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Abstract. A multicriteria investment Boolean problem of minimizing lost profits
with parameterized efficiency and different types of risks is formulated. The lower and
upper bounds on the radius of the strong stability of efficient portfolios are obtained.
Several earlier known results regarding strong stability of Pareto efficient and extreme
portfolios are confirmed.
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1 Introduction

Many problems of making multi-purpose decisions (individual or group) in man-
agement, planning and design can be formulated as multicriteria discrete optimiza-
tion problems. A characteristic feature of such problems is the inaccuracy of the
initial parameters. This inaccuracy is due to the influence of various factors of un-
certainty and randomness: the inadequacy of the mathematical models used real
processes, measurement or rounding errors and other factors. To manage financial
investments, G. Markovitz [1] developed an optimization model that demonstrates
how an investor, choosing a portfolio of assets, can minimize the degree of risk for
a given expected income level. This formulation involves the use of statistical and
expert assessments of risks (financial, environmental, etc.) as input data. It is well
known that complex calculations of such quantities are accompanied by large num-
ber of errors, which leads to a high degree of uncertainty of the initial information.
Under these conditions, the question naturally arises about the plausibility of results
obtained in solving such problems, which makes necessary to conduct a post-optimal
analysis of the stability of solutions to perturbations of parameters.

Modern research on the stability of multicriteria discrete optimization problems
is carried out in two directions: qualitative and quantitative. Within the framework
of the first direction, the authors concentrate their attention on the definition and
study of various types of stability (see monograph [2], and surveys [3,4]), establishing
a connection between different types of stability as well as on the search and descrip-
tion of the region of stability of the problem [5, 6]. The second direction is focused
on obtaining estimates of permissible changes in the initial data of the problem, at
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which a certain predetermined property of optimal solutions is preserved [7–12], and
on the development of algorithms for calculating these estimates [13–15].

Our current work continues research towards a similar direction, with focus on a
different optimality principle, namely, the so-called parameterized efficient solutions
and their strong stability properties are investigated. The paper is organized as fol-
lows. In Section 2, we introduce basic concepts and formulate the problem. Section
3 contains auxiliary technical statements required for the proof of the main result.
As a result of the parametric analysis, in Section 4 the lower and upper bounds
on strong stability radius are obtained in the case with arbitrary Hölder’s norms
specified in the three spaces of the problem’s initial data. Some previously known
facts are confirmed in Section 5.

2 Problem formulation and basic definitions

Consider a multicriteria discrete variant of the investment optimization problem
with the following parameters specified below: let

Nn={1, 2, . . . , n} be a variety of alternatives (investment assets);

Nm be a set of possible financial market states (market situations, scenarios);

Ns be a set of possible risks;

rijk be a numerical measure of economic risk of type k ∈ Ns if investor chooses
project j ∈ Nn given the market is in state i ∈ Nm;

R= [rijk] ∈ Rm×n×s be a matrix specifying risks;

x= (x1, x2, . . . , xn)T ∈ En be an investment portfolio, where E={0, 1}, and

xj=

{

1 if investor chooses project j,
0 otherwise;

X ⊂ En be a set of all admissible investment portfolios, i.e. those whose real-
ization provides the investor with the expected income and does not exceed his/her
initial capital;

Rm be a financial market state space; Rn be a portfolio space; Rs be a risk
space.

In our model, we assume that the risk measure is addictive, i.e. the total risk of
one portfolio is a sum of risks of the projects included in the portfolio. The risk of
each project can be measured, for instance, by means of the associated implemen-
tation cost.

Efficiency of a chosen portfolio (Boolean vector) x ∈ X, |X| ≥ 2, is evaluated
by a vector objective function

f(x,R) = (f(x,R1),f(x,R2), . . . , f(x,Rs))
T ,

with each partial objective representing minimax Savage’s risk criterion [17]:

f (x,Rk) =max
i∈Nm

rikx = max
i∈Nm

∑

j∈Nn

rijkxj → min
x∈X

, k ∈ Ns,
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rik= (ri1k, ri2k, . . . , rink) ∈ Rn, i ∈ Nm, k ∈ Ns.

