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Upper Bounds for the Number of Limit Cycles for a
Class of Polynomial Differential Systems Via The

Averaging Method

S. Benadouane, A. Berbache, A. Bendjeddou

Abstract. In this paper, we study the number of limit cycles of polynomial differ-
ential systems of the form







ẋ = y

ẏ = −x − ε(h1 (x) y2α + g1 (x) y2α+1 + f1 (x) y2α+2)
− ε2(h2 (x) y2α + g2 (x) y2α+1 + f2 (x) y2α+2)

where m, n, k and α are positive integers, hi, gi and fi have degree n, m and k,
respectively for each i = 1, 2, and ε is a small parameter. We use the averaging theory
of first and second order to provide an accurate upper bound of the number of limit
cycles that bifurcate from the periodic orbits of the linear center ẋ = y, ẏ = −x. We
give an example for which this bound is reached.

Mathematics subject classification: 34C07, 34C23, 37G15.
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1 Introduction and statement of the main results

One of the main problems in the theory of ordinary differential equations is the
study of the existence of limit cycles, their number and stability. A limit cycle of
a differential equation is a periodic orbit in the set of all isolated periodic orbits of
the differential equation. The second part of the 16th Hilbert’s problem (see [8]) is
related to the least upper bound on the number of limit cycles of polynomial vector
fields having a fixed degree.

Many of the results on the limit cycles of polynomial differential systems have
been obtained by considering limit cycles that bifurcate from a single degenerate
singular point (i.e. from a Hopf bifurcation), which are called small amplitude limit
cycles, see Lloyd [14]. There are partial results concerning the maximum number
of small-amplitude limit cycles for Liénard polynomial differential systems. The
number of small-amplitude limit cycles gives a lower bound for the maximum number
of limit cycles that a polynomial differential system can have. There are many
results concerning the existence of small-amplitude limit cycles for the following
generalization of the classical Liénard polynomial differential system

ẋ = y and ẏ = −g(x) − f(x)y (1)

c©S. Benadouane, A. Berbache, A. Bendjeddou, 2021

72



UPPER BOUNDS FOR THE NUMBER OF LIMIT CYCLES 73

where f(x) and g(x) are polynomials in the variable x of degrees n and m, respec-
tively. We denote by H(m,n) and Ĥ(m,n) the maximum number of limit cycles
that system (1) can have and the maximum number of small-amplitude limit cycles
that system(1) can have, respectively. The first number is usually called Hilbert
number for system (1). Since the work of Liénard [10] to the present time several
authors have found particular values of these numbers H and Ĥ, to find a survey
about these values see [13]. The authors of [12] computed the maximum number of
limit cycles Ĥk(m,n) of system(1) that bifurcate from the periodic orbits of the lin-
ear center ẋ = y, ẏ = −x, using the averaging theory of order k. More specifically it
was found that Ĥ1(m,n) = [(n+m−1)/2]. In order to find the maximum number of
limit cycles it is interesting to know what families of system (1) have a center. This
is because we can perturb these centers and control the number of small-amplitude
limit cycles or the number of limit cycles that bifurcate from the periodic orbits of
these centers, (see [5, 6]). We recall that a singular point is a center if there is an
open neighborhood consisting, besides the singularity, of periodic orbits. The center
problem consists in determining what families of a given system have a center. For
more information about the Hilbert’s 16th problem and related topics see [9]. Now
we are citing some results about the limit cycles on Liénard differential systems
(see [12]) In 1928, Liénard proved that if m = 1 and F (x) =

∫ x

0 f(s)ds is a continu-
ous odd function, which has a unique root at x = a and is monotone increasing for
x ≥ a, then equations (1.2) have a unique limit cycle. In 1977 Lins, de Melo and
Pugh [11] stated the conjecture that if f(x) has degree n ≥ 1 and g (x) = x then
system (1) has at most [n/2] limit cycles. They prove this conjecture for n = 1, 2. In
1998 Gasull and Torregrosa [4] obtained upper bounds for Ĥ(7, 6), Ĥ(6, 7), Ĥ(7, 7)
and Ĥ(4, 20). In 2010, Llibre et al, computed the maximum number of limit cycles
Ĥk(m,n) of system (1) that bifurcate from the periodic orbits of the linear centre
ẋ = y, ẏ = −x, using the averaging theory of order k, for k = 1, 2, 3. In 2014 B.
Garca, J. Llibre, and J. S. Pérez del Rio 1001[3] using the averaging theory of first
and second order, they studied the maximum number of medium amplitude limit
cycles bifurcating from the linear center ẋ = y, ẏ = −x of the more generalized
polynomial Liénard differential systems of the form







