
BULETINUL ACADEMIEI DE ŞTIINŢE
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Abstract. In this paper, we introduce a concept of the Euclidean combinatorial
configuration as a mapping of a set of certain objects into a point of Euclidean space.
We classify Euclidean combinatorial configurations sets based on their structure and
constraints. The proposed typology forms the basis for studying continuous functional
representations of combinatorial configurations. Special classes of functional exten-
sions are introduced, their properties are described, and corresponding examples are
given.
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1 Introduction

Review of modern methods of Combinatorial Optimization (CO) allows us to
specify the following important interrelated areas of research. On the one hand,
this refers to deriving approaches to solving problems in their general formulation,
e.g., branch and bound algorithms, cutting algorithms, branch-and-cut algorithms,
relaxation approaches, dual methods, etc. On the other hand, there are special
methods focused on solving specific problems of CO, its structure, and properties of
objective function and constraints.

Of great interest are problems in which the domain of feasible solutions is the
combinatorial space generated by combinatorial objects when they are mapped into
the Euclidean space Rn. Thus, combinatorial optimization problems can be equiva-
lently formulated as discrete optimization (DO) problems, which in this case have a
number of special properties. Classical approaches to solving discrete optimization
problems include continuous approaches that can be roughly grouped in two direc-
tions: continuous formulations and continuous relaxations [?, 12,14,32]. In the first
case, the problem is equivalently formulated in RN in terms of continuous variables.
As a result of this formulation, we have a problem of nonlinear programming whose
properties and methods of solving are determined by the class of objective function
and functional constraints. In the second case, some of the constraints are relaxed,
and a search of solutions for relaxation problems is performed. What is interesting
is that, with the proper organization of the search, we can guarantee obtaining an
exact solution of the original combinatorial problem.
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In both cases, the geometric peculiarities of the feasible domain are represented
in algebraic form, i.e., allow it to be presented analytically. Thus, Polyhedral Combi-
natorics focuses on the construction and investigation of H-representations of convex
hulls of combinatorial sets [1, 28,59], which are applied to solving polyhedral relax-
ation problems. In nonlinear case, to improve methods of their solutions, one should
try to make the relaxation problem convex. Therefore, it is of great relevance to
single out classes of CO-problems that come with this property.

From the perspective of structural properties of representations of the simplest
combinatorial objects, the most challenging are the ordered finite samples. This led
to the introduction of a concept and selection of a class of Euclidean combinatorial
sets (e-sets) [?,39]. According to the definition provided, the elements of e-sets have
the same number of components and differ by their composition or order. This is
what gives an opportunity to consider the representations of e-sets as real-valued
tuples, i.e., vectors in Rn.

The purpose of this paper is to identify a class of e-sets connected with the config-
urations determined by C. Berge [2]. The research focuses on the study of images of
e-sets in Rn. The proposed typology of Euclidean combinatorial configurations will
be the basis for algorithms of their continuous representation and functional exten-
sions. The beginning of such research was laid in the papers [19–22,24–26,40,43,46].

2 Euclidean combinatorial configurations

Let us introduce the following notations. Suppose P is an e-set, whose represen-
tation E in Rn has the property as follows:

∃ φ, ∃ N ∈ N : E = φ(P) ⊂ RN , P = φ−1(E). (1)

Experts call the process of the representation of P in RN an immersion of the
set P into Euclidean space. As a result of immersion, we obtain the correspondent
image E of the set P in RN further referred to as s-sets.

We consider configurations according to [2]. This implies that any configuration
is a mapping ψ of some initial set B of certain elements into a resulting finite abstract
set A = {a1, ..., ak} of certain elements and specific structure, where the given set of
constrains Λ holds, i.e.,

ψ : B → A. (2)

Suppose B is a finite set B = {b1, ..., bn}, then the result of mapping (2) is an
ordered set π of elements from A:

π =

(

b1 . . . bn
aj1 . . . ajn

)

= 〈aj1aj2...ajn〉 , (3)

where {j1, ..., jn} ⊆ Jk = {1, ..., k}, further referred to as a combinatorial configura-
tion or a c-configuration.

Now let us introduce a set Π of c-configurations, generated by various tuples (3)
for the given A, B, and constraints Λ (further referred to as Ec-set).



CONTINUOUS EXTENSIONS ON EUCLIDEAN COMBINATORIAL CONFIGURATIONS 5

Then we single out the following class of c-configurations. Let set
A = {a1, ...,ak} be a collection of vectors of the same dimension m, i.e.

al = (a1l, ..., aml)
T ∈ Rm, l ∈ Jk. (4)

Let us form a multiset of coordinates for vectors (4) and single out its ground
set A = {e1, ..., eK} = S({aij}i∈Jm, j∈Jk

), where S(M) is a ground set of a multiset
M . Set A will be called a generated set (further referred to as (E.GS)) of C-set E.