In the formula above, Rk ∈ Rm×n represents the k-th cut of the risk matrix
R= [rijk] ∈ Rm×n×s with rows rik.

Certainly, the problem has practical interest due to its multicriteria nature and
the criteria that could be interpreted as maximum risk minimizing attitude of an
investor to market instability and uncertainty.

For arbitrary v ∈ N (dimension of a space), we define the Pareto dominance
[16] between two vectors as the following binary relation in the real vector valued
space Rv: y ≻ y′ ⇐⇒ y ≥ y′ & y 6= y′,where y = (y1, y2, . . . , yv)

T ∈ Rv, and
y′ = (y′1, y

′
2, . . . , y

′
v)

T ∈ Rv.
Let ∅ 6= I ⊆ Ns. Denote RI a submatrix of the risk matrix R= [rijk] ∈ Rm×n×s

consisting of h=|I| cuts with numbers of the set I, i.e.

RI = (Rk1, Rk2 , . . . , Rkh
)T ∈ Rm×n×h,

I = {k1, k2, . . . , kh} , 1 ≤ k1 < k2 < · · · < kh ≤ s.

Thus for a fixed non-empty I and chosen x ∈ X, we have a vector function

f(x,RI) = (f(x,Rk1),f(x,Rk2), . . . , f(x,Rkh
))T ,

with components being type of Savage’s minimax risk criterion [17]:

f (x,Rk)=max
i∈Nm

rikx → min
x∈X

, k ∈ I.

An investor in the conditions of economic instability and uncertainty of the
market state is extremely cautious, optimizing the total risk of the portfolio in the
most unfavorable situation, namely when the risk is maximum. Such caution is
appropriate because any investment is the exchange of a certain current value for a
possibly uncertain future income. Obviously, this approach is dictated by the safest
and most protective rule prescribing to assume the worst.

Let u ∈ Ns and Ns =
⋃

v∈Nu
Iv be a partition of the set Ns in u non-empty

subsets (types of risks), i.e. Iv 6= ∅, v ∈ Nu, and i 6= j =⇒ Ii
⋂

Ij = ∅.
Such partition may naturally arise in the situation when risks can be classified

to the different groups, e.g. financial, industrial, ecological etc. Another situation
with different types of risks may appear if risk measurement scales are different, e.g.
some risks are measured on a monetary scale whereas the others are measured on
various subjective preference scales.

As following definition shows, inside a group of a certain type, Pareto domi-
nance binary relation is used while comparing portfolios. For the given partition,
we introduce a set of (I1, I2, . . . , Iu)-efficient portfolios according to the following
formula:

Gs
m(R, I1, I2, . . . , Iu) = {x ∈ X: ∃v ∈ Nu (X(x,RIv) =∅)} , (1)

where
X (x,RIv )=

{

x′ ∈ X: f (x,RIv)≻f
(

x′, RIv

)}

. (2)
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For brevity, we sometimes refer to the set of (I1, I2, . . . , Iu) – efficient portfolios as
Gsu

m (R) and name them efficient. It is easy to see that the set of efficient portfolios
is non-empty.

In one particular case, if u = 1, i.e. I=Ns, any Ns – efficient portfolio
x ∈ Gs

m(R,Ns) is also Pareto efficient (optimal). Therefore, the set Gs
m (R,Ns)

is identical to the Pareto set [18] defined as follows:

P s
m (R) = {x ∈ X: X(x,R) =∅} ,

where

X (x,R) =
{

x′ ∈ X: f (x,R) ≥ f
(

x′, R
)

& f (x,R) 6= f
(

x′, R
)}

.

