Methods of construction of Hausdorff extensions

Laurențiu Calmuțchi

Abstract. In this paper we study the extensions of Hausdorff spaces generated by discrete families of open sets.

Mathematics subject classification: 54D35, 54B10, 54C20, 54D40. Keywords and phrases: extension, P-space, remainder.

1 Introduction

Any space is considered to be a Hausdorff space. We use the terminology from [3]. For any completely regular space X denote by βX the Stone-Čech compactification of the space X.

Fix a space X. A space eX is an extension of the space X if X is a dense subspace of eX. If eX is a compact space, then eX is called a compactification of the space X. The subspace $eX \setminus X$ is called a remainder of the extension eX.

Denote by Ext(X) the family of all extensions of the space X. If X is a completely regular space, then by $Ext_{\rho}(X)$ we denote the family of all completely regular extensions of the space X. Obviously, $Ext_{\rho}(X) \subset Ext(X)$. Let $Y, Z \in Ext(X)$ be two extensions of the space X. We consider that $Z \leq Y$ if there exists a continuous mapping $f: Y \longrightarrow Z$ such that f(x) = x for each $x \in X$. If $Z \leq Y$ and $Y \leq Z$, then we say that extensions Y and Z are equivalent and there exists a unique homeomorphism $f: Y \longrightarrow Z$ of Y onto Z such that f(x) = x for each $x \in X$. We identify the equivalent extensions. In this case Ext(X) and Ext_{ρ} are partially ordered sets.

Let τ be an infinite cardinal. Denote by $O(\tau)$ the set of all ordinal numbers of cardinality $< \tau$. We consider that τ is the first ordinal number of the cardinality τ . For any $\alpha \in O(\tau)$ we put $O(\alpha) = \{\beta \in O(\tau) : \beta < \alpha\}$. In this case $O(\tau)$ is well ordered set such that $|O(\tau)| = \tau$ and $|O(\alpha)| < \tau$ for every $\alpha \in O(\tau)$.

A point $x \in X$ is called a $P(\tau)$ -point of the space X if for any non-empty family γ of open subsets of X for which $x \in \cap \gamma$ and $|\gamma| < \tau$ there exists an open subset U of X such that $x \in U \subset \cap \gamma$. If any point of X is a $P(\tau)$ -point, then we say that X is a $P(\tau)$ -space.

Any point is an \aleph_0 -point. If $\tau = \aleph_1$, then the $P(\tau)$ -point is called the *P*-point.

2 Hausdorff extensions of discrete spaces

Let τ be an infinite cardinal. Let E be a discrete space of the cardinality $\geq \tau$.

[©]Laurențiu Calmuţchi, 2021

A family η of subsets of E is called τ -centered if the family η is non-empty, $\cap \eta = \emptyset, \ \emptyset \notin \eta$ and for any subfamily $\zeta \subset \eta$, with cardinality $|\zeta| < \tau$, there exists $l \in \eta$ such that $L \subset \cap \zeta$.

Two families η and ζ of subsets of the space E are almost disjoint if there exist $L \in \eta$ and $Z \in \zeta$ such that $L \cap Z = \emptyset$.

Any family of subsets is ordered by the following order: $L \leq H$ if and only if $H \subset L$. Relative to this oder some families of sets are well-ordered.

Proposition 1. Let $k = |E| \ge \tau$ and $\Sigma\{k^m : m < \tau\} = k$. Then on E there exists a set Ω of well-ordered almost disjoint τ -centered families such that $|\Omega| = k^{\tau}$ and $|\eta| = \tau$ for each $\eta \in \Omega$.

Proof. We fix an element $0 \in E$. For every $\alpha \in O(\tau)$ we put $E_{\alpha} = E$ and $0_{\alpha} = 0$. Then $E^{\tau} = \prod \{ E_{\alpha} : \alpha \in O(\tau) \}$. For each $x = (x_{\alpha} : \alpha \in O(\tau)) \in E^{\tau}$ we put $\phi(x) = sup\{0, \alpha : x_{\alpha} \neq 0_{\alpha}\}$. Obviously, $0 \leq \phi(x) \leq \tau$. Let $D = \{x = (x_{\alpha} : \alpha \in O(\tau)) \in E^{\tau} : \phi(x) < \tau\}$. By construction, $|D| = \Sigma \{k^m : m < \tau\} = k$ and $|E^{\tau}| = k^{\tau}$. Since |E| = |D|, we can fix a one-to-one mapping $f : E \longrightarrow D$. Fix a point $x = (x_{\alpha} : \alpha \in O(\tau)) \in E^{\tau}$. For any $\beta \in O(\tau)$ we put $V(x, \beta) = \{y = (y_{\alpha} : \alpha \in O(\tau)) \in E^{\tau} : y_{\alpha} = x_{\alpha}$ for every $\alpha \leq \beta\}$ and $\eta_x = \{L(x, \beta) = f^{-1}(D \cap V(x, \beta) : \beta \in O(\tau)\}$. Then $\Omega = \{\eta_x : x \in E^{\tau}\}$ is the desired set of τ -centered families.