Let us consider A as a resulting set for configurations formation, i.e., set A = A.
According to (3), e-configuration π is an ordered set of vectors from A, i.e.,

π = 〈aj1,aj2, ...,ajn〉 . (5)

With every π configuration (5), let us associate a multiset

Ã(π) = {αi(π)}i∈JN
= {a1j1 , ..., a1jn , a2j1 , ..., a2jn , ..., amj1 , ..., amjn} , (6)

and a point
x = (x1, ..., xN ) ∈ RN , N=m · n, (7)

according to the rule below.
First, we need to specify a bijective mapping ϕ1 between A and A′ sets of the

same cardinality:

ϕ1 : A′ = ϕ1(A) = {ϕ1(ei)}i∈JK
such that A′ is a set, i.e., A′ = S(A′). (8)

Second, we need to fully order the multiset Ã(π) (further mapping ϕ2) and
consider the result as a vector. Thus, the vector x is formed according to the rule
as follows:

xi = ϕ1(αβi
(π)), i ∈ JN , (9)

where β = (βi)i∈Jn is some permutation of Jn.
Point x is a result of mapping ϕ1, ϕ2 (further ϕ) such that:

x = ϕ (π) , π = ϕ−1 (x) , (10)

where ϕ provides a bijection between any e-configurations (5), that satisfy
S(Ã(π)) ⊆ A, and point x ∈ RN satisfying S({x}) ⊆ A′.

Definition 1. Euclidean combinatorial configuration (e-configuration) is a mapping
as follows:

ϕ : (ψ,A, Θ) → RN , (11)

where ψ is a mapping ψ : Jn → A, and Θ is a system of constraints on ϕ,ψ.

The Euclidean combinatorial configuration is fully determined by a tuple
〈ϕ,ψ,A,Θ〉

It is an image of combinatorial configuration (4) in Euclidean space RN with the
given ϕ, ψ, being also the x-vector (10) of the dimension N .
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By selecting the mapping ϕ and a way of multiset Ã(π) ordering, we can obtain
various e-configurations.

For example,

x = vec((π)) = (a1j1 , ..., a1jn , a2j1 , ..., a2jn , ..., amj1 , ..., amjn)T , (12)

where vec((π)) is a vectorization of matrix (π) = (alji
)l,i ∈ Rm×n that corresponds

to c-configuration π.

Further we shall use mapping ϕ with reference to (12) with no other constraints
to its form. As a result, we shall have Θ = Λ that fashions formula (11) to
ϕ : (ψ,A, Λ) → RN .

The mapping of Ec-set Π into RN brings about set

E = ϕ (Π) ⊂ RN (13)

of all e-configurations 〈ϕ,ψ,A, Λ〉 (further reffered to as C-set).

On the other hand, (10) implies that:

Π = ϕ−1(E). (14)

When choosing P = Π, E = E, N = N , we see that condition (1) holds for Π,
i.e., E is s-set that corresponds to Ec-set Π.

Hence, C-sets form a subclass of s-sets that are the resultant images of
Ec-sets in Rnm, with the condition below to be satisfied that there exists m ∈ N

such that A = A holds. This fact leads us to assert that Ec-sets are interrelated
with the class of e-sets.

We can single out a special class of C-sets when vectors (4) have a single co-
ordinate, i.e., m = 1, with the resultant set expected to be numerical. Thus,
K = k, N = n, aj = aj ∈ R1, j ∈ Jk. Hence, (12) can be expressed as
x = vec((π)) = (aj1, ..., ajn)T .

Example 1. If A = {0, 1}, then c-configuration π is supposed to be an ordered
Boolean sequence that determines the composition of the subset B(π) ⊆ B, where
aji

= 1 means that bi is included in B(π), whereas aji
= 0 is not. The correspondent

e-configuration x = ϕ(π) is a characteristic vector of the set B(π).

Example 2. Suppose A is the standard basis {ei}i∈Jn and ψ is a bijective mapping.
Then c-configuration π = 〈ej1, ..., ejn〉 is to be a permutation of vectors of this basis.
The configuration will correspond to the permutational matrix (π) of the order n,
and x = ϕ(π) will be the result of its vectorization in the form of a vector of the
dimension n2.