In another particular case, if u= s, i.e. Iv = {v} for v ∈ Nu = Ns, the set
Gs

m (R, {1} , {2} , . . . , {s}) is a set of all the so-called extreme portfolios (see e.g.
[19]). The set of extreme portfolios is defined as

Es
m (R)= {x ∈ X: ∃k ∈ Ns (X(x,Rk) =∅} ,

where
X(x,Rk) =

{

x′ ∈ X: f (x,Rk) > f
(

x′, Rk

)}

.

The choice of extreme portfolios can be interpreted as finding best solutions for
each of s criteria, and then combining them into one set. The vector composed of
optimal objective values constitutes the ideal vector that is of great importance in
theory and methodology of multiobjective optimization [19].

The problem of finding the set of efficient portfolios

Gs
m (R, I1, I2, . . . , Iu) = Gsu

m (R)

is referred to as multicriteria investment Boolean problem with Savage’s risk criteria
of different types and denoted by Zs

m (R, I1, I2, . . . , Iu), or shortly, Zsu
m (R).

For the fixed non-empty I ⊆ Ns, we introduce the following sets:

P (RI) = {x ∈ X: X (x,RI)=∅} ,

E (RI) = {x ∈ X: ∃k ∈ I (X(x,Rk) =∅} ,

where
X (x,RI) =

{

x′ ∈ X: f (x,RI)≻f
(

x′, RI

)}

.

In particular, for fixed k ∈ Ns and I = {k} , |I| = 1, the two sets P (Rk) and E (Rk)
are identical. Both sets represent a set of optimal portfolios for the scalar problem
with respect to the k -th risk:

f (x,Rk)=max
i∈Nm

rikx → min
x∈X

.

Due to (1), we have the following equality:

Gs
m (R, I1, I2, . . . , Iu) = {x ∈ X: ∃v ∈ Nu (x ∈ P (RIv))} . (3)
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Therefore, we have

Gs
m (R, I1, I2, . . . , Iu)=

⋃

v∈Nu

P (RIv),
⋃

v∈Nu

Iv = Ns.

Obviously, all the sets specified above are non-empty for any risk matrix
R ∈ Rm×n×s.

We will perturb the elements of the three–dimensional risk matrix R ∈ Rm×n×s

by adding elements of the risk perturbing matrix R′ ∈ Rm×n×s. Thus the problem
Zsu

m (R+R′) with perturbed risks has the following form:

f(x,R+R′) → min
x∈X

.

The set of (I1, I2, . . . , Iu) – efficient portfolios in the perturbed problem is denoted
by Gs

m(R+R′, I1, I2, . . . , Iu), or shortly Gsu
m (R+R′).

Recall that Hölder’s norm lp (also known as p-norm) in vector space Rn is the
number

‖a‖p=







(

∑

j∈Nn
|aj |

p
)

1
p

if 1 ≤ p<∞,

max {|aj | :j ∈ Nn} if p=∞,

where a= (a1, a2, ..., an)T ∈ Rn.
In the spaces Rn,Rm and Rs we define three Hölder’s norms lp, lq and lt, where

p, q, t ∈ [1,∞]. So, the norm of matrix R ∈ Rm×n×s is the following number:

‖R‖pqt=‖(‖R1‖pq,‖R2‖pq, ...,‖Rs‖pq)‖t,

with cuts
‖Rk‖pq=‖(‖r1k‖p,‖r2k‖p, ...,‖rmk‖p)‖q, k ∈ Ns.

For any numbers p, q, t ∈ [1,∞] the following inequalities are valid:

‖rik‖p ≤ ‖Rk‖pq ≤ ‖R‖pqt, i ∈ Nm, k ∈ Ns. (4)

While solving investment problems, it is necessary to take into account the inac-
curacy of the input information (statistical and expert risks evaluation errors) that
are very common in real life. Under these conditions, it is highly recommended
to get numerical bounds of possible changes to the input data that for any small
perturbation the efficiency of at least one originally extreme portfolio is preserved.

