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Second order state-dependent sweeping process with

unbounded perturbation

Doria Affane, Nora Fetouci and Mustapha Fateh Yarou

Abstract. We establish, in the setting of an infinite dimensional Hilbert space,
results concerning the existence of solutions of second order ”nonconvex sweeping
process” for a class of uniformly prox-regular sets depending on time and state. The
perturbation considered here is general and takes the form of a sum of a single-valued
Carathéodory mapping and a set-valued unbounded mapping. We deal also with a
delayed perturbation, that is the external forces applied on the system in presence
of a finite delay. We extend a discretization approach known for the time-dependent
case to the time and state-dependent sweeping process.

Mathematics subject classification: 34A60, 49J53 .
Keywords and phrases: Differential inclusion, uniformly prox-regular sets, un-
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1 Introduction

The second order perturbed state-dependent nonconvex sweeping process has
been a particular attraction for many authors during the last years, it takes the
following form: let H be a Hilbert space, T0 and T be two non-negative real numbers
with 0 ≤ T0 < T, and D(t, x) be a nonempty closed subset of H for each t ∈ [T0, T ]
and x ∈ H. Given b ∈ H and a ∈ D(T0, b), we have to find two absolutely continuous
mappings u, v : [T0, T ] satisfying

(PF )















−u̇(t) ∈ ND(t,v(t))(u(t)) + F (t, v(t), u(t)), a.e. t ∈ [T0, T ]

v(t) = b+

∫ t

T0

u(s)ds, u(t) = a+

∫ t

T0

u̇(s)ds, ∀t ∈ [T0, T ],

u(t) ∈ D(t, v(t)), ∀t ∈ [T0, T ],

where ND(t,v(t))(u(t)) denotes the normal cone to D(t, v(t)) at the point u(t),
F : [T0, T ] ×H ×H ⇁ H is a set-valued mapping. Such problem is an extension of
the so-called Moreau’s sweeping process for Lagrangian system to frictionless unilat-
eral constraints. The differential inclusion (PF ) was studied for the first time when
the sets D(t, v(t)) are convex and compact and F ≡ 0 by [9], then by [17] and [21].
The nonconvex case has been considered by [16], the authors proved the existence
of solutions to (PF ) for uniformly prox-regular sets D(t, v(t)) with absolutely con-
tinuous variation in space and Lipschitz variation in time and with a single-valued
perturbation. By means of a generalized version of the Shauder’s theorem, [12]
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provided another approach to prove the existence for uniformly prox regular and
ball-compact sets D(t, v(t)) with absolutely continuous variation in time, without
perturbation and for the perturbed problem (even in presence of a delay). The ex-
istence of solution for such problem is established by proving the convergence of the
Moreau’s catching-up algorithm. For other approaches, we refer to [1–6,11,24,25].

Our main purpose in this paper is to study, in an infinite dimensional Hilbert
space, the second order sweeping process with two perturbations

(P)















−u̇(t) ∈ ND(t,v(t))(u(t)) + F (t, v(t), u(t)) + f(t, v(t), u(t)), a. e. t ∈ [T0, T ];

v(t) = b+

∫ t

T0

u(s)ds; u(t) = a+

∫ t

T0

u̇(s)ds, ∀t ∈ [T0, T ];

u(t) ∈ D(t, v(t)), ∀t ∈ [T0, T ],

where F : [T0, T ] × H × H ⇁ H is an upper semicontinuous set-valued map with
nonempty closed convex values unnecessarily bounded and without any compactness
condition and f : [T0, T ] ×H ×H → H is a Carathéodory mapping satisfying the
linear growth condition. This work is motivated by the recent results obtained for the
same problem by [20] and [22], where reduction approaches have been used. In [20],
only a single-valued ”Lipschitz” perturbation is considered, the authors reduced the
problem for second order time and state-dependent sweeping process to a first order
time-dependent one. They make use of the Shauder’s fixed point argument in the
line of the approach of [16]. Whereas the reduction approach of [22] is valid only
in finite dimensional setting. Our aim in this paper is to generalize all the results
obtained in the two cases, using a different approach, we weaken the hypotheses
on the perturbation by taking a Carathéodory mapping satisfying a linear growth
condition and an unbounded set-valued perturbation for which only the element of
minimum norm satisfies a linear growth condition.

On the other hand, we extend another reduction approach, known for the time-
dependent sweeping process in presence of delay; it consists to reduce a second order
sweeping process with delayed perturbation to a problem without delay. We show
that this approach is still valid in the case of time and state-dependent sweeping
process. The paper is organized as follows. In Section 2, we recall some basic
notations, definitions and useful results which are used throughout the paper. In
Section 3, we provide the existence results for the problem (P). The delayed problem
is studied in the last section.

2 Notation and Preliminaries

We begin with some notations used in the paper. Let H be a real separable
Hilbert space whose inner product is denoted by 〈·, ·〉, and the associated norm
by ‖ · ‖. We denote by BH the unit closed ball of H, L([T0, T ]) the σ-algebra of
Lebesgue measurable subsets of [T0, T ] and by B(H) the Borel tribe on H. We de-
note also by L1

H([T0, T ]) the space of all Lebesgue-Bochner integrable H-valued map-
pings defined on [T0, T ], by CH([T0, T ]) the Banach space of all continuous mappings
u : [T0, T ] → H endowed with the norm of uniform convergence.
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For any nonempty closed subset S, S′ of H, we denote by:
• d(·, S) the usual distance function associated with S;
• δ∗(x′, S) = sup

y∈S

〈x′, y〉 the support function of S at x′ ∈ H. If S is closed convex

subset d(x, S) = sup
x′∈BH

(

〈x′, x〉 − δ∗(x′, S)
)

;

• ProjS(u) the projection of u onto S defined by

ProjS(u) = {y ∈ S : d(u, S) = ‖u− y‖},

is unique whenever S is closed convex;
• H the Hausdorff distance between S and S′, defined by

H(S, S′) = max{sup
u∈S

d(u, S′), sup
v∈S′

d(v, S)};

• co(S) the convex hull of S and co(S) its closed convex hull, characterized by

co(S) = {x ∈ H : ∀x′ ∈ H, 〈x′, x〉 ≤ δ∗(x′, S)}.

Recall that f : [T0, T ] × H → H is called a Carathéodory mapping if f(·, u) is
measurable on [T0, T ] for all u ∈ H and f(t, ·) is continuous onH for every t ∈ [T0, T ].
A set-valued mapping G : H → H is called :
• upper semicontinuous if, for any open subset V ⊂ H, the set {x ∈ H : G(x) ⊂ V}
is open in H;
• scalarly upper semicontinuous on H if for every h ∈ H, δ∗(h,G(·)) is upper
semicontinuous on H.

We need in the sequel to recall some definitions and results that will be used
throughout the paper. Let A be an open subset of H and ϕ : A → (−∞,+∞]
be a lower semicontinuous function, the proximal subdifferential ∂Pϕ(x), of ϕ at x
(see [19]) is the set of all proximal subgradients of ϕ at x, any ξ ∈ H is a proximal
subgradient of ϕ at x if there exist positive numbers η and ς such that

ϕ(y) − ϕ(x) + η‖y − x‖2 ≥ 〈ξ, y − x〉, ∀y ∈ x+ ςBH .