Example 3. If k = n and ψ is a bijective mapping, then c-configuration π will be
a permutation of A such as π = 〈aj1, ..., ajn〉, and the correspondent e-configuration
x will be the vector x = (aj1 , ..., ajn).
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3 Typology of C-sets

Suppose C-set E is a finite point configuration in Rn:

E = {xi}i∈JnE
⊆ RN , xi = (xij)

T
j∈JN

, i ∈ JnE
, nE > 1. (15)

Then multiset G =
⋃

x∈E

{x} is a multiset that induces E (an induced multiset,

(E.IM)). Its ground set S(G) coincides with (E.GS), i.e., S(G) = A. We can express
(E.IM) and (E.GS) as follows:

G = {g1, ..., gη} , gi ≤ gi+1, i ∈ Jη−1,

A = {e1, ..., eK} , ei < ei+1, i ∈ JK−1,

or G = {eηi

i }i∈JK
, where [G] = (ηi)i∈JK

is a primary specification of G, and
ηi = µG(ei) is a multiplicity of ei in G, i ∈ JK .

Further in the paper we shall solve posed problems using C-sets, analyzing them
in two independent ways as follows:
– analysis of A, G, n (a constructive analysis, C-A);
– analysis of algebraic and topological properties of E (a geometric analysis, G-A).

Further we shall consider the case when m = 1, that together with (15) means
that K = k, wherefrom

E = {xi}i∈JnE
⊆ Rn, xi = (xij)

T
j∈Jn

, i ∈ JnE
,

A = {e1, ..., ek} , ei < ei+1, i ∈ Jk−1, k, n, nE > 1.

3.1 C-A-typology of C-sets

The given classification can refer to all of three elements A, G, n or to some of
them. Specifically, this can be exemplified as follows.

A-A-typology: – A ⊂ Z – E is an integer-valued C-set (ZS);
– A ⊂ Q – E is a rational-valued C-set (QS);
– A ⊂ R1

>0 – E is a positive-valued C-set (R>0S);
– A ⊂ R1

+ – E is a non-negative-valued C-set (R+S);
– if ∃ ∆ > 0 : ei+1 − ei = ∆, i ∈ Jk−1, then E is a uniformly distributed C-set
(U(∆)S).

With features of Z-U(∆)Ss combined, other classes of C-sets are formed, including
– Boolean C-sets (BS): A = {0, 1};
– binary C-sets (B′S): A = {−1, 1};
– ternary C-sets (T S): A = {−1, 0, 1}.

E is called a set of special e-configurations (special C-set, SS) if:

max
j

kj = 2, where kj = |Aj |, Aj = S({xij}i∈JnE
), j ∈ Jn. (16)

Thus, BS, B′S are special classes of ZSS.
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G/n-A-typology:

– E is called a set of e-configurations of permutations (C-set of permutations, PS)
if ∀ x ∈ E {x} = G;
– E is called a set of e-configurations of partial permutations (C-set of partial per-
mutations, PPS) if ∀x ∈ E {x} ⊂ G.

These classes can be also determined as PS : η = n and PPS : η > n.

G/A-A-typology: E is called a set of e-configurations:
– without repetitions (C-set without repetitions, R−S) if ∀ x ∈ E |[{x}]| = n;
– with repetitions (C-set with repetitions, R+S) if ∃ x ∈ E |[{x}]| < n.

These features are expressed below as R−S : η = k and R+S : η > k.

C-A-typology: Combinations of the above classes produce various C-sets, such
as:
– C-set of permutations without repetitions (PR−S): η = k = n;
– C-set of permutations with repetitions (PR+S): k < η = n;
– C-set of partial permutations without repetitions (PPR−S): n < k = η;
– C- set of partial permutations with repetitions (PPR+S): k, n ≤ η;
and special, Boolean, binary, triple C-sets of permutations and partial permutations,
etc.

A special class (PPR+S) is C-set of partial permutations with unbound repeti-
tions if η = k · n.

Other constraints imposed on C-set elements form new classes, e.g., C-sets of even
and odd permutations [29], even and odd Boolean vectors [11], signed permutations
[58], etc.

3.2 G-A-typology of C-sets

G-A-classification of C-sets consists in analyzing the mutual position of their
points. The given classification can be only provided when the initial combinatorial
set is mapped into Euclidean space that allows considering a polytope

P = convE, (17)

as well as hypersurfaces containing E.

Definition 2. E is called a vertex-located C-set (VLS) if

E = vert conv E. (18)

Definition 3. E is a surface-located C-set (SLS) if there is function f(x) that is
strictly convex on the convex set K ⊇ E, and if

f(x) =
E

0. (19)
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Definition 4. E is a polyhedral-surfaced C-set (PSS) if there exists a hypersurface
S for which the following is true:

E = P ∩ S, (20)

where P is a polytope (17).