Following [3], the strong stability (in terminology of [4], T1-stability) radius of
Zs

m (R, I1, I2, . . . , Iu) , s,m ∈ N, with Hölder’s norms lp, lq and lt in spaces Rn,Rm

and Rs, respectively, is defined as:

ρ=ρsu
m (p, q, t) =

{

supΞpqt if Ξpqt 6= ∅,
0 if Ξpqt=∅.

where
Ξpqt={ε> 0 : ∀R′ ∈ Ωpqt(ε) (Gsu

m (R+R′)∩Gsu
m (R) 6= ∅)};
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Ωpqt(ε) ={R′ ∈ Rm×n×s : ‖R′‖pqt<ε} is the set of perturbing matrices R′ with

cuts R′
k ∈ Rm×n, k ∈ Ns;

Gsu
m (R + R′) is the set of (I1, I2, . . . , Iu)-solutions of the perturbed problem

Zsu
m (R+R′);

‖R′‖pqt is the norm of matrix R′= [r′ijk].

Thus the strong stability radius of the problem Zsu
m (R) is an extreme level of

independent perturbations of elements of matrix R ∈ Rm×n×s such that the sets
Gsu

m (R) and Gsu
m (R+R′) are never disjoint.

Obviously, if Gsu
m (R) =X, then the strong stability radius is not bounded. For

this reason, the problem with X\Em
s (R) 6= ∅ is called non-trivial.

3 Auxiliary statements and lemmas

Let v be any of the above-numbers p, q, t. For the number v, let v∗ be the
number conjugate to v and defined as:

1/v + 1/v∗= 1, 1 <v<∞.

We also set v∗= 1 if v=∞, and v∗=∞ otherwise. We assume that v and v∗ be taken
from [1,∞], and conjugate. In addition to the above, we assume that 1/v= 0 if v=∞.

Further we will use the well-known Hölder’s inequality

|aT b| ≤ ‖a‖v‖b‖v∗ (5)

that is true for any two vectors a and b of the same dimension.

It is also well-known that Hölder’s inequality becomes an equality for 1 <v<∞
if and only if

a) one of a or b is the zero vector;

b) the two vectors obtained from non-zero vectors a and b by raising their compo-
nents’ absolute values to the powers of v and v∗, respectively, are linearly dependent
(proportional), and sign (aibi) is independent of i.

When v= 1, (3) transforms into the following inequality:

|
∑

i∈Nn

aibi| ≤ max
i∈Nn

|bi|
∑

i∈Nn

|ai|.

The last holds as equality if, for example, b is the zero vector or if aj 6= 0 for some
j such that |bj | =‖b‖∞ 6= 0, and ai= 0 for all i ∈ Nn\{j}.

When v=∞, (3) transforms into the following inequality:

|
∑

i∈Nn

aibi| ≤ max
i∈Nn

|ai|
∑

i∈Nn

|bi|.

The last holds as equality if, for example, b is the zero vector or if ai=σsign(bi) for
all i ∈ Nn and σ ≥ 0.
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It is easy to see that for any a= (a1, a2, ..., an)T ∈ Rn with

|aj| =α, j ∈ Nn,

the following equality holds
‖a‖v=αn

1/v (6)

for any v ∈ [1,∞].
The following two lemmas can easily be proven.

Lemma 1. Given two portfolios x, x0 ∈ X, two market states i, i′ ∈ Nm and a fixed
risk k ∈ Ns, the following statement is true for any p, q ∈ [1,∞]:

rikx− ri′kx
0 ≥ −‖Rk‖pq‖(‖x‖p∗ , ‖x

0‖p∗)‖ν ,

where Rk ∈ Rm×n is the k-th cut of matrix R ∈ Rm×n×s with rows r1k, r2k, ..., rmk ,
ν = min{p∗, q∗}.

Proof. Let i 6= i′. Then, using Hölder’s inequality (5), we get

rikx− ri′kx
0 ≥ −(‖rik‖p‖x‖p∗ + ‖ri′k‖p‖x‖p∗) ≥

≥ ‖(‖rik‖p, ‖ri′k‖p)‖q ‖(‖x‖p∗ , ‖x
0‖p∗)‖q∗ ≥

≥ −‖Rk‖pq ‖(‖x‖p∗ , ‖x
0‖p∗)‖q∗ ≥ −‖Rk‖pq ‖(‖x‖p∗ , ‖x

0‖p∗)‖ν .