ẋ = y
ẏ = −x − ε(h1 (x) + p1 (x) y + q1 (x) y2)

− ε2(h2 (x) + p2 (x) + q2 (x) y2)

where h1, h2, p1, q1, p2 and q2 have degree n.
In this work using the averaging theory, we study the maximum number of limit

cycles which can bifurcate from the periodic orbits of a linear center perturbed inside
the class of generalized polynomial Liénard differential equations







ẋ = y
ẏ = −x − ε(h1 (x) y2α + g1 (x) y2α+1 + f1 (x) y2α+2)

− ε2(h2 (x) y2α + g2 (x) y2α+1 + f2 (x) y2α+2)
(2)

where m,n, k and α are positive integers, hi, gi and fi have degree n,m and k,
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respectively for each i = 1, 2, and ε is a small parameter.
Let [·] denote the integer part function. Our main result is the following one.

Theorem 1. For |ε| sufficiently small, the maximum number of limit cycles of the
polynomial differential systems (2) bifurcating from the periodic orbits of the linear
center ẋ = y, ẏ = −x, using the averaging theory
(a) of first order is

λ1 =
[m

2

]

,

(b) of second order is

λ = max

{

[m

2

]

;

[

m − 1

2

]

+
[n

2

]

+ α;

[

m − 1

2

]

+

[

k

2

]

+ 1 + α

}

.

The proof of the above theorem is given in Section 3.

2 The averaging theory of first and second order

In this section we present the basic results from the averaging theory that we
shall need for proving the main results of this paper. The averaging theory up to
second order for studying specifically periodic orbits was developed in [1, 2]. It is
summarized as follows.

Consider the differential system

ẋ(t) = εF1(t, x) + ε2F2(t, x) + ε3R(t, x, ε),

where F1, F2 : R × D → R, R : R × D × (−εf , εf ) → R are continuous functions,
T−periodic in the first variable, and D is an open subset of R

n. Assume that the
following hypotheses hold.
(i) F1(t,·) ∈ C2(D), F2(t,·) ∈ C1(D) for all t ∈ R, F1, F2, R are locally Lipschitz with
respect to x, and R is twice differentiable with respect to ε.
We define Fk0 : D → R for k = 1, 2 as

F10(x) =
1

T

T
∫

0

F1(s, x)ds,

F20(x) =
1

T

T
∫

0

(DxF1(s, x)) y1(s, x) + F2(s, x)ds,

where

y1(s, x) =

s
∫

0

F1(t, x)dt.

(ii) For an open and bounded set V ⊂ D and for each ε ∈ (−εf, εf)\{0}, there
exists aε ∈ V such that F10(aε) + εF20(aε) = 0 and dB(F10 + εF20, V, aε) 6= 0.
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Then, for |ε| > 0 sufficiently small there exists a T−periodic solution x(., ε) of
the system such that x(0, ε) → aε as ε → 0.

The expression dB(F10 + εF20, V, aε) 6= 0 means that the Brouwer degree of the
function F10 +εF20 : V → R

n at the fixed point aε is not zero. A sufficient condition
of this inequality holding is that the Jacobian of the function F10 + εF20 at aε is not
zero.

If F10 is not identically zero, then the zeros of F10 + εF20 are mainly the zeros of
F10 for ε sufficiently small. In this case the previous result provides the averaging
theory of first order.

If F10 is identically zero and F20 is not identically zero, then the zeros of F10 + εF20

are mainly the zeros of F20 for ε sufficiently small. In this case the previous result
provides the averaging theory of second order.