Let x be a point of S ⊂ H, we recall (see [19]) that the proximal normal cone to S
at x is defined by NP

S (x) = ∂P ΨS(x), where ΨS denotes the indicator function of S,
i.e. ΨS(x) = 0 if x ∈ S and +∞ otherwise. Note that the proximal normal cone is
also given by

NP
S (x) = {ξ ∈ H : ∃̺ > 0 s.t. x ∈ ProjS(x+ ̺ξ)}.

When S is a closed set one has ∂P d(x, S) = NP
S (x) ∩ BH .

If ϕ is a real-valued locally-Lipschitz function defined onH, the Clarke subdifferential
∂Cϕ(x) of ϕ at x is the nonempty convex compact subset of H given by

∂Cϕ(x) = {ξ ∈ H : ϕ◦(x; v) ≥ 〈ξ, v〉,∀v ∈ H},
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where

ϕ◦(x; v) = lim
y→x,

sup
t↓0

ϕ(y + tv) − ϕ(y)

t

is the generalized directional derivative of ϕ at x in the direction v (see [19]). The
Clarke normal cone NC

S (x) to S at x ∈ S is defined by polarity with TC
S , that is,

NC
S (x) = {ξ ∈ H : 〈ξ, v〉 ≤ 0, ∀v ∈ TC

S },

where TC
S denotes the clarke tangent cone, and is given by

TC
S = {v ∈ H : d◦(x, S; v) = 0}.

Recall now, that for a given r ∈]0,+∞] the subset S is uniformly r-prox-regular
(see [19]) or equivalently r-proximally smooth ([23]) if and only if for all x ∈ S and
all 0 6= ξ ∈ NP

S (x) one has

〈
ξ

‖ξ‖
, x− x〉 ≤

1

2r
‖x− x‖2,

for all x ∈ S. We make the convention 1
r

= 0 for r = +∞. Recall that for r = +∞ the
uniform r-prox-regularity of S is equivalent to the convexity of S. It’s well known
that the class of uniformly r-prox-regular sets is sufficiently large to include the
class of convex sets, p-convex sets, C1,1 submanifolds (possibly with boundary) of
a Hilbert space and many other nonconvex sets (see [15, 20]). Furthermore, the
following properties hold for a closed uniformly r-prox-regular set S:
• for any NP

S (x) = NC
S (x) = NS(x);

• the proximal subdifferential of d(., S) coincides with its Clarke subdifferential at
all points x ∈ H satisfying d(x, S) < r;
• for all x ∈ H with d(x, S) < r, ProjS(x) is a singleton of H.

The next proposition provides an upper semicontinuity property of the sup-
port function of the proximal subdifferential of the distance function to uniformly
r-prox-regular sets.

Proposition 1. Let D : [T0, T ]×H ⇁ H be a uniformly r-prox regular closed valued

mapping satisfying

|d(u,D(t, x)) − d(v,D(s, y))| ≤ ||u− v|| + v(t) − v(s) + L||x− y||

for all u, x, v, y in H and for all s ≤ t in [T0, T ], where v : [T0, T ] → R+ is a

nondecreasing absolutely continuous function and L is a positive constant. Then the

convex weakly compact valued mapping (t, x, y) → ∂pd(y,D(t, x)) satisfies the upper

semicontinuity property: let (tn, xn) be a sequence in [T0, T ]×H converging to some

(t, x) ∈ [T0, T ] × H, and (yn) be a sequence in H with yn ∈ D(tn, xn) for all n,

converging to y ∈ D(t, x), then, for any z ∈ H,

lim sup
n→∞

δ∗(z, ∂pd(yn,D(tn, xn))) ≤ δ∗(z, ∂pd(y,D(t, x))).
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3 Main results

The following assumption will be useful.
Assumption 1: Let D : [T0, T ]×H → H be a set-valued mapping with nonempty
closed and uniformly r-prox regular values such that:

(A1) There is a positive constant L and a nondecreasing absolutely continuous func-
tion ζ : [T0, T ] → R+ such that, for all s ≤ t in [T0, T ] and xi, yi ∈ H(i = 1, 2),

|d
(

x1,D(t, y1)
)

− d
(

x2,D(s, y2)
)

| ≤ ‖x1 − x2‖ + ζ(t) − ζ(s) + L‖y1 − y2‖;

(A2) for all (t, x) ∈ [T0, T ] ×H, D(t, x) is contained in a compact set Γ.

Let us start with an existence result for second order state-dependent sweeping
process without perturbations, it will be used in the next theorem. The proof is
a careful adaptation of Theorem 3.2 and 3.4 in [12]. Remark that, here the sets
D(t, u) are with absolutely continuous variation in time while in Theorem 3.2 of [12]
the variation in time is Lipschitz.

Theorem 1. Assume that Assumption 1 holds. Then, for every b ∈ H and for

every a ∈ D(T0, b), there exist two absolutely continuous mappings u : [T0, T ] → H

and v : [T0, T ] → H satisfying















−u̇(t) ∈ ND(t,v(t))(u(t)), a.e. t ∈ [T0, T ];

v(t) = b+

∫ t

T0

u(s)ds, u(t) = a+

∫ t

T0

u̇(s)ds, ∀t ∈ [T0, T ];

u(t) ∈ D(t, v(t)), ∀t ∈ [T0, T ],

with

‖u̇(t)‖ ≤ ζ̇(t)(1 + Lα) a.e. t ∈ [T0, T ].

Proof. By assumption (A2), for some α > 0 we have D(t, x) ⊂ Γ ⊂ αBH . Consider
a partition of [T0, T ] by the points tnk = T0 + ken, en = T−T0

n
, k ∈ {0, 1, 2, ..., n} and

set
σn

k = ζ(tnk+1) − ζ(tnk)

and
σn = max

0≤k≤n−1
σn

k .

As the sequences (σn) and (en) converge to 0, one can fix a positive integer n0 such
that for any n ≥ n0

(σn + en)(1 + Lα) < r.

Construction of approximate solutions: For each t ∈ [tn0 , t
n
1 ], we define

vn(t) = b+ (t− tn0 )a

un(t) = xn
0 +

ζ(t) − ζ(tn0 )

σn
0 + en

(xn
1 − xn

0 ),
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where xn
0 = a ∈ D(T0, b) and xn

1 = ProjD(tn1 ,vn(tn1 ))(x
n
0 ). Despite the absence of the

convexity of the images of D, the last equality is well defined. Indeed, we have

d(xn
0 ,D(tn1 , vn(tn1 ))) = |d(xn

0 ,D(tn0 , vn(tn0 ))) − d(xn
0 ,D(tn1 , vn(tn1 )))|

≤ ζ(tn1 ) − ζ(tn0 ) + L‖vn(tn1 ) − vn(tn0 )‖

≤ σn
0 + Len‖x

n
0‖ ≤ (σn + en)(1 + Lα) ≤ r.

