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Methods of construction of Hausdorff extensions

Laurenţiu Calmuţchi

Abstract. In this paper we study the extensions of Hausdorff spaces generated by
discrete families of open sets.
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1 Introduction

Any space is considered to be a Hausdorff space. We use the terminology from [3].
For any completely regular space X denote by βX the Stone-Čech compactification
of the space X.

Fix a space X. A space eX is an extension of the space X if X is a dense
subspace of eX. If eX is a compact space, then eX is called a compactification of
the space X. The subspace eX \ X is called a remainder of the extension eX.

Denote by Ext(X) the family of all extensions of the space X. If X is a com-
pletely regular space, then by Extρ(X) we denote the family of all completely regular
extensions of the space X. Obviously, Extρ(X) ⊂ Ext(X). Let Y,Z ∈ Ext(X) be
two extensions of the space X. We consider that Z ≤ Y if there exists a continuous
mapping f : Y −→ Z such that f(x) = x for each x ∈ X. If Z ≤ Y and Y ≤ Z, then
we say that extensions Y and Z are equivalent and there exists a unique homeomor-
phism f : Y −→ Z of Y onto Z such that f(x) = x for each x ∈ X. We identify the
equivalent extensions. In this case Ext(X) and Extρ are partially ordered sets.

Let τ be an infinite cardinal. Denote by O(τ) the set of all ordinal numbers of
cardinality < τ . We consider that τ is the first ordinal number of the cardinality
τ . For any α ∈ O(τ) we put O(α) = {β ∈ O(τ) : β < α}. In this case O(τ) is well
ordered set such that |O(τ)| = τ and |O(α)| < τ for every α ∈ O(τ).

A point x ∈ X is called a P (τ)-point of the space X if for any non-empty family
γ of open subsets of X for which x ∈ ∩γ and |γ| < τ there exists an open subset U

of X such that x ∈ U ⊂ ∩γ. If any point of X is a P (τ)-point, then we say that X

is a P (τ)-space.

Any point is an ℵ0-point. If τ = ℵ1, then the P (τ)-point is called the P -point.

2 Hausdorff extensions of discrete spaces

Let τ be an infinite cardinal. Let E be a discrete space of the cardinality ≥ τ .
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A family η of subsets of E is called τ -centered if the family η is non-empty,
∩η = ∅, ∅ 6∈ η and for any subfamily ζ ⊂ η, with cardinality |ζ| < τ , there exists
l ∈ η such that L ⊂ ∩ζ.

Two families η and ζ of subsets of the space E are almost disjoint if there exist
L ∈ η and Z ∈ ζ such that L ∩ Z = ∅.

Any family of subsets is ordered by the following order: L � H if and only if
H ⊂ L. Relative to this oder some families of sets are well-ordered.

Proposition 1. Let k = |E| ≥ τ and Σ{km : m < τ} = k. Then on E there exists

a set Ω of well-ordered almost disjoint τ -centered families such that |Ω| = kτ and

|η| = τ for each η ∈ Ω.

Proof. We fix an element 0 ∈ E. For every α ∈ O(τ) we put Eα = E and 0α = 0.
Then Eτ = Π{Eα : α ∈ O(τ)}. For each x = (xα : α ∈ O(τ)) ∈ Eτ we put
φ(x) = sup{0, α : xα 6= 0α}. Obviously, 0 ≤ φ(x) ≤ τ . Let D = {x = (xα :
α ∈ O(τ)) ∈ Eτ : φ(x) < τ}. By construction, |D| = Σ{km : m < τ} = k

and |Eτ | = kτ . Since |E| = |D|, we can fix a one-to-one mapping f : E −→ D.
Fix a point x = (xα : α ∈ O(τ)) ∈ Eτ . For any β ∈ O(τ) we put V (x, β) =
{y = (yα : α ∈ O(τ)) ∈ Eτ : yα = xα for every α ≤ β} and ηx = {L(x, β) =
f−1(D ∩ V (x, β) : β ∈ 0(τ)}. Then Ω = {ηx : x ∈ Eτ} is the desired set of
τ -centered families.

Remark 1. Let |E| = k ≥ τ . Since on E there exists k mutually disjoint subsets of
cardinality τ , on E there exists a set Φ of well-ordered almost disjoint τ -centered
families such that |Φ| ≥ k and |η| = τ for each η ∈ Φ.

Fix a set Φ of almost disjoint τ -centered families of subsets of the set E. We put
eΦE = E ∪ Φ. On eΦE we construct two topologies.

Topology T s(Φ). The basis of the topology T s(Φ) is the family Bs(Φ) = {UL =
L ∪ {η ∈ Φ : H ⊂ L for some H ∈ η} : L ⊂ E}.

Topology Tm(Φ). For each x ∈ E we put Bm(x) = {{x}}. For every η ∈ Φ we
put Bm(η) = {V(η,L) = {η} ∪ L : L ∈ η}. The basis of the topology Tm(Φ) is the
family Bm(Φ) = ∪{Bm(x) : x ∈ eΦE}.

Theorem 1. The spaces (eΦE,T s(Φ)) and (eΦE,Tm(Φ)) are Hausdorff zero-

dimensional extensions of the discrete space E, and T s(Φ) ⊂ Tm(Φ)). In particular,

(eΦE,T s(Φ)) ≤ (eΦE,Tm(Φ)).