3 Proof of Theorem 1

For the proof we shall use the first order averaging theory as it was stated in
Section 2. We write system (2) in polar coordinates (r, θ) given by x = r cos θ and
y = r sin θ. In this way, system (2) will become written in the standard form for
applying the averaging theory. If we write

h1 (x) =
n
∑

i=0

aix
i, g1 (x) =

m
∑

i=0

cix
i, f1 (x) =

k
∑

i=0

dix
i,

h2 (x) =

n
∑

i=0

Aix
i, g2 (x) =

m
∑

i=0

Cix
i, f2 (x) =

k
∑

i=0

Dix
i

then, system (2) becomes







ṙ = −εE1 (r, θ) − ε2H1 (r, θ) ,

θ̇ = −1 − ε

r
E2 (r, θ) − ε2

r
H2 (r, θ) ,

where

E1 (r, θ) =
n
∑

i=0

aihi,2α+1 (θ) r2α+i +
k
∑

i=0

dihi,2α+3 (θ) r2α+i+2+

+

m
∑

i=0

cihi,2α+2 (θ) r2α+i+1,

H1 (r, θ) =

n
∑

i=0

Aihi,2α+1 (θ) r2α+i +

k
∑

i=0

Dihi,2α+3 (θ) r2α+i+2+

+

m
∑

i=0

Cihi,2α+2 (θ) r2α+i+1,
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E2 (r, θ) =

n
∑

i=0

aihi+1,2α (θ) r2α+i +

k
∑

i=0

dihi+1,2α+2 (θ) r2α+i+2+

+

m
∑

i=0

cihi+1,2α+1 (θ) r2α+i+1,

H2 (r, θ) =

n
∑

i=0

Aihi+1,2α (θ) r2α+i + r2
k
∑

i=0

Dihi+1,2α+2 (θ) r2α+i+2+

+

m
∑

i=0

Cihi+1,2α+1 (θ) r2α+i+1,

where hi,α (θ) = cosi θ sini θ Taking θ as the new independent variable, system (2)
becomes

dr

dθ
= εF1 (r, θ) + ε2F2 (r, θ) + O

(

ε3
)

, (3)

where

F1 (r, θ) = E1 (r, θ) , (4)

F2 (r, θ) = H1 (r, θ) − 1

r
E1 (r, θ) E2 (r, θ) .

First we shall study the limit cycles of the differential equation (3) using the
averaging theory of first order. Therefore, by Section 2 we must study the simple
positive zeros of the function

F10(r) =
1

2π

2π
∫

0

F1 (r, θ) dθ.

For every one of these zeros we will have a limit cycle of the polynomial differential
system (2). If F10(r) is identically zero, applying the theory of averaging of second
order (see again Section 2) every simple positive zero of the function

F20 (r) =
1

2π

2π
∫

0





d

dr
F1 (r, θ)





θ
∫

0

F1(r, s)ds



 + F2 (r, θ)



 dθ,

will provide a limit cycle of the polynomial differential system (2).

3.1 Proof of statement (a) of Theorem 1

Taking into account the expression of (4), in order to obtain F10 is necessary to
evaluate the integrals of the form

π
∫

0

cosi θ sinj θdθ

In the following lemma we compute these integrals.
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Lemma 1. Let hi,j (θ) = cosi θ sinj θ and δi,j(θ) =
θ
∫

0

hi,j (s) ds Then

δi,j(2π) =

{

0 if i is odd or j is odd,
(j−1)(j−3)...1

(j+i)(j+i−2)...(i+2)
1

2i−1

(

i
i

2

)

π if i and j are even,
(5)

where
(

i
i

2

)

=
i!

(

i
2 !
)2

Proof. Using the integrals 12 and 13 given at the appendix with θ = 2π and taking
into account that hi,j(2π) = 0 if j 6= 0 we have that

δi,2j(2π) = (2j−1)(2j−3)...1
(2j+i)(2j+i−2)(i+2)δi,0(2π), δi,2j+1(2π) = 0. (6)

Again, using the integrals 10 and 11 given in the appendix, with θ = 2π, we have that
δ2i,0(2π) = (2i−1)(2i−3)

2ii!
2π and δ2i+1,0(2π) = 0, Substituting δ2i,0(2π) and δ2i+1,0(2π)

given as above into (6) we obtain (5). Using this lemma we shall obtain in the next
proposition the function F10(r):

Proposition 1. We have

F10(r) =
r2α+1

2π

[m

2 ]
∑

i=0

c2i δ2i,2α+2 (2π) r2i. (7a)

Proof. The function F10(r) is given by

F10(r) =
1

2π

2π
∫

0

n
∑

i=0

aihi,2α+1 (θ) r2α+idθ +
1

2π

2π
∫

0

k
∑

i=0

dihi,2α+3 (θ) r2α+i+2dθ

+
1

2π

2π
∫

0

m
∑

i=0

cihi,2α+2 (θ) r2α+i+1dθ.