Hence vn(tn0 ) = b, un(tn0 ) = a and for t ∈]tn0 , t
n
1 [, we have v̇n(t) = a and

u̇n(t) = ζ̇(t)
xn

1 − xn
0

σn
0 + en

∈ −ND(tn1 ,vn(tn1 ))(x
n
1 ),

with
‖u̇n(t)‖ ≤ ζ̇(t)(1 + Lα).

By induction, suppose that (vn), (un) are well defined on ]tn0 , t
n
k ] with un(tnk) = xn

k

and ‖u̇n(t)‖ ≤ ζ̇(t)(1 + Lα). For each t ∈]tnk , t
n
k+1], we define

vn(t) = vn(tnk) + (t− tnk)un(tnk)

and

un(t) = xn
k +

ζ(t) − ζ(tnk)

σn
k + en

(xn
k+1 − xn

k),

where xn
k+1 = ProjD(tn

k+1,vn(tn
k+1))(x

n
k) and d(xn

k ,D(tnk+1, vn(tnk+1))) ≤ r.

Then for t ∈]tnk , t
n
k+1], we have v̇n(t) = un(tnk) and

u̇n(t) = ζ̇(t)
xn

k+1 − xn
k

σk
n + en

∈ −ND(tn
k+1,vn(tn

k+1))(x
n
k+1),

with
‖u̇n(t)‖ ≤ ζ̇(t)(1 + Lα) and ‖v̇n(t)‖ ≤ α.

Defining for each t ∈ [T0, T ] and each n ≥ n0,

pn(t) =

{

tnk if t ∈ [tnk , t
n
k+1[

T if t = T ;

qn(t) =

{

T0 if t = T0

tnk+1 if t ∈]tnk , t
n
k+1],

we get
u̇n(t) ∈ −ND(qn(t),vn(qn(t)))(un(qn(t))) a.e. [T0, T ];

un(qn(t)) ∈ D(qn(t), vn(qn(t)), ∀[T0, T ];

vn(t) = b+

∫ t

T0

un(pn(s))ds, ∀[T0, T ];

lim
n→∞

pn(t) = lim
n→∞

qn(t) = t, ∀[T0, T ];
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‖v̇n(t)‖ = ‖un(pn)(t))‖ = ||xn
k || ≤ α, ∀ k ≤ n, ∀t ∈ [T0, T ]

and
‖u̇n(t)‖ ≤ ζ̇(t)(1 + Lα) = ρ(t). (1)

Thus
lim

n→∞
||un(pn(t)) − un(t)|| = 0. (2)

Convergence of approximate sequences:

We have un(pn(t)) ∈ D(pn(t), vn(pn(t))) ⊂ Γ, so that; un(pn(t)) is relatively compact
for every t ∈ [T0, T ] in H, so is (un(t)) thanks to (2). By (1), (un(·)) is equicontin-
uous. Thus (un) is relatively compact in CH([T0, T ]), consequently (un) converges
in CH([T0, T ]) to the absolutely continuous mapping u. By (1) again, (u̇n) weakly
converges in L1

H [T0, T ] to a function z with ‖z(t) ≤ ρ(t) a.e. in [T0, T ] (see Proposi-
tion 6.2.3 in [10]) and (un) converges pointwise on [T0, T ] with respect to the weak
topology to an absolutely continuous function u and

u(t) = a+

∫ t

T0

u̇(s)ds, ∀[T0, T ]

with u̇ = z. From the convergence of (un) we deduce that of (vn) to an absolutely
continuous function v with

v(t) = b+

∫ t

0
u(s)ds, ∀[T0, T ].

For the rest of the demonstration we can consult the proof of Theorem 2 below.

Now, we give the main result in this section.

Theorem 2. Assume that Assumption 1 holds. Let F : [T0, T ] ×H ×H ⇁ H be a

set-valued map with nonempty closed convex values such that:

(AF1) F is L([T0, T ]) ⊗ B(H) ⊗ B(H)-measurable and for all t ∈ [T0, T ], F (t, ·, ·) is

scalarly upper semicontinuous on H ×H;

(AF2) there exists a real β > 0, such that, for all (t, u, v) ∈ [T0, T ] ×H ×H,

d(0, F (t, u, v)) ≤ β(1 + ‖u‖ + ‖v‖).

And let f : [T0, T ] ×H ×H → H be a Carathéodory mapping satisfies

(Af ) there exists a non-negative function γ ∈ L1
R+([T0, T ]) such that, for all

t ∈ [T0, T ] and for all (u, v) ∈ H ×H,

‖f(t, u, v)‖ ≤ γ(t)(1 + ‖u‖ + ‖v‖).

Then, for any a, b ∈ H with a ∈ D(T0, b), there exist two absolutely continuous

mappings u, v : [T0, T ] → H satisfying (P).
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Proof. Step 1. We begin by a single-valued integrable mapping m ∈ L1
H([T0, T ]).

Put for all t ∈ [T0, T ],

m1(t) =

∫ t

T0

m(s)ds and m2(t) =

∫ t

T0

m1(s)ds

and consider the set-valued map C : [T0, T ] ×H ⇁ H defined by

C(t, z) = D(t, z −m2(t)) +m1(t) ∀ (t, z) ∈ [T0, T ] ×H.

Obviously, C satisfies (A2), let verify (A1). For any w1, w2, z1, z2 in H and any
s ≤ t in [T0, T ], we have

|d(w1, C(t, z1)) − d(w2, C(s, z2))|

= |d(w1 −m1(t),D(t, z1 −m2(t))) − d(w2 −m1(s),D(s, z2 −m2(s)))|

≤ ‖w1 − w2‖ + ‖m1(t) −m1(s)‖ + L‖m2(t) −m2(s)‖ + ζ(t) − ζ(s) + L‖z1 − z2‖

≤ ‖w1 − w2‖ + ζ1(t) − ζ1(s) + L‖z1 − z2‖

where

ζ1(t) =

∫ t

T0

(

ζ̇(ω) + ‖m(ω)‖ + L

∫ ω

T0

‖m(τ)‖dτ
)

dω

is an absolutely continuous nondecreasing mapping. Hence, C satisfies (A1), as
a ∈ C(T0, b) = D(T0, b), from Theorem 1, there exist two absolutely continuous
mappings x : [T0, T ] → H and y : [T0, T ] → H such that















−ẏ(t) ∈ NC(t,x(t))(y(t)), a.e. t ∈ [T0, T ];

x(t) = b+

∫ t

T0

y(s)ds, y(t) = a+

∫ t

T0

ẏ(s)ds, ∀t ∈ [T0, T ];

y(t) ∈ C(t, x(t)), ∀t ∈ [T0, T ].