Representation (20) is called a polyhedral-surfaced one of E (PSR) if, in an
expression

S = {x ∈ Rn : f(x) = 0}, (21)

function f(x) is strictly convex on a convex set K ⊇ C = conv S.This implies that
C = {x ∈ Rn : f(x) ≤ 0} is a convex body bounded by a strictly convex surface S
that itself is a full surface of this body [27] .

Typology of SLSs: SLS E is
– spherically-located (SSpS) if ∃r > 0, a ∈ Rn:

S = Sr(a) = {x ∈ Rn : ‖x− a‖2 = r};

– superspherically-located (SSsS) if ∃r > 0, a ∈ Rn, α ∈ (1,∞):

S = Sr(a, α) = {x ∈ Rn : ‖x− a‖α = r};

– ellipsoidally-located (SES) if ∃A ∈ Rn×n, A = AT , A ≻ 0, a ∈ Rn:

S = El(a,A) = {x ∈ Rn : ‖x− a‖A = 1}, where ‖x‖A = xTAx.

Typology of PSSs: PSS E is
– polyhedral-spherical (PSpS) if S in (20) is a hypersphere;
– polyhedral-superspherical (PSsS) if S is a supersphere;
– polyhedral-ellipsoidal (PES) if S is an ellipsoid.

SSpS, SSsS, and SES enable PSR, called polyhedral-spherical (PSpR),
polyhedral-superspherical (PSsR), and polyhedral-ellipsoidal representations
(PER), respectively.

PSS E is a polyhedral-spherical C-set (PSpS) if S is a hypersphere; polyhedral-
ellipsoidal C-set (PES) if S is an ellipsoid; polyhedral-superspherical C-set (PSsS) if
S is a supersphere. Clearly, if E is a PSpS, a PSsS or a PES, it enables PSR. In
view of this, we shall focus on the three classes of C-sets, PSpSs in particular, since
it is formed by an intersection of PSsS- and PES-classes AS a result, PSpSs posses
features of both PSsSs and PESs in combination with its specific properties.

4 Continuous functional representations of C-sets

Suppose

F = {fj(x)}j∈Jm , (22)

where fj : E → R1 are continuous functions for j ∈ Jm.
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Definition 5. The representation of C-set E with the help of functional dependen-
cies expressed as follows:

fj(x) = 0, j ∈ Jm′ , (23)

fj(x) ≤ 0, j ∈ Jm\Jm′ (24)

will be called a continuous functional representation (a f-representation) of E.

In f-representation (23), (24): a) (23) is a strict part; b) (24) is a nonstrict part;
c) m is an order; d) m′, m′′ = m−m′ is an order of the strict and nonstrict parts,
respectively.

When we introduce a notation for a geometric locus, determined by expressions
(23), (24):

Sj = {x ∈ Rn : fj(x) = 0}, j ∈ Jm′ , (25)

Cj = {x ∈ Rn : fj+m′(x) ≤ 0}, j ∈ Jm′′ , (26)

then E =

(

∩
j∈Jm′

Sj

)

⋂

(

∩
i∈Jm′′

Cj

)

.

Thus, if dimension of varieties (25) is n− 1, and fj(x), j ∈ Jm\Jm′ are convex,
C-set E is formed as an intersection of hypersurfaces (25) with convex bodies (26).

We shall provide the classification of f-representations in several ways accord-
ing to: a) the type of functions (22) including linear, nonlinear, differentiable,
smooth, convex, polynomial, trigonometrical, etc.; b) the correlation of parameters
m, m′, m′′.

Definition 6. System (23), (24) is called:
– a strict f-representation of E(further referred to as (E.SR)) if it contains only a
strict part m′ = m, m′′ = 0;
– a nonstrict such a representation (further referred to as (E.NR)) if an f-
representation contains only a nonstrict part m′ = 0, m′′ = m;
– a mixed f-representation of a set E (further referred to as (E.MR)) if it contains
both strict and non-strict parts, i.e., m′ (m−m′) > 0.

System of constraints (23), (24) will be called an irredundant f-representation
of E-set (E.IR) if the exclusion some of its constraints results in a formation of its
proper superset E:

∀ j ∈ Jm′ E\Sj ⊃ E;

∀ i ∈ Jm′′ E\Ci ⊃ E.
(27)

Finally, a bi-component strict f-representation of E will be called tangential
(E.TR) if set E coincides with a set of tangential points between S1 and S2 surfaces
that are tangent to each other; a n-component irredundant strict f-representation
will be called intersected (E.IIR).