Using lemma 1, we obtain

2π
∫

0

hi,2α+1 (θ) dθ =

2π
∫

0

hi,2α+3 (θ) dθ = 0, ∀i ∈ N.

Then

F10(r) =
1

2π

2π
∫

0

m
∑

i=0

cihi,2α+2 (θ) r2α+i+1dθ
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=

2π
∫

0

m
∑

i=0
i odd

cihi,2α+2 (θ) r2α+i+1 +

m
∑

i=0
i even

cihi,2α+2 (θ) r2α+i+1dθ

=

[m−1
2 ]
∑

i=0

c2i+1

2π
∫

0

h2i+1,2α+2 (θ) r2α+2i+2 +

[m

2 ]
∑

i=0

c2i

2π
∫

0

h2i,2α+2 (θ) r2α+2i+1dθ.

Again, using lemma 1, we conclude that
2π
∫

0

h2i+1,2α+2 (θ)dθ = 0, then

F10(r) =
r2α+1

2π

[m

2 ]
∑

i=0

c2iδ2i,2α+2 (2π) r2i.

From Proposition 1, the polynomial F10(r) has at most λ1 =
{[

m
2

]}

positive roots,
and we can choose c2i in such a way that F10(r) has exactly λ1 simple positive roots,
hence the statement (a) of Theorem 1 is proved.

3.2 Proof of statement (b) of Theorem 1

Now using the results stated in Section 2 we shall apply the second order aver-
aging theory to the previous differential equation. For this we put F10(r) ≡ 0, which
is equivalent to

ci = 0, for all i even. (8)

We must study the simple positive zeros of the function

F20 (r) =
1

2π

2π
∫

0





d

dr
F1 (r, θ)





θ
∫

0

F1(r, s)ds



 + F2 (r, θ)



 dθ.

We split the computation of the function F20(r) in two pieces, i.e. we define
2πF20(r) = Φ(r) + Ψ(r), where

Φ (r) =

2π
∫

0

d

dr
F1 (r, θ)





θ
∫

0

F1(r, s)ds



 dθ,

Ψ (r) =

2π
∫

0

F2 (r, θ) dθ =

2π
∫

0

(

H1 (r, θ) − 1

r
E1 (r, θ) E2 (r, θ)

)

dθ.

First we compute the integrals
2π
∫

0

δi,j(θ)hp,q(θ)dθ, in the following lemma.
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Lemma 2. Let ηp,q
i,j (2π) =

2π
∫

0

δi,j(θ)hp,q(θ)dθ. Then the following equalities hold:

a) The integral ηp,q
2i+1,0 (2π) is zero if p is odd or q is even, and is equal to

1

2i + 1

(

i−1
∑

l=0

2lj (j − 1) .... (j − l + 1)

(2i − 1) (2i − 3) ... (2i − 2l − 1)
δ2i+p+2l−2;q+1(2π)

)

+
1

2i + 1
δ2i+p;q+1(2π)

if p is even and q is odd.

b) The integral ηp,q
2i+1,2j+1 (2π) is zero if p is odd or q is odd, and is equal

to

− 1

2j + 2i + 2

(

j−1
∑

l=1

(

2lj (j − 1) .... (j − l + 1)
)

δ2i+p+2;2j−2l+q(2π)

(2j + 2i) (2j + 2i − 2) ... (2j + 2i − 2l + 2)

)

− 1

2j + 2i + 2
δ2i+p+2,2j+q(2π)

if p is even and q is even.

c) The integral ηp,q
2i,2j+1 (2π) is zero if p is even or q is odd, and is equal to

− 1

2j + 2i + 1

(

j−1
∑

l=1

(

2lj (j − 1) .... (j − l + 1)
)

δ2i+p+1;2j−2l+q(2π)

(2j + 2i − 1) (2j + 2i − 3) ... (2j + 2i − 2l + 1)

)

− 1

2j + 2i + 1
δ2i+p+1,2j+q(2π)

if p is odd and q is even.