Remark 1. Let $|E| = k \ge \tau$. Since on *E* there exists *k* mutually disjoint subsets of cardinality τ , on *E* there exists a set Φ of well-ordered almost disjoint τ -centered families such that $|\Phi| \ge k$ and $|\eta| = \tau$ for each $\eta \in \Phi$.

Fix a set Φ of almost disjoint τ -centered families of subsets of the set E. We put $e_{\Phi}E = E \cup \Phi$. On $e_{\Phi}E$ we construct two topologies.

Topology $T^{s}(\Phi)$. The basis of the topology $T^{s}(\Phi)$ is the family $\mathcal{B}^{s}(\Phi) = \{U_{L} = L \cup \{\eta \in \Phi : H \subset L \text{ for some } H \in \eta\} : L \subset E\}.$

Topology $T_m(\Phi)$. For each $x \in E$ we put $B_m(x) = \{\{x\}\}$. For every $\eta \in \Phi$ we put $B_m(\eta) = \{V_{(\eta,L)} = \{\eta\} \cup L : L \in \eta\}$. The basis of the topology $T_m(\Phi)$ is the family $\mathcal{B}_m(\Phi) = \cup \{B_m(x) : x \in e_{\Phi}E\}$.

Theorem 1. The spaces $(e_{\Phi}E, T^s(\Phi))$ and $(e_{\Phi}E, T_m(\Phi))$ are Hausdorff zerodimensional extensions of the discrete space E, and $T^s(\Phi) \subset T_m(\Phi)$). In particular, $(e_{\Phi}E, T^s(\Phi)) \leq (e_{\Phi}E, T_m(\Phi)).$

Proof. The inclusion $T^s(\Phi) \subset T_m(\Phi)$) follows from the constructions of the topologies $T^s(\Phi)$ and $T_m(\Phi)$). If $L \in \eta \in \Phi$, then $\eta \in clL$. Hence the set E is dense in the spaces $(e_{\Phi}E, T^s(\Phi))$ and $(e_{\Phi}E, T_m(\Phi))$. If the families $\eta, \zeta \in \Phi$ are distinct, then there exist $L \in \eta$ and $Z \in \zeta$ such that $L \cap Z = \emptyset$. Then $U_L \cap U_Z = \emptyset$. If $L \subset E$ and $|L| < \tau$, then L is an open-and-closed subset of the spaces $(e_{\Phi}E, T^s(\Phi))$ and $(e_{\Phi}E, T_m(\Phi))$. Hence the topologies $T^s(\Phi)$ and $T_m(\Phi)$ are discrete on E and the spaces $(e_{\Phi}E, T^s(\Phi))$ and $(e_{\Phi}E, T_m(\Phi))$ and $(e_{\Phi}E, T_m(\Phi))$ are Hausdorff extensions of the discrete space E. Since the sets U_L and $V_{(\eta,L)}$ are open-and-closed in the topologies $T^s(\Phi)$ and $T_m(\Phi)$), respectively, the spaces $(e_{\Phi}E, T^s(\Phi))$ and $(e_{\Phi}E, T_m(\Phi))$ are zero-dimensional.

Theorem 2. The spaces $(e_{\Phi}E, T^s(\Phi))$ and $(e_{\Phi}E, T_m(\Phi))$ are $P(\tau)$ -spaces.

Proof. Fix $\eta \in \Phi$. If $\zeta \subset \eta$ and $|\zeta| < \tau$, then there exists $L(\zeta) \in \eta$ such that $L(\zeta) \subset \cap \zeta$. From this fact immediately follows that $(e_{\Phi}E, T_m(\Phi))$ is a $P(\tau)$ -space. Assume that $\{L_{\mu} : \mu \in M\}$ is a family of subsets of E, $|M| < \tau$, $\eta \in \Phi$ and $\eta \in \cap \{L_{\mu} : \mu \in M\}$. Then there exists $L \in \eta$ such that $L \subset \cap \{L_{\mu} : \mu \in M\}$. Thus $\eta \in U_L \in \cap \{U_{L_{\mu}} : \mu \in M\}$. From this fact immediately follows that $(e_{\Phi}E, T^s(\Phi))$ is a $P(\tau)$ -space.

Corollary 1. If $T^s(\Phi) \subset \mathcal{T} \subset T_m(\Phi)$, then $(e_{\Phi}E, \mathcal{T})$ is a Hausdorff extension of the discrete space E, and $(e_{\Phi}E, T^s(\Phi)) \leq (e_{\Phi}E, \mathcal{T}) \leq (e_{\Phi}E, T_m(\Phi))$.

Theorem 3. The space $(e_{\Omega}E, T^s(\Omega))$, where Ω is the set of well-ordered almost disjoint τ -centered families from Proposition 1, is a zero-dimensional paracompact space with character $\chi(e_{\Omega}E, T^s(\Omega)) = \tau$ and weight $\Sigma\{|E|^m : m < \tau\}$.