Among the mixed f-representations we can single out a class of polyhedral-
surfaced representations (further referred to as E.PSR) consisting of an equation of a
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strictly convex surface S, circumscribed around E, and H-representation of P . Clas-
sification of f-representations can be done with respect to a type of surface S. Par-
ticularly, polyhedral-spherical, polyhedral-superspherical and polyhedral-ellipsoidal
f-representations can be singled out. If there is a constraint that the family of func-
tions (22) consists only of polynomials, one can use instruments of Real Algebraic
Geometry [4,9,41]. For instance, (E.SR) can be formed in the way of finding a base
for an ideal of an algebraic set E. Determining (E.NR) or (E.MR), we bear in mind
that E is a semi-algebraic set.

4.1 Approaches to construction of nonstrict and mixed f-representa-

tions of C-sets

We can construct nonstrict and mixed f-representations of C-sets in the following
ways:
– to find the equation of strictly convex surface S and H-representation of P if the
existence of (E.PSR) is substantiated;
– to extract a family of functions, for which the range of value changes over E is
known, form (23) and (24) in view of the above and check x ∈ E iff x satisfies (23), (24).

We can construct a strict f-representation of C-set E′ ⊃ E and define E as E′

subject to some constraints including some inequalities. To exemplify, we can use
as E′ the grid E′ = An.

Example 4. Taking into account that Enk(G), B′
n are PSpSs, and their convex

hulls are a generalized permutohedron and a hypercube correspondingly [59], we

obtain: (B′
n.PSR) : −1 ≤ xi ≤ 1, i ∈ Jn;

n
∑

i=1
x2

i = n;

(Enk(G).PSR) :
∑

j∈ω

xj ≥

|ω|
∑

j=1

gj , ω ⊂ Jn;

n
∑

i=1

xl
i =

n
∑

i=1

gl
i, l = 1, 2.

4.2 Approaches to construction of strict f-representations of C-sets

System (23) is (E.SR) if and only if x ∈ E ⇐⇒ x satisfies (23).

Algorithm 1. We can single out a family Φ(E) that takes constant values on E
and use it to form (23). Selecting subfamily (23) from Φ(E), we are to justify that:
a) it yields a finite point configuration (FPC) [8]; b) the FPC contains no other
points except for E.

In order to single out a specific set E among other C-sets of the same combina-
torial type that are induced by G = (E.IM), we shall associate it with a basic C-set
(further referred to as Cb-set) of the same combinatorial type as E, that has the
same parameters A, G, n and unites C-sets of the type and parameters. Hence, the
general Cb-set of permutations induced by n-element multiset (3) will be expressed
as follows:

Enk(G) = {x ∈ Rn : {x} = {x1, ..., xn} = G}; (28)
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Cb-set of permutations without repetitions induced by G is

En(G) = {x ∈ Rn : {x} = {x1, ..., xn} = A}; (29)

a binary Cb-set – B′
n = {x ∈ Rn : xi ∈ {−1, 1}, i ∈ Jn}, etc.

Theorem 1. Φ(Enk(G)) = Φsym(G), where Φsym(G) is the set of symmetric func-
tions that are zero-valued at a point g = (g1, ..., gn).

Theorem 2. Φ(B′
n) = Φeven({−1n, 1n}), where Φ(B′

n) is the set of functions even
on every coordinate that are zero-valued at a point e = (1, ..., 1).

Theorems 1 and 2 imply that strict f-representations of Enk(G), B′
n are con-

structed only by functions of families Φsym(G) and Φ(B′
n), respectively, whereas the

construction of their proper subsets requires the application of other functions as
well. In this relation, we need to find such functions that are zero-valued on C-set
E and nonzero-valued on E′\E, where E′ is the correspondent Cb-set.

Example 5. (B′
n.SR): x2

i − 1 = 0, i ∈ Jn.

Algorithm 1 was used to construct strict f-representations of the general
Cb-set of permutations and its special classes [22].

Theorem 3. If (23) is a strict f-representation of C-set E′ ⊃ E,

f ∈ Φ(E′) = Φ(E)\Φ(E′), (30)

f(x) 6=
E′\E

0, (31)

then (23), f(x) = 0 is (E.SR).

The given theorem specifies the conditions necessary to single out one C-set from
another using the only equality constraint.

Corollary 1. If (23) and (24) are f-representations of C-set E′ ⊃ E, and function
f satisfies (30) and (31), then (23), (24), and f(x) = 0 form (E.FR).