(d) The integral ηp,q
2i+1,2j (2π) is zero if p is odd or q is even, and is equal to

− 1

2j + 2i + 1

(

j−1
∑

l=1

((2j − 1) (2j − 3) .... (2j − 2l + 1)) δ2i+p+2;2j−2l+q−1(2π)

(2j + 2i − 1) (2j + 2i − 3) ... (2j + 2i − 2l + 1)

)

− 1

2j + 2i + 1
δ2i+p+2;2j+q+1(2π)

+
(2j − 1) (2j − 3) ....1

(2j + 2i + 1) (2j + 2i − 1) ... (2i + 3)
ηp,q
2i+1,0 (2π)

if p is even and q is odd.
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Proof. Using the integral 12 of the appendix and taking into account
hi,j (θ)hp,q (θ) = hi+p,j+q (θ) , we have

ηp,q
2i+1,0 (2π) =

1

2i + 1

i−1
∑

l=0

2lj (j − 1) .... (j − l + 1)

(2i − 1) (2i − 3) ... (2i − 2l − 1)

2π
∫

0

h2i+p+2l−2;q+1(θ)dθ

+
1

2i + 1

2π
∫

0

h2i+p;q+1(θ)dθ.

By using lemma 2, statement (a) follows. Using the integral 14 of the appendix and
taking into account hi,j (θ)hp,q (θ) = hi+p,j+q (θ) , we have

ηp,q
2i+1,2j+1 (2π) = − 1

2j + 2i + 2

2π
∫

0

h2i+p+2,2j+q(θ)dθ

− 1

2j + 2i + 2









j−1
∑

l=1

2lj(j−1)....(j−l+1)
(2j+2i)(2j+2i−2)...(2j+2i−2l+2)

∗
2π
∫

0

h2i+p+2;2j−2l+q(θ)dθ









and

ηp,q
2i,2j+1 (2π) = − 1

2j + 2i + 1

2π
∫

0

h2i+p+1,2j+q(θ)dθ

− 1

2j + 2i + 1









j−1
∑

l=1

2lj(j−1)....(j−l+1)
(2j+2i−1)(2j+2i−3)...(2j+2i−2l+1)

∗
2π
∫

0

h2i+p+1;2j−2l+q(θ)dθ.









Using again lemma 2, statement (b), (c) follows. Using the integral 12 and 13 of the
appendix and taking into account hi,j (θ)hp,q (θ) = hi+p,j+q (θ) and using lemma 2,
we obtain

ηp,q
2i+1,2j (2π) =

(2j − 1) (2j − 3) ....1

(2j + 2i + 1) (2j + 2i − 1) ... (2i + 3)
ηp,q
2i+1,0 (2π)

− 1

2j + 2i + 1

∗
(

j−1
∑

l=1

((2j − 1) (2j − 3) .... (2j − 2l + 1)) δ2i+p+2;2j−2l+q−1(2π)

(2j + 2i − 1) (2j + 2i − 3) ... (2j + 2i − 2l + 1)

)

− 1

2j + 2i + 1
(δ2i+p+2;2j+q+1(2π)) .

Hence statement (d) of lemma 2 is proved.
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Proposition 2. The integral Φ (r) can be expressed by

Φ (r) = r4α+1P1

(

r2
)

.

where P1

(

r2
)

is a polynomial in the variable r2 of degree

λ2 = max

{

[n

2

]

+

[

m − 1

2

]

;

[

k

2

]

+

[

m − 1

2

]

+ 1

}

.

Proof. First, we have

F1 (r, θ) =
n
∑

i=0
i odd

aihi,2α+1 (θ) r2α+i +
k
∑

i=0
i odd

dihi,2α+3 (θ) r2α+i+2

+
m
∑

i=0
i odd

cihi,2α+2 (θ) r2α+i+1 +
n
∑

i=0
i even

aihi,2α+1 (θ) r2α+i

+

k
∑

i=0
i even

dihi,2α+3 (θ) r2α+i+2 +

m
∑

i=0
i even

cihi,2α+2 (θ) r2α+i+1

=

[n−1
2 ]
∑

i=0

a2i+1h2i+1,2α+1 (θ) r2α+2i+1 +

[n

2 ]
∑

i=0

a2ih2i,2α+1 (θ) r2α+2i

+

[k−1
2 ]
∑

i=0

d2i+1h2i+1,2α+3 (θ) r2α+2i+3 +

[ k

2 ]
∑

i=0

d2ih2i,2α+3 (θ) r2α+2i+2

+

[m−1
2 ]
∑

i=0

c2i+1h2i+1,2α+2 (θ) r2α+2i+2.

