϕ(t, γ(s), σ(s, y0)) for any t ≥ 0 and s ∈ T), then γ(0) ∈ Iy0 .

Definition 13. A non-autonomous set I = {Iy| y ∈ Y } is said to be a for-
ward (respectively, a uniformly forward) compact global attractor for the cocycle
〈W,ϕ, (Y, T, σ)〉 if it possesses the following properties:

1. the set I :=
⋃

{Iy| y ∈ Y } is pre-compact;

2. {Iy| y ∈ Y } is invariant;

3.

lim
t→+∞

sup
y∈Y

β(ϕ(t,M, y), Iσ(t,y)) = 0 (30)

(respectively, equality (30) takes place uniformly w.r.t y ∈ Y )) for any M ∈
C(W ).

Lemma 8. Assume that the cocycle 〈W,ϕ, (Y, T, σ)〉 has a forward (respectively, a
uniformly forward) compact global attractor I = {Iy| y ∈ Y }, then it is compactly
(respectively, uniformly compactly) dissipative.

Proof. Denote by I :=
⋃

{Iy| y ∈ Y }, then by condition of Lemma the set I is a
non-empty compact from W . Since Iσ(t,y) ⊆ I for any (t, y) ∈ T × Y , then by
Lemma 6 we have

β(ϕ(t,M, y),I) ≤ β(ϕ(t,M, y), Iσ(t,y)) (31)

for any (t, y) ∈ T × Y and M ∈ C(W ). From equality (31) we obtain

lim
t→+∞

β(ϕ(t,M, y),I) = 0

for any y ∈ Y (respectively, uniformly w.r.t. y ∈ Y ) and M ∈ C(W ). Lemma is
proved.

Theorem 7. Suppose that the cocycle 〈W,ϕ, (Y, T, σ)〉 is compactly (respectively,
uniformly compactly) dissipative and {Iy| y ∈ Y } is its Levinson center. If the
metric space Y is compact and the mapping y → Iy is lower semi-continuous. Then
{Iy| y ∈ Y } is a compact global forward (respectively, uniformly forward) attractor
of cocycle ϕ.
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Proof. Assume that the cocycle 〈W,ϕ, (Y, T, σ)〉 is compactly (respectively, uni-
formly compactly) dissipative and {Iy| y ∈ Y } is its Levinson center. Let M be
an arbitrary compact subset of W . We will show that

lim
t→+∞

β(ϕ(t,M, y), Iσ(t,y)) = 0 (32)

(respectively,
lim

t→+∞
sup
y∈Y

β(ϕ(t,M, y), Iσ(t,y)) = 0 ) (33)

for any y ∈ Y .
Firstly we establish equality (32). If we suppose that (32) is not true, then there

are ε0 > 0, a sequence tk → +∞, y0 ∈ Y , M0 ∈ C(W ) and a sequence {uk} ⊆ M0

such that
ρ(ϕ(tk, uk, y0), Iσ(tk ,y0)) ≥ ε0 (34)

for any k ∈ N. Since the space Y is compact, then without loss of generality we can
suppose that the sequence {σ(tk, y0)} converges. Denote its limit by ȳ. According
to Theorem 4 the skew-product dynamical system (X, T, π) is compact dissipative
and, consequently the set Σ+

M0
:=

⋃

{π(t, (M0, Y )| t ≥ 0} is pre-compact in the
space X = W × Y . From this fact it follows that the sequence {ϕ(tk, uk, y0)}
is pre-compact and, consequently we can suppose that it converges. Denote by
ū = lim

k→∞
ϕ(tk, uk, y0), then (ū, ȳ) = x̄ ∈ J and, consequently,

ū ∈ Iȳ (35)

because Iȳ = pr1(Jȳ), where Jy := J
⋂

pr−1
2 (y) for any y ∈ Y . On the other hand

from (34) we obtain

ε0 ≤ ρ(ϕ(tk,k , y0), Iσ(tk ,y0)) ≤ ρ(ϕ(tk, uk, y0), Iȳ) + β(Iȳ, Iσ(tk ,y0)). (36)

Passing to the limit in (36) as k → ∞ and taking into consideration that the map
y → Iy is lower semi-continuous we will have

ε0 ≤ lim sup
k→∞

ρ(ϕ(tk, uk, y0), Iȳ).

This means, in particular, that there exists a subsequence {tkm
} ⊆ {tk} such that

ρ(ϕ(tkm
, ukm

, y0), Iȳ) ≥ ε0/2 (37)

for any m ∈ N. The relations (35) and (37) are contradictory. The obtained contra-
diction proves our statement.

To finish the proof of Theorem we will prove equality (33). Assuming that it is
false we will have a positive number ε0, M0 ∈ C(W ), sequences {yk} ⊆ Y, {uk} ⊆
W, {tk}) ⊆ T such that tk → +∞ as k → +∞ and

ρ(ϕ(tk, uk, yk), Iσ(tk ,yk)) ≥ ε0 (38)
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for any k ∈ N. Without loss of generality we can suppose that the sequence
{σ(tk, yk)} converges because the space Y is compact. Denote by ȳ = lim

k→∞
σ(tk, yk).

Since the skew-product dynamical system (X, T, π) is compactly dissipative (see
Theorem 4) then the set Σ+

M0
:=

⋃

{π(t, (M0, Y )| t ≥ 0} is pre-compact and, conse-
quently, the sequence {ϕ(tk, uk, yk)} is pre-compact. Without loss of generality we
can suppose that it is convergent. Let ū = lim

k→∞
ϕ(tk, uk, yk), then (ū, ȳ) = x̄ ∈ J

and, consequently,

ū ∈ Iȳ. (39)

On the other hand from (38) we obtain

ε0 ≤ ρ(ϕ(tk,k , yk), Iσ(tk ,yk)) ≤ ρ(ϕ(tk, uk, yk), Iȳ) + β(Iȳ, Iσ(tk ,yk)). (40)

Since the map y → Iy is lower semi-continuous, then passing to the limit in (40) as
k → ∞ we receive

ε0 ≤ lim sup
k→∞

ρ(ϕ(tk, uk, yk), Iȳ). (41)

From (41) it follows that there exists a subsequence {tkm
} ⊆ {tk} such that

ρ(ϕ(tkm
, ukm

, ykm
, Iȳ) ≥ ε0/2 (42)

for any m ∈ N. The relations (39) and (42) are contradictory. The obtained contra-
diction proves our statement. Theorem is completely proved.
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