Proof. We consider that E = D. The family $\mathcal{B} = \{\{x\} : x \in D\} \cup \{V(x,\beta) : x \in E^{\tau}, \beta \in O(\tau)\}$ is a base of the topology $T^{s}(\Omega)$. If $U, V \in \mathcal{B}$, then either $U \subset V$, or $V \subset U$, or $U \cap V = \emptyset$. From the A. V. Arhangel'skii Theorem [1] it follows that $(e_{\Omega}E, T^{s}(\Omega))$ is a zero-dimensional paracompact space.

3 Construction of Hausdorff extensions

Let τ be an infinite cardinal. Fix a $P(\tau)$ -space X. Let $\gamma = \{H_{\mu} : \mu \in M\}$ be a discrete family of non-empty open subsets of the space X and $\tau \leq |M|$. For any $\mu \in M$ we fix a point $e_{\mu} \in U_{\mu}$ and a family $\xi_{\mu} = \{H_{(\mu,\alpha)} : \alpha \in O(\tau)\}$ of open subsets of X such that $e_{\mu} \in \cap \xi_{\mu}$ and $H_{(\mu,\beta)} \subset H_{(\mu,\alpha)} \subset H_{\mu}$ for all $\alpha \in O(\tau)$ and $\beta \in O(\alpha)$. Then $E = \{e_{\mu} : \mu \in M\}$ is a discrete closed subspace of the space X.

Consider the Hausdorff extension rE of the space E. We put $e_{rE}X = X \cup (rE \setminus E)$. In $e_{rE}X$ we construct the topology $\mathcal{T} = T(\gamma, E, \xi_{\mu}, \tau)$ as follows:

- we consider X as an open subspace of $e_{(E,Y)}X$;

- let T_X be the topology of X and T_{rE} be the topology of the space rE;

- if $V \in T_{rE}$, then $e_{\alpha}V = V \cup \{H_{(\mu,\alpha)} : e_{\mu} \in V\};$

 $-\mathcal{B} = T_X \cup \{e_{\alpha}V : V \in T_{rE}\}$ is an open base of the topology $\mathcal{T} = T(\gamma, E, \xi_{\mu}, \tau)$.

Theorem 4. The space $(e_{(E,Y)}X, T(\gamma, E, \xi_{\mu}, \tau))$ is a Hausdorff extension of the space X.

Proof. If $V, W \in T_{rE}$, then:

$$\begin{aligned} &-e_{\alpha}W \subset e_{\alpha}V \text{ if and only if } W \subset V; \\ &-e_{\alpha}W \cap e_{\alpha}V = \emptyset \text{ if and only if } W \cap tV = \emptyset; \\ &-e_{\alpha}V \cap rE = V. \end{aligned}$$

These facts and Theorem 1 complete the proof.

Theorem 5. If rE is a $P(\tau)$ -space, then $(e_{(E,Y)}X, T(\gamma, E, \xi_{\mu}, \tau))$ is a $P(\tau)$ -space too. Moreover, $\chi(e_{(E,Y)}X, T(\gamma, E, \xi_{\mu}, \tau)) = \chi(X) + \chi(rE)$ and $w(e_{(E,Y)}X, T(\gamma, E, \xi_{\mu}, \tau)) = w(X) + w(rE).$

Proof. Follows immediately from the construction of the sets $e_{\alpha}V$.

Theorem 6. Assume that the spaces rE and X are zero-dimensional, and the sets $H_{(\mu,\alpha)}$ are open-and-closed in X. Then:

1. $(e_{(E,Y)}X, T(\gamma, E, \xi_{\mu}, \tau))$ is a zero-dimensional space.

2. The space $(e_{(E,Y)}X, T(\gamma, E, \xi_{\mu}, \tau))$ is paracompact if and only if the spaces rE and X are paracompact.

Proof. If the set V is open-and-closed in rE and the sets $H_{(\mu,\alpha)}$ are open-andclosed in X, then the sets $e_{\alpha}V$ are open-and-closed in $(e_{(E,Y)}X, T(\gamma, E, \xi_{\mu}, \tau))$. If $\{V_{\lambda} : \lambda \in L\}$ is a discrete cover of rE, and $\alpha(\lambda) \in O(\tau)$, then $\{e_{\alpha(\lambda)}V_{\lambda} : \lambda \in L\}$ is a discrete family of open-and-closed sets. This fact completes the proof.

References

- ARHANGEL'SKII A.V., FILIPPOV V.V. Spaces with bases of finite rank. Matem. Sbornik 87 (1972), 147–158 (in Russian); English translation: Math. USSR Sbornik 16 (1972), 147–158.
- [2] CALMUTCHI L.I. Hausdorff extensions, The 26th Conference on Applied and Industrial Mathematics, September 20–23, 2018, Chişinău, p. 85.
- [3] ENGELKING R. General Topology. PWN, Warszawa, 1977.

LAURENŢIU CALMUŢCHI Tiraspol State University, str. Gh. Iablocikin 5, Chişinău Republic of Moldova E-mail: *lcalmutchi@gmail.com* Received September 14, 2021