Let u(t) = y(t) −m1(t) and v(t) = x(t) −m2(t), the mappings u(·) and v(·) satisfy















−u̇(t) ∈ ND(t,v(t))(u(t)) +m(t), a.e. t ∈ [T0, T ];

v(t) = b+

∫ t

T0

u(s)ds, u(t) = a+

∫ t

T0

u̇(s)ds, ∀t ∈ [T0, T ];

u(t) ∈ D(t, v(t)), ∀t ∈ [T0, T ].

with

‖u̇(t)‖ ≤

(

1 + Lα

)

(

ζ̇(t) + 2‖m(t)‖ + L

∫ s

T0

‖m(τ)‖dτ

)

ds.

Step 2. For each (t, u, v) ∈ [T0, T ] × H × H, let P (t, x, y) be the element of
minimal norm of the closed convex set F (t, x, y) of H, that is

P (t, x, y) = ProjF (t,x,y)(0), ∀ (t, u, v) ∈ [T0, T ] ×H ×H.
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Since F is L([T0, T ]) ⊗ B(H) ⊗ B(H)-measurable, so P (·, ·, ·) = d(0, F (·, ·, ·)), is
measurable. In view of (AF2)

‖P (t, x, y)‖ ≤ β(1 + ‖x‖ + ‖y‖). (3)

We put

g(t, x, y) = f(t, x, y) + P (t, x, y)

and

Λ(t) = γ(t) + β,

by (3) and (Af ), we get for all (t, u, v) ∈ [T0, T ] ×H ×H ,

‖g(t, x, y)‖ ≤ Λ(t)(1 + ‖x‖ + ‖y‖). (4)

Construction of sequences: Consider, for every n ∈ N, a partition of [T0, T ] defined
by tni = T0 + iT−T0

n
(0 ≤ i ≤ n). We are going to construct a sequence of maps

(un(·)) and (vn(·)) via Step 1, by considering a perturbation g with fixed second and
third variables in each subinterval [tni , t

n
i+1]. So, for a ∈ D(T0, b), let us consider the

following problem on the interval [T0, t
n
1 ] :

(P0)

{

−u̇(t) ∈ ND(t,v(t))(u(t)) + g(t, b, a) a.e. t ∈ [T0, t
n
1 ]

v(T0) = a, u(T0) = a ∈ D(T0, b)

where g(·, b, a) is a mapping depending only on t and is L1
H([T0, t

n
1 ]). By Step 1, there

are two absolutely continuous mappings that we denote by un
0 (.), vn

0 (.) : [T0, t
n
1 ] → H

solutions of (P0). Now, since un
0 (tn1 ) ∈ D(tn1 , v

n
0 (tn1 )) is well defined in the interval

[tn1 , t
n
2 ] the problem

(P1)

{

−u̇n
1 (t) ∈ ND(t,vn

1 (t))(u
n
1 (t)) + g(t, vn

0 (tn1 ), un
0 (tn1 )) a.e. t ∈ [tn1 , t

n
2 ];

un
0 (tn1 ) ∈ D(tn1 , v

n
0 (tn1 )).

admits an absolutely continuous solution (un
1 (·), vn

1 (·)) with un
1 (tn1 ) = un

0 (tn1 ) and
vn
1 (tn1 ) = vn

0 (tn1 ). By induction, for each n, there exist two finite sequence of abso-
lutely continuous mappings un

i (·), vn
i (·) : [tni , t

n
i+1] → H with un

i (tni ) = un
i−1(t

n
i ) and

vn
i (tni ) = vn

i−1(t
n
i ) such that, for each i ∈ {0, ..., n − 1},

(Pi)

{

−u̇n
i (t) ∈ ND(t,vn

i
(t))(u

n
i (t)) + g(t, vn

i−1(t
n
i ), un

i−1(t
n
i )) a.e. t ∈ [tni , t

n
i+1];

un
i−1(t

n
i ) ∈ D(tni , v

n
i−1(t

n
i )),

where un
−1(T0) = a, vn

−1(T0) = b and

‖u̇(t)‖ ≤

(

1 + Lα

)(

ζ̇(t) + 2‖g(t, vn
i−1(t

n
i ), un

i−1(t
n
i ))‖

+L

∫ t

tn
i

‖g(τ, vn
i−1(t

n
i ), un

i−1(t
n
i )‖dτ

)

,
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a.e. t ∈ [tni , t
n
i+1]. We define the absolutely continuous mappings un, vn : [T0, T ] → H

by un(t) = un
i (t) and vn(t) = vn

i (t) for all t ∈ [tni , t
n
i+1], i ∈ {0, · · ·, n}. One can write















u̇n(t) ∈ −ND(t,vn(t))(un(t)) + g(t, vn(pn(t)), un(pn(t))) a.e. t ∈ [T0, T ];

vn(t) = b+

∫ t

T0

un(s)ds, un(t) = a+

∫ t

T0

u̇n(s)ds, ∀t ∈ [T0, T ];

un(t) ∈ D(t, vn(t)), ∀t ∈ [T0, T ], un(T0) = a, vn(T0) = b,

with a.e. t ∈ [T0, T ]

‖u̇n(t)‖ ≤

(

1 + Lα

)

(

ζ̇(t) + 2‖g(t, vn(pn(t)), un(pn(t)))‖

+L

∫ t

pn(t)
‖g(τ, vn(pn(τ)), un(pn(τ)))‖dτ

)

.

Since for all t ∈ [T0, T ], un(pn(t)) ∈ D(pn(t), vn(pn(t))), then

‖un(pn(t))‖ ≤ α and ‖vn(pn(t))‖ ≤ ‖b‖ + (T − T0)α.

By (4), we get for almost every t ∈ [T0, T ]

‖g(t, vn(pn(t)), un(pn(t)))‖ =

(

1 + ‖b‖ + (T + 1)α

)

Λ(t) = c1(t). (5)

Then

‖u̇n(t)‖ ≤

(

1 +Lα

)

(

ζ̇(t) +
(

2 +L

∫ T

T0

Λ(τ)dτ)(1 + ‖b‖+ (T + 1)α
)

)

= c2(t). (6)

Convergence of sequences: Since for each t, un(t) ∈ D(t, vn(t)) ⊂ Γ, for all n ∈ N

such that (un(t)) is relatively compact in H for every t ∈ [T0, T ]. Using Ascoli-Arzelà
theorem, (un) is relatively compact in CH([T0, T ]). Then there exists a subsequence
again denoted by (un) which converges to a mapping u. According to (6), we may
suppose that (u̇n) weakly converges in L1

H([T0, T ]) to a mapping z with ‖z(t)‖ ≤ c2(t)
a.e. in [T0, T ]. Thus

lim
n→∞

un(t) = a+ lim
n→∞

∫ t

T0

u̇n(s)ds = a+

∫ t

T0

z(s)ds,

then, u(t) = a+

∫ t

T0

z(s)ds. Consequently, u(t) is absolutely continuous with u̇ = z.

Furthermore,

|pn(t) − t| ≤ |tnk+1 − tnk | =
T − T0

n
,

so lim
n→∞

|pn(t) − t| = 0 and

||un(pn(t)) − un(t)|| ≤

∫ t

pn(t)
‖u̇n(s)‖ds ≤

∫ t

pn(t)
c2(s)ds,
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since c2 ∈ L1
R+

([T0, T ]), we get lim
n→∞

||un(pn(t)) − un(t)|| = 0, so that

lim
n→∞

||un(pn(t)) − u(t)|| ≤ lim
n→∞

(

||un(pn(t)) − un(t)|| + ||un(t) − u(t)||

)

= 0.