Example 6. Function

f(x) =

n
∏

i=1

xi ∈
B′

n

{−1, 1}, (32)

that enables splitting of B′
n into two subsets – B

′−
n and B

′+
n , where f(x) takes the

value of −1 and 1 correspondingly. According to Theorem 3, (B′
n.SR) with f(x) = 1

is (B
′+
n .SR), whilst (B′

n.SR) and f(x) = −1 form (B
′−
n .SR). Taking into account

that B′
n = 2Bn − 1, these f-representations allow obtaining strict f-representations

of Cb-sets of even and odd Boolean vectors.
According to Corollary 1, (B′

n.PSpR) together with f(x) = 1 forms a mixed
f-representation B

′+
n (further referred to as (B

′+
n .MR1)) of the order of 2n+ 2, and

(B′
n.PSpR) together with f(x) = 1 forms f-representation B

′−
n (further referred to

as (B
′−
n .MR1)).
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Algorithm 2. We can express constraints on A, G, ψ,Ω in terms of coordinates
of e-configurations. This is much more convenient for constructing the above-
mentioned strict f-representations of Cb-sets as for the way of their constructions.
We shall illustrate this with a Cb-set of permutations.

Example 7. Suppose E = En(G). The constraint k = n is expressed in Carte-
sian variables in (29). The constraint {x1, ..., xn} = A can be expressed in its
turn in two ways as follows: 1) xi ∈ A, i ∈ Jn; 2) xi 6= xj, i, j ∈ Jn, i 6= j.

Consequently, we obtain the following (En(G).SR):
n
∏

j=1
(xi − ej) = 0, i ∈ Jn;

(xi − xj)
2 ≥ δ2, 1 ≤ i < j ≤ n, where δ = min

i∈Jn−1

{ei+1 − ei}.

To construct a strict f-representation of Enk(G), we can simply express the con-
dition below in Cartesian variables:

{x1, ..., xn} = {g1, ..., gn} (33)

given in (28). It can be expressed as shown below:

(x− g1) · ... · (x− gn) = 0, x ∈ R. (34)

Indeed, to solve equation (34) with respect to x, we need to find the collec-
tion x1, ..., xn of its roots, that exactly coincides with the multiset G, thus making
condition (33) true.

Now we shall rewrite (34) in terms of its roots according to Viete formula:
xn − (g1 + ...+ gn) xn−1 + (g1g2 + ...+ gn−1gn)xn−2 + ...+ (−1)ng1 · g2 · ...gn = 0.

As a result we obtain a system of n equations:

∑

ω⊆Jn,|ω|=j

∏

i∈ω

xi =
∑

ω⊆Jn,|ω|=j

∏

i∈ω

gi, j ∈ Jn, (35)

whose solution is no other set except for the set of n real numbers x1, ..., xn the
same as in (33). On the other hand, dealing with every equation of the system
(35) as with the equation of some variety in Rn, we come up with the fact that a
complete solution to this nonlinear system is exactly C-set of permutations Enk (G).
Thus, (35) is a strict polynomial representation of this set (further referred to as
(Enk (G).SR1)) whose degree and order coincide with the dimension of the Euclidean
space and are equal to n.

Let us denote elementary symmetric polynomials as follows:

uj (x) =
∑

ω⊆Jn,|ω|=j

∏

i∈ω

xi, j ∈ Jn, (36)

and rewrite (Enk (G).SR1) as:

uj (x) = uj (g) , j ∈ Jn. (37)
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We should note that the use of (Enk (G).SR1) for large dimensions is problematic
because it is quite difficult to evaluate functions (36).

We shall construct another functional representation of a C-set Enk (G) based on
(Enk (G).SR1) that relies on the given interrelations between elementary symmetric
polynomials (36) with power sums:

qj (x) =

n
∑

i=1

xj
i , j ∈ J0

n, (38)

that are reflected in the Newton-Girard identities [3] :

qj (x) = j · (−1)−j+1hj (x) +

j−1
∑

i=1

(−1)i−j+1qi (x) · hj−i (x) , j ∈ Jn. (39)

Applying the recurrent formula (39) to both parts of the equation (37), we obtain
qj (x) = qj (g) , j ∈ Jn, or, considering (38),

n
∑

i=1

xj
i =

n
∑

i=1

gj
i , j ∈ Jn. (40)

Similar to (35), the system of equations (40) can be considered from two points of
view: first, as a system used to determine a set of solutions of equation (34); second,
as a system that defines a set of varieties in Rn whose intersection is exactly the set
Enk (G). Thus, we found another f-representation (40) of Enk (G) (further referred
to as (Enk (G).SR2)). Similar to (Enk (G).SR1), it is strict, polynomial, with its
degree and order being equal to n. At the same time, it has apparent benefits over
(Enk (G).SR1), namely, the simplicity of the functions involved, and its convexity in
Rn
≥e1

.
Thus the use of the concept of Euclidean combinational configurations and prop-

erty (33) of e-configuration of permutations allowed us to offer a new, much simpler
proof of the following theorem.