Next we calculate the terms of this integral. First we have that

d

dr
F1 (r, θ) =

[n−1
2 ]
∑

i=0

(2α + 2i + 1) a2i+1h2i+1,2α+1 (θ) r2α+2i

+

[k−1
2 ]
∑

i=0

(2α + 2i + 3) d2i+1h2i+1,2α+3 (θ) r2α+2i+2

+

[m−1
2 ]
∑

i=0

(2α + 2i + 2) c2i+1h2i+1,2α+2 (θ) r2α+2i+1

+

[n

2 ]
∑

i=0

(2α + 2i) a2ih2i,2α+1 (θ) r2α+2i−1
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+

[k

2 ]
∑

i=0

(2α + 2i + 2) d2ih2i,2α+3 (θ) r2α+2i+1

Then

θ
∫

0

F1(r, s)ds =

[n−1
2 ]
∑

i=0

a2i+1δ2i+1,2a+1 (θ) r2α+2i+1

+

[ k−1
2 ]
∑

i=0

d2i+1δ2i+1,2α+3 (θ) r2α+2i+3

+

[m−1
2 ]
∑

i=0

c2i+1δ2i+1,2α+2 (θ) r2α+2i+2

+

[n

2 ]
∑

i=0

a2iδ2i,2α+1 (θ) r2α+2i

+

[k

2 ]
∑

i=0

d2iδ2i,2α+3 (θ) r2α+2i+2.

By using lemma 2, from the 25 main products of Φ (r) only the following 4 are not
zero when we integrate them between 0 and 2π. So the terms of Φ (r) which will
contribute to F20(r) are :

Φ (r) =

[n

2 ]
∑

i=0

[m−1
2 ]
∑

p=0

(2α + 2i) a2ic2p+1η
2i,2α+1
2p+1,2α+2 (2π) r4α+2i+2p+1

+

[k

2 ]
∑

i=0

[m−1
2 ]
∑

p=0

(2α + 2i + 2) d2ic2p+1η
2i,2α+3
2p+1,2α+2 (2π) r4α+2i+2p+3

+

[m−1
2 ]
∑

i=0

[n

2 ]
∑

p=0

(2α + 2i + 2) c2i+1a2pη
2i+1,2α+2
2p,2α+1 (2π) r4α+2i+2p+1

+

[m−1
2 ]
∑

i=0

[k

2 ]
∑

p=0

(2α + 2i + 2) c2i+1d2pη
2i+1,2α+2
2p,2α+3 (2π) r4α+2i+2p+3

= r4α+1P1

(

r2
)

where P1 is polynomial in the variable r2 of degree λ2,

λ2 = max

{[

m − 1

2

]

+
[n

2

]

;

[

m − 1

2

]

+

[

k

2

]

+ 1

}

.
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Finally, we obtain Φ (r) is a polynomial in the variable r2 of the form

Φ (r) = r4α+1P1

(

r2
)

.

This completes the proof of the Proposition 2.

In order to complete the computation of F20(r) we must determine the function
Ψ(r).

Proposition 3. The integral Ψ(r) can be expressed by

Ψ(r) = r2α+1
(

P2

(

r2
)

+ r2αP3

(

r2
))

where P2

(

r2
)

is a polynomial in the variable r2 of degree

λ1 =
[m

2

]

,

P3

(

r2
)

is a polynomial in the variable r2 of degree

λ3 = max

{[

m − 1

2

]

+
[n

2

]

;

[

m − 1

2

]

+

[

k

2

]

+ 1

}

.

Proof. Firstly we calculate,

2π
∫

0

H1 (r, θ) dθ =

n
∑

i=0

Air
2α+i

2π
∫

0

hi,2α+1 (θ)dθ +

k
∑

i=0

Dir
2α+i+2

2π
∫

0

hi,2α+3 (θ) dθ

+

m
∑

i=0

Cir
2α+i+1

2π
∫

0

hi,2α+2 (θ) dθ.