The convergence of the sequence (un(pn(·)) to (u(·)) is obtained.
From the convergence of (un(·)) we deduce that of (vn(·)) to an absolutely continuous
function v(·) with

v(t) = b+

∫ t

T0

u(s)ds, ∀t ∈ [T0, T ]

and

lim
n→∞

||vn(pn(t)) − vn(t)|| = 0.

Let us set for all t ∈ [T0, T ],

f(t, vn(pn(t)), un(pn(t))) = ln(t)

and

P (t, vn(pn(t)), un(pn(t))) = ηn(·).

By the continuity of the mapping f(t, ·, ·) we get ln(t) converges to
l(t) = f(t, u(t), v(t)) and

‖l(t)‖ ≤

(

1 + ‖b‖ + (T + 1)α

)

γ(t).

On the other hand, for all n ≥ n0 and for all t ∈ [T0, T ], we have

‖ηn(t)‖ ≤ ‖

(

1 + ‖b‖ + (T + 1)α

)

β,

so (ηn(·)) is bounded, taking a subsequence if necessary, we may conclude that (ηn(·))
weakly converges to some mapping η ∈ L1

H([T0, T ]) with

‖η(t)‖ ≤

(

1 + ‖b‖ + (T + 1)α

)

β.

Now, we proceed to prove that

u̇(t) ∈ −ND(t,v(t))(u(t)) + F (t, v(t), u(t)) + f(t, v(t), u(t)) a.e. t ∈ [T0, T ].

First, we check that u(t) ∈ D(t, v(t)). For every t ∈ [T0, T ] and for every n, we have

d(un(t),D(t, v(t))) ≤ ||un(t) − un(pn(t))|| + d(un(pn(t)),D(t, v(t)))

≤ ||un(t) − un(pn(t))|| + H(D(pn(t), vn(pn(t))),D(t, v(t)))

≤ ||un(t) − un(pn(t))|| + |ζ(t) − ζ(pn(t))| + L||vn(pn(t)) − vn(t)||,
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Passing to the limit when n → ∞, in the preceding inequality, we get
u(t) ∈ D(t, v(t)). According to (5) and (6), we obtain

‖ − u̇n(t) + ln(t) + ηn(t)‖ ≤ c1(t) + c2(t) := λ(t),

so

−u̇n(t) + ln(t) + ηn(t) ∈ λ(t)BH

since

−u̇n(t) + ln(t) + ηn(t) ∈ ND(t,vn(t))(un(t)),

we get

−u̇n(t) + ln(t) + ηn(t) ∈ λ(t)∂d(un(t),D(t, vn(t))).

Remark that (−u̇n+ln+ηn, ηn) weakly converges in L1
H×H([T0, T ]) to (−u̇+l+η, η).

An application of the Mazur’s Theorem to (−u̇n + ln + ηn, ηn) provides a sequence
(wn, ζn) with

wn ∈ co{−u̇m + lm + ηm : m ≥ n} and ζn ∈ co{ηm : m ≥ n}

such that (wn, ζn) converges strongly in L1
H×H([0, T ]) to (−u̇ + l + η, η). We can

extract from (wn, ζn) a subsequence which converges a.e. to (−u̇ + l + η, η). Then,
there is a Lebesgue negligible set S ⊂ [0, T ] such that for every t ∈ [0, T ] \ S

−u̇(t) + l(t) + η(t) ∈
⋂

n≥0

{wm(t) : m ≥ n}

⊂
⋂

n≥0

co{−u̇m(t) + lm(t) + ηm(t) : m ≥ n}, (7)

η(t) ∈
⋂

n≥0

{ζm(t) : m ≥ n} ⊂
⋂

n≥0

co{ηm(t) : m ≥ n}. (8)

Fix any t ∈ [0, T ] \ S, n ≥ n0 and µ ∈ H, then the relation (7) gives

〈µ,−u̇(t) + l(t) + η(t)〉 ≤ lim sup
n→∞

δ∗(µ, λ(t)∂d(un(t),D(t, vn(t))))

≤ δ∗(µ, λ(t)∂d(u(t),D(t, v(t)))),

where the first inequality follows from the characterization of convex hull and the
second one follows from Proposition 1. Taking the supremum over µ ∈ H, we deduce
that

δ(−u̇(t) + l(t) + η(t), λ(t)∂d(u(t),D(t, v(t)))) =

δ∗∗(−u̇(t) + l(t) + η(t), λ(t)∂d(u(t),D(t, v(t)))) ≤ 0

which entails

−u̇(t) + l(t) + η(t) ∈ λ(t)∂d(u(t),D(t, v(t))) ⊂ ND(t,v(t))(u(t)).



62 D. AFFANE, N. FETOUCI AND M. F. YAROU

Further, the relation (8) gives

〈µ, η(t)〉 ≤ lim sup
n→∞

δ∗(µ,F (t, vn(pn(t)), un(pn(t)))),

since δ∗(µ,F (t, ·, ·)) is upper semicontinuous on H ×H then

〈µ, η(t)〉 ≤ δ∗(µ,F (t, v(t), u(t))),

so, we get d(η(t), F (t, v(t), u(t))) ≤ 0, because F has closed convex values. Conse-
quently η(t) ∈ F (t, v(t), u(t)) a.e t ∈ [T0, T ]. Then

u̇(t) ∈ −ND(t,v(t))(u(t)) + F (t, v(t), u(t)) + f(t, v(t), u(t)).

This completes the proof of the theorem.

Remark 1. As in [22], the result remains valid if we replace the uniformly r-prox
regular sets by a family of equi-uniformly subsmooth sets.

In the next theorem we prove the existence of solution on the whole interval
R+ = [0 + ∞[.

Theorem 3. Let D : R+ ×H → H be a set-valued mapping with nonempty closed

and uniformly r-prox regular values such that:

(i) There is a positive constant L and a nondecreasing absolutely continuous func-

tion ζ : R+ → R+ such that, for all s ≤ t in R+ and xi, yi ∈ H(i = 1, 2),

|d
(

x1,D(t, y1)
)

− d
(

x2,D(s, y2)
)

| ≤ ‖x1 − x2‖ + ζ(t) − ζ(s) + L‖y1 − y2‖;

(ii) for all (t, x) ∈ R+ ×H, D(t, x) is contained in a compact set Γ.

Let F : R+ ×H ×H ⇁ H be a set-valued map with nonempty closed convex values

such that:

(iii) F is L(R+)⊗B(H)⊗B(H)-measurable and for all t ∈ R+, F (t, ·, ·) is scalarly

upper semicontinuous on H ×H;

(vi) there exists a non-negative function β(·) ∈ L∞
loc(R+), such that, for all

(t, u, v) ∈ R+ ×H ×H,

d(0, F (t, u, v)) ≤ β(t)(1 + ‖u‖ + ‖v‖).