Proof. The inclusion T s(Φ) ⊂ Tm(Φ)) follows from the constructions of the topolo-
gies T s(Φ) and Tm(Φ)). If L ∈ η ∈ Φ, then η ∈ clL. Hence the set E is dense
in the spaces (eΦE,T s(Φ)) and (eΦE,Tm(Φ)). If the families η, ζ ∈ Φ are distinct,
then there exist L ∈ η and Z ∈ ζ such that L ∩ Z = ∅. Then UL ∩ UZ = ∅. If
L ⊂ E and |L| < τ , then L is an open-and-closed subset of the spaces (eΦE,T s(Φ))
and (eΦE,Tm(Φ)). Hence the topologies T s(Φ) and Tm(Φ) are discrete on E and
the spaces (eΦE,T s(Φ)) and (eΦE,Tm(Φ)) are Hausdorff extensions of the dis-
crete space E. Since the sets UL and V(η,L) are open-and-closed in the topolo-
gies T s(Φ) and Tm(Φ)), respectively, the spaces (eΦE,T s(Φ)) and (eΦE,Tm(Φ)) are
zero-dimensional.
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Theorem 2. The spaces (eΦE,T s(Φ)) and (eΦE,Tm(Φ)) are P (τ)-spaces.

Proof. Fix η ∈ Φ. If ζ ⊂ η and |ζ| < τ , then there exists L(ζ) ∈ η such that
L(ζ) ⊂ ∩ζ. From this fact immediately follows that (eΦE,Tm(Φ)) is a P (τ)-space.
Assume that {Lµ : µ ∈ M} is a family of subsets of E, |M | < τ , η ∈ Φ and
η ∈ ∩{Lµ : µ ∈ M}. Then there exists L ∈ η such that L ⊂ ∩{Lµ : µ ∈ M}. Thus
η ∈ UL ∈ ∩{ULµ

: µ ∈ M}. From this fact immediately follows that (eΦE,T s(Φ)) is
a P (τ)-space.

Corollary 1. If T s(Φ) ⊂ T ⊂ Tm(Φ)), then (eΦE,T ) is a Hausdorff extension of

the discrete space E, and (eΦE,T s(Φ)) ≤ (eΦE,T ) ≤ (eΦE,Tm(Φ)).

Theorem 3. The space (eΩE,T s(Ω)), where Ω is the set of well-ordered almost

disjoint τ -centered families from Proposition 1, is a zero-dimensional paracompact

space with character χ(eΩE,T s(Ω)) = τ and weight Σ{|E|m : m < τ}.

Proof. We consider that E = D. The family B = {{x} : x ∈ D} ∪ {V (x, β) : x ∈
Eτ , β ∈ O(τ)} is a base of the topology T s(Ω). If U, V ∈ B, then either U ⊂ V , or
V ⊂ U , or U ∩ V = ∅. From the A. V. Arhangel’skii Theorem [1] it follows that
(eΩE,T s(Ω)) is a zero-dimensional paracompact space.

3 Construction of Hausdorff extensions

Let τ be an infinite cardinal. Fix a P (τ)-space X. Let γ = {Hµ : µ ∈ M} be
a discrete family of non-empty open subsets of the space X and τ ≤ |M |. For any
µ ∈ M we fix a point eµ ∈ Uµ and a family ξµ = {H(µ,α) : α ∈ O(τ)} of open subsets
of X such that eµ ∈ ∩ξµ and H(µ,β) ⊂ H(µ,α) ⊂ Hµ for all α ∈ O(τ) and β ∈ O(α).
Then E = {eµ : µ ∈ M} is a discrete closed subspace of the space X.

Consider the Hausdorff extension rE of the space E. We put erEX = X∪(rE\E).
In erEX we construct the topology T = T (γ,E, ξµ, τ) as follows:

– we consider X as an open subspace of e(E,Y )X;
– let TX be the topology of X and TrE be the topology of the space rE;
– if V ∈ TrE , then eαV = V ∪ {H(µ,α) : eµ ∈ V };
– B = TX ∪{eαV : V ∈ TrE} is an open base of the topology T = T (γ,E, ξµ, τ).

Theorem 4. The space (e(E,Y )X,T (γ,E, ξµ, τ)) is a Hausdorff extension of the

space X.

Proof. If V,W ∈ TrE, then:
– eαW ⊂ eαV if and only if W ⊂ V ;
– eαW ∩ eαV = ∅ if and only if W ∩ tV = ∅;
– eαV ∩ rE = V .
These facts and Theorem 1 complete the proof.

Theorem 5. If rE is a P (τ)-space, then (e(E,Y )X,T (γ,E, ξµ, τ)) is a P (τ)-space
too. Moreover, χ(e(E,Y )X,T (γ,E, ξµ, τ)) = χ(X) + χ(rE) and

w(e(E,Y )X,T (γ,E, ξµ, τ)) = w(X) + w(rE).



METHODS OF CONSTRUCTION OF HAUSDORFF EXTENSIONS 91

Proof. Follows immediately from the construction of the sets eαV .

Theorem 6. Assume that the spaces rE and X are zero-dimensional, and the sets

H(µ,α) are open-and-closed in X. Then:

1. (e(E,Y )X,T (γ,E, ξµ, τ)) is a zero-dimensional space.

2. The space (e(E,Y )X,T (γ,E, ξµ, τ)) is paracompact if and only if the spaces rE

and X are paracompact.

Proof. If the set V is open-and-closed in rE and the sets H(µ,α) are open-and-
closed in X, then the sets eαV are open-and-closed in (e(E,Y )X,T (γ,E, ξµ, τ)). If
{Vλ : λ ∈ L} is a discrete cover of rE, and α(λ) ∈ O(τ), then {eα(λ)Vλ : λ ∈ L} is a
discrete family of open-and-closed sets. This fact completes the proof.
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