Using lemma 2, we conclude that
2π
∫

0

hi,2α+1 (θ) dθ =
2π
∫

0

hi,2α+3 (θ) dθ = 0, and we

have

2π
∫

0

H1 (r, θ) dθ =

m
∑

i=0
i even

Cir
2α+i+1

2π
∫

0

hi,2α+2 (θ) dθ =

[ m

2
]

∑

i=0

Cir
2α+i+1

2π
∫

0

hi,2α+2 (θ) dθ.

Then

2π
∫

0

H1 (r, θ) dθ = π

[ m

2
]

∑

i=0

C2iδ2i,2α+2 (2π) r2α+2i+1

= r2α+1P2

(

r2
)

where P2 is a polynomial in the variable r2 of degree λ1.
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Finally, we shall study the contribution of the second part
2π
∫

0

1
r
E1 (r, θ) E2 (r, θ) dθ

of F2 (r, θ) to F20(r). Using the expressions of E1 (r, θ) and E2 (r, θ) and taking into
account that ci = 0 for all i even, we have :

E1 (r, θ) =
[n−1

2 ]
∑

i=0
a2i+1h2i+1,2α+1 (θ) r2α+2i+1 +

[k−1
2 ]
∑

i=0
d2i+1h2i+1,2α+3 (θ) r2α+2i+3

+
[m−1

2 ]
∑

i=0
c2i+1h2i+1,2α+2 (θ) r2α+2i+2 +

[n

2 ]
∑

i=0
a2ih2i,2α+1 (θ) r2α+2i

+
[k

2 ]
∑

i=0
d2ih2i,2α+3 (θ) r2α+2i+2

and

E2 (r, θ) =
[n−1

2 ]
∑

p=0
a2p+1h2p+2,2α (θ) r2α+2p+1 +

[k−1
2 ]
∑

p=0
d2p+1h2p+2,2α+2 (θ) r2α+2p+3

+
[m−1

2 ]
∑

p=0
c2p+1h2p+2,2α+1 (θ) r2α+2p+2 +

[n

2 ]
∑

p=0
a2ph2p+1,2α (θ) r2α+2p

+
[k

2 ]
∑

p=0
d2ph2p+1,2α+2 (θ) r2α+2p+2.

Using Lemma 2, from the 25 main products of
2π
∫

0

1
r
E1 (r, θ) E2 (r, θ) dθ, only the

following 4 are not zero when we integrate them between 0 and 2π, So the terms
which will contribute to F20 (r) are

2π
∫

0

1
r
E1 (r, θ)E2 (r, θ) dθ =

[n

2 ]
∑

i=0

[m−1
2 ]
∑

p=0
a2ic2p+1δ2i+2p+2,4α+2 (2π) r4α+2i+2p+1

+
[k

2 ]
∑

i=0

[m−1
2 ]
∑

p=0
d2ic2p+1δ2i+2p+2,4α+2 (2π) r4α+2i+2p+3

+
[m−1

2 ]
∑

i=0

[n

2 ]
∑

p=0
c2i+1a2pδ2i+2p+2,4α+2 (2π) r4α+2i+2p+1

+
[m−1

2 ]
∑

i=0

[k

2 ]
∑

p=0
c2i+1d2pδ2i+2p+2,4α+2 (2π) r4α+2i+2p+3

= r4α+1P3

(

r2
)

where P3 is a polynomial in the variable r2 of degree

λ3 = max

{[

m − 1

2

]

+
[n

2

]

;

[

m − 1

2

]

+

[

k

2

]

+ 1

}

.

Then, we obtain Ψ(r) is a polynomial in the variable r2

Ψ(r) = r2α+1
(

P2

(

r2
)

+ r2αP3

(

r2
))
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of degree

λΨ(r) = max {λ1, λ3 + α} .

Finally, we obtain F20(r) is a polynomial in the variable r2 of the form

F20(r) =
r2α+1

2π

(

r2αP1

(

r2
)

+ P2

(

r2
)

+ r2αP3

(

r2
))

.