Theorem 4. [22] Each of the systems of equations (35), (40) defines a strict con-
tinuous functional representation of Enk (G).

Here is a generalized Theorem 4.

Theorem 5. If ξ is a bijective mapping between (Enk (G).GS) E and a real set
E ′ = {e

′

1, ..., e
′

k}, then each of the systems of equations:

n
∑

i=1

ξ(xi)
j =

n
∑

i=1

ξ(gi)
j , j ∈ Jn; (41)

∑

ω⊆Jn,|ω|=j

∏

i∈ω

ξ (xi) =
∑

ω⊆Jn,|ω|=j

∏

i∈ω

ξ (gi), j ∈ Jn, (42)

defines a strict f-representation of Cb-set Enk (G).
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Corollary 2. ∀a ∈ R1, each of the following systems of equations

n
∑

i=1
(xi − a)j −

n
∑

i=1
(gi − a)j = 0, j ∈ Jn;

∑

ω⊆Jn,|ω|=j

∏

i∈ω

(xi − a)j −
∑

ω⊆Jn,|ω|=j

∏

i∈ω

(gi − a)j = 0, j ∈ Jn,

is a strict f-representation of Enk (G)-set.

4.3 Approaches to construction of tangential f-representations of

C-sets

In the class of convex f-representations, tangential ones have a minimal number
of components. The minimum degree of polynomial tangential f-representation is
three. In view of the fact that the minimum degree of a polynomial f-representation
is two, it becomes apparent that (E.TR) has benefits as for an order and a degree.

We shall describe some ways of constructing these f-representations. Let us
outline a general construction scheme for tangential f-representations of C-set E
that rests on properties of differentiable functions over E (further referred to as
(TR.Scheme1)).

The tangential representation will be constructed as shown below:

f1 (x) = 0, (43)

f2 (x) = 0. (44)

First, we should select the differentiable functions f1(x), f2(x) ∈ Φ(E),
f1(x) 6= f2(x) that have no singularities. This means that, in Rn,

f1(x) =
E

0, f2(x) =
E

0 (45)

determine surfaces
Sj = {x ∈ Rn : fj(x) = 0}, j = 1, 2. (46)

Second, we should check if the condition below is true:

∀x ∈ E ∃k(x) 6= 0 : ∇f2 (x)=
E
k(x) · ∇f1 (x) . (47)

Next, we should identify j ∈ J2 and solve the optimization problem using the
method of Lagrange multipliers:

fj (x) →
S3−j

extr. (48)

Suppose

Xj min = Argmin
S3−j

fj (x) , Zj min =
Xj min

fj(x);

Xj max = Argmax
S3−j

fj (x) , Zj max =
Xj max

fj(x)
(49)



16 OKSANA PICHUGINA SERGIY YAKOVLEV

is a complete solution of the problem (46).

Then the system of equations (43), (44) will be a tangential f-representation of
E if one of the conditions below holds: Xj min = E, Zj min = 0 or Xj max = E,
Zj max = 0.

(TR.Scheme1) can be applied to quite a narrow class of functions f1(x), f2(x)
that allow solving problem (46), (48) explicitly (ref. e.g., [24]).

Next we shall introduce another method (further referred to as (TR.Scheme2))
of analytic foundation of a tangential f-representation of two-level sets [8], i.e., sets
that can be decomposed exactly along two parallel hyperplanes towards the normal
vectors to facets of the correspondent polytope (17).

Theorem 6. If E is two-level, then

S2 : f0(x, 2) =
∑

F∈F

(n
′T
F x− a′F )2 − |F| = 0;

S4 : f0(x, 4) =
∑

F∈F

(n
′T
F x− a′F )4 − |F| = 0 −

is its tangential representation (further referred to as (E(2-level).TR)), where F is
a set of P -facets; n

′T
F ∈ Rn, a′F ∈ R1, n

′T
F = nF

δF
, a′F = aF

δF
for all F ∈ F.