Then, for any a, b ∈ H with a ∈ D(T0, b), there exist two absolutely continuous

mappings u, v : R+ → H satisfying

(PR+)















−u̇(t) ∈ ND(t,v(t))(u(t)) + F (t, v(t), u(t)), a.e. t ∈ R+;

v(t) = b+

∫ t

T0

u(s)ds, u(t) = a+

∫ t

T0

u̇(s)ds, ∀t ∈ R+;

u(t) ∈ D(t, v(t)), ∀t ∈ R+.
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Proof. Since R+ =
⋃

k∈N

[k, k+ 1], for all k ∈ N applying Theorem 2 on each interval

[k, k + 1], there exist two absolutely continuous mappings uk, vk : [k, k + 1] → H

satisfying
{

−u̇k(t) ∈ ND(t,vk(t))(u
k(t)) + F (t, vk(t), uk(t)), a.e. t ∈ [k, k + 1];

uk(t) ∈ D(t, vk(t)), ∀t ∈ [k, k + 1], ; uk(k) = uk−1(k) and vk(k) = vk−1(k).

Let u : R+ → H and v : R+ → H be defined by u(t) = uk(t) and v(t) = vk(t) for
t ∈ [k, k + 1], k ∈ N, then it is easy to conclude that u, v are absolutely continuous
solutions of the problem (PR+). This completes the proof of the theorem.

4 Delayed sweeping process

Now, we proceed, in the infinite dimensional setting, to an existence result for sec-
ond order functional differential inclusion governed by the time and state-dependent
nonconvex sweeping process, that is when the perturbation contains a finite de-
lay. This problem was addressed by [22] using the discretization approach based on
the Moreau’s catching-up algorithm. Here, we provide another technique initiated
in [10] for the first order time-dependent case, which consists to subdivide the inter-
val [0, T ] in a sequence of subintervals and to reformulate the problem with delay to
a sequence of problems without delay and apply the results known in this case. For
second order functional problems regarding the time-dependent sweeping process, we
refer to [7,8]. We will extend this approach for the case of time and state-dependent
sweeping process with unbounded delayed perturbation. For a question of clarity
and shortness, we will restrict ourselves to Theorem 2 for uniformly prox-regular
sets and one set-valued perturbation, but it is clear that this remains valid for equi-
uniformly subsmooth sets as well as for the sum of two perturbations.
Let τ > 0 be a positive number and C0 = CH ([−τ, 0]) (resp. CT = CH ([−τ, T ])
the Banach space of H-valued continuous functions defined on [−τ, 0] (resp.
[−τ, T ]) equipped with the norm of uniform convergence. Let u : [−τ, T ] → H,
then for every t ∈ [0, T ] we define the function ut = T (t)u on [−τ, 0] by
(T (t)u) (s) = u (t+ s) , ∀s ∈ [−τ, 0]. Clearly, if u ∈ CT , then ut ∈ C0 and the
mapping u→ ut is continuous.
Consider the following problem

(Pτ )































−u̇(t) ∈ N
D
(

t,v(t)
)(u(t)) +G

(

t,T (t)v,T (t)u

)

a.e. t ∈ [0, T ];

u(t) = ψ(0) +

∫ t

0
v̇(s)ds, v(t) = ϕ(0) +

∫ t

0
u(s)ds, ∀t ∈ [0, T ];

v(t) ∈ D
(

t, u(t)
)

, ∀t ∈ [0, T ];
u ≡ ψ and v ≡ ϕ on [−τ, 0].

Theorem 4. Assume that D : [0, T ] × H ⇁ H satisfies Assumption 1 and let

G : [0, T ] × C0 × C0 ⇁ H be a set-valued mapping with nonempty closed convex

values such that:
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(AG1) G is L([0, T ]) ⊗ B(C0) ⊗ B(C0)-measurable and for all t ∈ R+, G(t, ·, ·) is

scalarly upper semicontinuous on C0 × C0;

(AG2) there exists a real β > 0, such that, for all (t, ϕ, ψ) ∈ [T0, T ] × C0 × C0,

d(0, G(t, ϕ, ψ)) ≤ β(1 + ‖ϕ(0)‖ + ‖ψ(0)‖).

Then for every (ϕ,ψ) ∈ C0 × C0 verifying ψ (0) ∈ D (0, ϕ (0)), there exist two abso-

lutely continuous mappings u : [0, T ] → H and v : [0, T ] → H satisfying (Pτ ).

Proof. Let a = ψ (0) and b = ϕ (0) , then a ∈ D (0, b) . We consider the same
partition of [0, T ] by the points tnk = ken, en = T

n
, (k = 0, 1, ..., n) . For each

(t, u, v) ∈ [−τ, tn1 ]×H ×H, we define fn
0 : [−τ, tn1 ]×H → H, gn

0 : [−τ, tn1 ]×H → H

by

fn
0 (t, v) =

{

ϕ (t) ∀t ∈ [−τ, 0] ,
ϕ (0) + n

T
t (v − ϕ (0)) ∀t ∈ ]0, tn1 ] ,

gn
0 (t, u) =

{

ψ (t) ∀t ∈ [−τ, 0] ,
ψ (0) + n

T
t (u− ψ (0)) ∀t ∈ ]0, tn1 ] .

We have fn
0 (tn1 , v) = v and gn

0 (tn1 , v) = u for all (u, v) ∈ H × H. Observe that

the mapping (u, v) →

(

T (tn1 )fn
0 (·, v) ,T (tn1 )gn

0 (·, u)

)

from H × H to C0 × C0 is

nonexpansive since for all (v1, v2) ∈ H ×H

‖T (tn1 )fn
0 (·, v1) − T (tn1 )fn

0 (·, v2)‖C0
=

sup
s∈[−τ,0]

‖fn
0 (s+ tn1 , v1) − fn

0 (s+ tn1 , v2)‖ =

sup
s∈[−τ+ T

n
, T

n
]
‖fn

0 (s, v1) − fn
0 (s, v2)‖ =

sup
0≤s≤T

n

∥

∥

∥

n

T
s (v1 − ϕ (0)) −

n

T
s (v2 − ϕ (0))

∥

∥

∥
=

sup
0≤s≤T

n

∥

∥

∥

n

T
s (v1 − v2)

∥

∥

∥
= ‖v1 − v2‖ .

Similarly, for all (u1, u2) ∈ H ×H we get

‖T (tn1 )gn
0 (·, u1) − T (tn1 )gn

0 (·, u2)‖C0
= ‖u1 − u2‖ .