To find the real positive roots of F20 we must find the zeros of a polynomial in
r2 of degree λ = max{λ1, λ2 + α, λ3 + α}. This yields that F20 has at most λ real
positive roots. Hence, Theorem 1 is proved. Moreover, we can choose the coefficients
ai,ci, di,Ai,Ci,Di in such a way that F20 has exactly λ real positive roots. This
completes the proof of Theorem 1.

4 Example

We consider the differential system 2 with k = n = 1,m = 3, α = 1















ẋ = y,

ẏ = −x − ε(
(

−118
65 + x

)

y2 +
((

− 13
427x + 1

61x3
))

y3 + (1 + x) y4)
−ε2

((

−1 − 1
4x
)

y2 +
(

1
80 + 967

34 160x2 + 1
8x3
)

y3 − xy4
)

(9)

An easy computation shows that F10(r) is identically zero, so to look for the
limit cycles, we must solve the equation F20(r) = 0 which is equivalent to

− 1

1280
r3
(

r6 − 6r4 + 11r2 − 6
)

= 0

This equation has exactly three positive roots r1 = 1, r2 =
√

2, r3 =
√

3. According
with Theorem 1, that system (9) has exactly three limit cycles bifurcating from the
periodic orbits of the linear center ẋ = y, ẏ = −x.

5 Appendix

In this appendix, we recall some formulas used during this article; for more
details see [7]. For i ≥ 0 and j ≥ 0, we have

θ
∫

0

cosi s sinj sds =
cosi−1 θ sinj+1 θ

i + j
+

i − 1

i + α

θ
∫

0

cosi−2 s sinj sds (10)

=
cosi−1 θ sinj+1 θ

i + j
+

α − 1

i + α

θ
∫

0

cosi s sinj−2 sds,
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θ
∫

0

cos2i sds =
sin θ

2i

i−1
∑

l=1

(2i − 1) (2i − 3) .... (2i − 2l + 1)

2l (i − 1) (i − 2) . (i − l)
cos2i−2l−1 θ (11)

+
sin θ

2i
cos2i−1 θ +

(2i − 1) (2i − 3) ....1

2ii!
θ

=
1

22i−1

i−1
∑

l=0

(

2i
l

)

sin 2 (i − l) θ

2 (i − l)
+

1

22i

(

2i
i

)

θ,

θ
∫

0

cos2i+1 sds =
sin θ

2i + 1

i−1
∑

l=1

2l+1i (i − 1) ..... (i − l)

(2i − 1) (2i − 3) .... (2i − 2l − 1)
cos2i−2l−2 θ (12)

+
sin θ

2i + 1
cos2i θ

=
1

22i

i−1
∑

l=0

(

2i + 1
l

)

sin (2i − 2l + 1) θ

(2i − 2l + 1)
,

where

(

2i
p

)

= 2i!
p!(2i−p)!

θ
∫

0

cosi s sin2j sds (13)

= −cosi+1 θ

2j + 1

j−1
∑

l=1

(2j − 1)(2j − 3)...(2j − 2l + 1)

(2j + i − 2)(2j + i − 4)...(2j + i − 2l)
sin2j−2l−1 θ

+
(2j − 1)(2j − 3)...1

(2j + i)(2j + i − 2)...(i + 2)

θ
∫

0

cosi sds,

θ
∫

0

cosi s sin2j+1 sds (14)

= − cosi+1 θ

2j + i + 1

j−1
∑

l=1

2lj (j − 1) ..... (j − l + 1)

(2j + i − 1)(2j + i − 3)...(2j + i − 2l + 1)
sin2j−2l θ

− cosi+1 θ

2j + i + 1
sin2α θ.
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[3] Garca B., Llibre J., Pérez del Rio J.S. Limit cycles of generalized Liénard polynomial

differential systems via averaging theory. Chaos Solitons and Fractals, 62–63 (2014), 1–9.

[4] Gasull A., Torregrosa J. Small-amplitude limit cycles in Lienard systems via multiplicity.
J. Differ. Equations, No. 1, 159 (1999), 186–211.
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E-mail: azizaberbache@hotmail.fr

Ahmed Bendjeddou

Laboratory of Applied Mathematics, Department of
Mathematics, University Ferhat Abbas Sétif
E-mail: bendjeddou@univ-setif.dz

Received July 28, 2020