Here is one more method for tangential f-representation construction (further
referred to as (TR.Scheme3)) that is used when equations (43), (44) can be expressed
in terms of some norm:

∃ ‖.‖(α), ∃ α1, α2 ∈ R1
+ : f1(x) = ‖x‖(α1) − 1; f2(x) = ‖x‖(α2) − 1. (50)

Correspondingly, surfaces (46) are spheres in a norm space equipped with a norm
‖.‖(αi) (further referred to as ‖.‖(αi)-spheres, i = 1, 2).

The proof of the fact that this norm is strictly monotonous with respect to α,
i.e., ∀α1, α2 ∈ R1

+, α1 6= α2 one of the conditions is true:

∀ x ∈ Rn : ‖x‖(α1) ≥ ‖x‖(α2), (51)

∀ x ∈ Rn : ‖x‖(α1) ≤ ‖x‖(α2), (52)

substantiates that (43), (44) is (E.SR). Besides, if this norm is a differentiable
function in domain K ⊃ E, then (43), (44) will be (E.TR).

In turn, it means that in case (51) true, then S1 ⊆ C2, withE = S1 ∩ ∂C2.
And in case (52) we have E = S2 ∩ ∂C1, where Ci = conv Si, i = 1, 2. In
other words, in case (51), S1 is inscribed into S2, and in case (52), S1 is circum-
scribed around S2. At that, in terms of norm ‖.‖(α), (45), (50) are expressed as:
‖x‖(α1) =

E
‖x‖(α2) =

E
1.

Theorem 7. If there is function ‖.‖(α) that is strictly monotonous with respect to
α and such that functions f1(x), f2(x) in (50) satisfy the conditions of (45), (50),
then the pair of equations (43), (44) form (E.TR).
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(TR.Scheme3) can be used to substantiate the existence of (B′
n.TR) expressed

as:

(B′
n.TR(α1, α2)) :

n
∑

i=1

xα1
i = n,

n
∑

i=1

xα2
i = n,

where 1 ≤ α1 < α2 <∞, because the scaled lp norm ‖x‖〈p〉 = 1
n
‖x‖p is monotonous

[7, 15].

(TR.Scheme2) is applied to both Bn, B
′
n, and further two-level Cb-sets, that

belong to class SSs, such as En2(G), En
n+1,2(G). When using Theorem 7 in this

case, we should note that polytopes convEn2(G), convEn
n+1,2(G) are hypercubes

with maximum two additional constraints.

Finally, (TR.Scheme1) can be used to substantiate the existence of
(B′

n.TR(α1, α2)) for even α1, α2 and to substantiate the existence of cubic (En2(G).TR)
for the cases G = {e1, e

n−1
2 } and G = {en−1

1 , e2} [24].

5 Conclusion and Further Research

The presented results form the basis for the development of Euclidean combina-
torial optimization methods [18, 23, 25, 26, 38, 39, 42, 48, 49, 51, 53–57].Theoretically,
it is of interest to develop new approaches to the construction of convex exten-
sions of functions defined on the corresponding Cb-sets. At that, it is natural to
single out various special classes of C-sets, such as sets of e-configurations of per-
mutation matrices, even, cyclic, or signed permutations, and so on. Considering
these sets as new types of Cb-sets, it is of considerable interest to single out their
special subclasses and explore properties of the classes of Cb-sets both in general
and particular cases. Expectedly, this will provide new approaches to the construc-
tion of the required convex extensions. On the other hand, we need to conduct
a comparative analysis of various continuous functional representations of C-sets,
since this greatly affects the efficiency of applied methods of Nonlinear Optimiza-
tion that use the representations. Naturally, both of these directions should be
considered integrally. Further, we intend to proceed to the study of genetic algo-
rithms for optimization problems on C-sets in view of previous research [50–52]. Of
interest are methods of parametric and multicriteria optimization on C-sets, tak-
ing into account the results of [5, 30]. We also plan to focus further research on
the development of methods for solving the problems of clustering, packing, layout,
and covering [6, 10, 16, 17, 31, 33–35, 44, 48]. Historically, it was this class of tasks,
also called the geometric design problems [?] that laid the foundation for Euclidean
Combinatorial Optimization. The problems of geometric design focus on spatial
objects having a shape, metric and placement parameters that characterize their
mutual position in space. Taken together, these characteristics determine geometric
information that induces the configurational space of geometric objects [36,45]. The
generalized variables of this space are considered as components of a vector repre-
sented a Euclidean combinatorial configuration. In turn, selecting the combinatorial
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structure in problems of placement of geometric objects [?, 39, 47] we can consider
this class of optimization problems as CO problems on C-sets.
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