Hence the mapping (u, v) →

(

T (tn1 )fn
0 (·, v) ,T (tn1 )gn

0 (·, v)

)

from H ×H to C0 ×C0

is nonexpansive, so the set-valued mapping with nonempty closed convex values
Gn

0 : [0, tn1 ] ×H ×H ⇁ H defined by

Gn
0 (t, u, v) = G(t,T (tn1 )fn

0 (·, v) ,T (tn1 )gn
0 (·, u))
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is globally measurable and scalarly upper semicontinuous on H ×H, thanks to by
(AG1) and

d(0, Gn
0 (t, v, u) = d(0, G(t,T (tn1 )fn

0 (·, v) ,T (tn1 )gn
0 (·, u))

≤ β (1 + ‖v‖ + ‖u‖) ,

for all (t, v, u) ∈ [0, tn1 ]×H ×H since, T (tn1 )fn
0 (0, v) = u,T (tn1 )gn

0 (0, u) = v. Hence
Gn

0 verifies conditions of Theorem 2, then there exist two absolutely continuous
mappings un

0 : [0, tn1 ] → H and vn
0 : [0, tn1 ] → H such that























−u̇n
0 (t) ∈ ND(t,vn

0 (t)) (un
0 (t)) +Gn

0 (t, vn
0 , u

n
0 ) a.e on [0, tn1 ] ;

vn
0 (t) = b+

∫ t

0
un

0 (s) ds, un
0 (t) = a+

∫ t

0
u̇n

0 (s) ds ∀t ∈ [0, tn1 ] ;

un
0 (t) ∈ D(t, vn

0 (t)) ∀t ∈ [0, tn1 ] ;
vn
0 (0) = b = ϕ (0) , un

0 (0) = a = ψ (0) ,

with

‖vn
0 (t)‖ ≤ ‖b‖ + Tα, ‖un

0 (t)‖ ≤ α, ‖u̇n
0 (t)‖ ≤ c2.

Set

vn (t) =

{

ϕ (t) ∀t ∈ [−τ, 0] ,
vn
0 (t) ∀t ∈ ]0, tn1 ] ,

un (t) =

{

ψ (t) ∀t ∈ [−τ, 0] ,
un

0 (t) ∀t ∈ ]0, tn1 ] .

Then, un and vn are well defined on [−τ, tn1 ] , with vn = ϕ, un = ψ on [−τ, 0], and







































−u̇n (t) ∈ ND(t,vn(t)) (un(t)) +G0(t, vn(t), un(t)) a.e on [0, tn1 ] ;

vn (t) = b+

∫ t

0
un (s) ds,

un (t) = a+

∫ t

0
u̇n (s) ds, ∀t ∈ [0, tn1 ] ;

un(t) ∈ D(t, vn (t)), ∀t ∈ [0, tn1 ] ;
vn(0) = b = ϕ (0) , un(0) = a = ψ (0) ,

By induction, suppose that un and vn are defined on [−τ, tnk ] (k ≥ 1) with
vn = ϕ, un = ψ on [−τ, 0] and satisfy

vn(t) =











































vn
0 (t) = b+

∫ t

0
un(s)ds ∀t ∈ [0, tn1 ],

vn
1 (t) = vn (tn1 ) +

∫ t

tn1

un (s) ds ∀t ∈ ]tn1 , t
n
2 ] ,

· · ·

vn
k−1 (t) = vn

(

tnk−1

)

+

∫ t

tn
k−1

un (s) ds ∀t ∈
]

tnk−1, t
n
k

]

,
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un(t) =











































un
0 (t) = b+

∫ t

0
u̇n (s) ds ∀t ∈ [0, tn1 ] ;

un
1 (t) = un (tn1 ) +

∫ t

tn1

u̇n (s) ds ∀t ∈ ]tn1 , t
n
2 ] ;

· · ·

un
k−1 (t) = un

(

tnk−1

)

+

∫ t

tn
k−1

u̇n (s) ds ∀t ∈
]

tnk−1, t
n
k

]

,

un and vn are solutions of











































−u̇n(t) ∈ ND(t,vn(t))(un(t)) +G

(

t,T (tnk)fn
k−1(·, vn(t)),T (tnk )gn

k−1(·, un(t))

)

;

vn (t) = vn
k−1 (t) = vn

(

tnk−1

)

+

∫ t

tn
k−1

un (s) ds;

un (t) = un
k−1 (t) = un

(

tnk−1

)

+

∫ t

tn
k−1

u̇n (s) ds;

un(t) ∈ D(t, vn (t))

on
]

tnk−1, t
n
k

]

, where fn
k−1 and gn

k−1 are defined for any (v, u) ∈ H ×H as follows

fn
k−1 (t, v) =

{

vn (t) ∀t ∈
[

−τ, tnk−1

]

,

vn

(

tnk−1

)

+
n

T

(

t− tnk−1

) (

v − vn

(

tnk−1

))

∀t ∈
]

tnk−1, t
n
k

]

,
(9)

gn
k−1 (t, u) =

{

un (t) ∀t ∈
[

−τ, tnk−1

]

,

un

(

tnk−1

)

+
n

T

(

t− tnk−1

) (

u− un

(

tnk−1

))

∀t ∈
]

tnk−1, t
n
k

]

.

(10)
Similarly we can define fn

k , g
n
k :
[

−τ, tnk+1

]

×H → H as

fn
k (t, v) =

{

vn (t) ∀t ∈ [−τ, tnk ] ,

vn (tnk) +
n

T
(t− tnk) (v − vn (tnk)) , ∀t ∈

]

tnk , t
n
k+1

]

,

gn
k (t, u) =

{

un (t) ∀t ∈ [−τ, tnk ] ,

un (tnk) +
n

T
(t− tnk) (u− un (tnk)) ∀t ∈

]

tnk , t
n
k+1

]

,

for any (u, v) ∈ H ×H. Note that for all (u, v) ∈ H ×H,

T (tnk+1)f
n
k (0, v) = fn

k

(

tnk+1, v
)

= v,

T (tnk+1)g
n
k (0, u) = gn

k

(

tnk+1, u
)

= u.

Note also that, for all (u1, v1) , (u2, v2) ∈ H ×H, we have

∥

∥T (tnk+1)f
n
k (·, v1) − T (tnk+1)f

n
k (·, v2)

∥

∥

C0
=

sup
s∈[−τ,0]

∥

∥fn
k

(

s+ tnk+1, v1
)

− fn
k

(

s+ tnk+1, v2
)
∥

∥ =
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sup
s∈
[

−τ+ (k+1)T
n

,
(k+1)T

n

]

‖fn
k (s, u1) − fn

k (s, u2)‖ ,

and
∥

∥T (tnk+1)g
n
k (·, u1) − T (tnk+1)g

n
k (·, u2)

∥

∥

C0
=

sup
s∈[−τ,0]

∥

∥gn
k

(

s+ tnk+1, u1

)

− gn
k

(

s+ tnk+1, u2

)
∥

∥ =

sup
s∈
[

−τ+
(k+1)T

n
,
(k+1)T

n

]

‖gn
k (s, u1) − gn

k (s, u2)‖ .

We distinguish two cases:

(1) if −τ +
(k + 1)T

n
<
kT

n
, we have

sup
s∈
[

−τ+ (k+1)T
n

,
(k+1)T

n

]

‖fn
k (s, v1) − fn

k (s, v2)‖ =

sup
s∈
[

kT

n
,
(k+1)T

n

]

‖fn
k (s, v1) − fn

k (s, v2)‖ =

sup
kT

n
≤s≤

(k+1)T
n

∥

∥

∥

n

T
(s− tnk) (v1 − v2)

∥

∥

∥
= ‖v1 − v2‖

and
sup

s∈
[

−τ+ (k+1)T
n

,
(k+1)T

n

]

‖gn
k (s, u1) − gn

k (s, u2)‖ =

sup
s∈
[

kT

n
,
(k+1)T

n

]

‖gn
k (s, u1) − gn

k (s, u2)‖ =

sup
kT

n
≤s≤

(k+1)T
n

∥

∥

∥

n

T
(s− tnk) (u1 − u2)

∥

∥

∥
= ‖u1 − u2‖ ;

(2) if kT
n

≤ −τ + (k+1)T
n

≤ (k+1)T
n

, we have

sup
s∈
[

−τ+ (k+1)T
n

,
(k+1)T

n

]

‖fn
k (s, v1) − fn

k (s, v2)‖ =

sup
s∈
[

kT

n
,
(k+1)T

n

]

‖fn
k (s, v1) − fn

k (s, v2)‖ =

sup
kT

n
≤s≤

(k+1)T
n

∥

∥

∥

n

T
(s− tnk) (v1 − v2)

∥

∥

∥
= ‖v1 − v2‖

and
sup

s∈
[

−τ+
(k+1)T

n
,
(k+1)T

n

]

‖gn
k (s, u1) − gn

k (s, u2)‖ =
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sup
s∈
[

kT

n
,
(k+1)T

n

]

‖gn
k (s, u1) − gn

k (s, u2)‖ =

sup
kT

n
≤s≤

(k+1)T
n

∥

∥

∥

n

T
(s − tnk) (u1 − u2)

∥

∥

∥
= ‖u1 − u2‖ .

So the mapping (v, u) →

(

T (tnk+1)f
n
k (·, v) ,T (tk+1)g

n
k (·, u)

)

from H×H to C0×C0

is nonexpansive. Hence the set-valued mapping Gn
k :
[

tnk , t
n
k+1

]

×H×H ⇁ H defined
by

Gn
k (t, u, v) = G

(

t,T (tnk+1)f
n
k (., u) ,T (tnk+1)g

n
k (., v)

)

globally measurable and scalarly upper semicontinuous on H × H, with nonempty
closed convex values. As above we can easily check that

d(0, Gn
k (t, v, u) ≤ (1 + ‖u‖ + ‖v‖) , ∀ (t, u, v) ∈

[

tnk , t
n
k+1

]

×H ×H.

Applying Theorem 2, there exist two absolutely continuous mappings
un

k :
[

tnk , t
n
k+1

]

→ H and vn
k :
[

tnk , t
n
k+1

]

→ H such that



































−u̇n
k (t) ∈ ND(t,vn

k
(t)) (un

k(t)) +Gn
k(t, vn

k (t) , un
k (t)) a.e. on

[

tnk , t
n
k+1

]

;

vn
k (t) = vn (tnk) +

∫ t

tn
k

un
k (s) ds, ∀t ∈

[

tnk , t
n
k+1

]

;

un
k (t) = un (tnk) +

∫ t

tn
k

u̇n
k (s) ds, ∀t ∈

[

tnk , t
n
k+1

]

;

un
k(t) ∈ D(t, un

k (t)) ∀t ∈
[

tnk , t
n
k+1

]

,

with

‖un
k (t)‖ ≤ α, ‖vn

k (t)‖ ≤ ‖b‖ + Tα, ‖u̇n
k (t)‖ ≤ c2(t).

Thus, by induction, we can construct two continuous mappings
un, vn : [−τ, T ] → H ×H with

vn (t) =

{

ϕ (t) ∀t ∈ [−τ, 0] ,
vn
k (t) ∀t ∈

]

tnk , t
n
k+1

]

, ∀k = 0, · · ·, n − 1;

un (t) =

{

ψ (t) ∀t ∈ [−τ, 0] ,
un

k (t) ∀t ∈
]

tnk , t
n
k+1

]

, ∀k = 0, · · ·, n− 1,

such that their restriction on each interval
[

tnk , t
n
k+1

]

is a pair solution to















−u̇ (t) ∈ ND(t,v(t)) (u(t)) +G(t,T (tnk+1)f
n
k (., v (t)) ,T (tnk+1)g

n
k (., u (t)));

v (t) = vn (tnk) +

∫ t

tn
k

u (s) ds, u (t) = un (tnk) +

∫ t

tn
k

u̇ (s) ds

u (t) ∈ D(t, v (t)).
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Let hn
k :
[

tnk , t
n
k+1

]

× C0 × C0 be the element of minimal norm of Gn
k , then















hn
k (t, vn

k (t) , un
k (t)) ∈ Gn

k (t, vn
k (t) , un

k (t)) a.e. on
[

tnk , t
n
k+1

]

,

−u̇n
k (t) ∈ ND(t,vn

k
(t)) (un

k(t)) + hn
k (t, vn

k (t) , un
k (t)) a.e. on

[

tnk , t
n
k+1

]

,

vn
k (tnk) = vn (tnk) , un

k (tnk) = un (tnk)
un

k(t) ∈ D(t, vn
k (t)), ∀t ∈

[

tnk , t
n
k+1

]

.

Let set for notational convenience, hn(t, v, u) = hn
k(t, v, u), θn (t) = tnk+1 and

δn (t) = tnk , for all t ∈
]

tnk , t
n
k+1

]

. Then we get for almost every t ∈ [0, T ]















hn(t, vn, un) ∈ G(t,T (θn (t))fn
n

T
δn(t) (., vn (t)) ,T (θn (t))gn

n

T
δn(t) (., un (t)));

−u̇n (t) ∈ ND(t,vn(θn(t))) (un(θn (t))) + hn (t, vn(t), un(t)) ;

vn (0) = b = ϕ (0) , un (0) = a = ψ (0) ∈ D (0, b) ,
un (t) ∈ D (t, vn (θn (t))) ,∀t ∈ [0, T ]

with for all t ∈ [0, T ]

d

(

0, G(t,T (θn (t))fn
n

T
δn(t) (., vn (t)) ,T (θn (t))gn

n

T
δn(t) (., un (t))

)

≤ β (1 + ‖un (t)‖ + ‖vn (t)‖) .

We claim that T (θn (t))fn
n

T
δn(t) (., vn (t)) and T (θn (t))gn

n

T
δn(t) (., un (t)) pointwise con-

verge on [0, T ] to T (t)v and T (t)u respectively in C0. The proof is similar to the one
given in Theorem 2.1 in [14].
Further, as ‖vn (t)‖ ≤ ‖b‖ + Tα, ‖u̇(t)‖ ≤ c2(t) and

‖hn (t, vn(t), un(t)) ‖ ≤ β

(

1 + ‖un(t)‖ + ‖vn(t)‖

)

≤ β
(

1 + ‖b‖ + (1 + T )α
)

.

We can proceed as in Theorem 2 to conclude the convergence of (un) and (vn) to
the solution of (Pτ ).
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