For i = i′, using inequalities (4), and Hölder’s inequality (5) we deduce

rikx− ri′kx
0 ≥ −‖rik‖p ‖x− x0‖p∗ ≥ −‖Rk‖pq ‖x− x0‖p∗ ≥

≥ −‖Rk‖pq ‖(‖x‖p∗ , ‖x
0‖p∗)‖q∗ ≥ −‖Rk‖pq ‖(‖x‖p∗ , ‖x

0‖p∗)‖ν .

From the definition of Gs
m (R, I1, I2, . . . , Iu), the following claim holds straight-

forward.

Lemma 2. A portfolio x /∈ Gs
m (R, I1, I2, . . . , Iu) if and only if x /∈ P (RIv) for any

index v ∈ Nu.

4 Main result

For non-trivial problem Zsu
m (R) = Zsu

m (R, I1, I2, . . . , Iu), we introduce the follow-
ing notation

ϕ = ϕsu
m (p, q) = min

x 6∈Gsu
m (R)

min
v∈Nu

max
x′∈P (x,RIv )

min
k∈Iv

g(x.x′, Rk)

‖(‖x‖p∗ , ‖x′‖p∗)‖γ
,

ψ = ψsu
m (p, q, t) = max

x′∈Gsu
m (R)

max
v∈Nu

min
x 6∈Gsu

m (R)

‖[g(x, x′, RIv)]
+‖t

‖(‖x‖p∗ , ‖x′‖p∗)‖γ
,
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χ = χsu
m (p, q, t) = n1/pm1/qs1/t min

x 6∈Gsu
m (R)

max
v∈Nu

max
x′∈Gsu

m (R)
max
k∈Iv

g(x, x′, Rk)

‖x− x′‖1
,

where
g(x, x′, Rk) = f(x,Rk) − f(x′, Rk), k ∈ Iv,

g(x, x′, RIv) = f(x,RIv) − f(x′, RIv),

P (x,RIv) = P (RIv) ∩X(x,RIv ),

γ = min{p∗, q∗}.

Here [y]+ = (y+
1 , y

+
2 , . . . , y

+
h ) is a positive projection of vector

y = (y1, y2, . . . , yh) ∈ Rh, i.e. y+
k = max{0, yk}, k ∈ Nh. It is easy to see that

ϕ, ψ, χ ≥ 0.

Theorem 1. Given s,m ∈ N, u ∈ Ns and p, q, t ∈ [1,∞], for the strong stability
radius ρ = ρsu

m (p, q, t) of s-criteria non-trivial problem Zsu
m (R), the following bounds

are valid:

0 < max{ϕsu
m (p, q), ψsu

m (p, q, t)} ≤ ρm
s (p, q, t) ≤ min{χsu

m (p, q, t), ‖R‖pqt}.

Proof. Since

∀x′ ∈ Gsu
m (R) ∀x 6∈ Gsu

m (R) ∃v ∈ Nu (f(x,RIv) ≻ f(x′, RIv)),

the inequalities ψ,χ > 0 are evident.
Now we show that

ρ = ρsu
m (p, q, t) ≥ ϕsu

m (p, q) = ϕ.

If ϕ = 0, the inequality above is evident, so we assume ϕ > 0.
Let the perturbing matrix R′ = [r′ijk] ∈ Rm×n×s with cuts R′

k, k ∈ Ns, be taken
from the set Ωpqt(ϕ). According to the definition of the number ϕ, and due to
inequality (4), we obtain

∀v ∈ Nu ∀x 6∈ Gsu
m (R) ∃x0 ∈ P (x,RIv) ∀k ∈ Iv

(

g(x, x0, Rk)

‖(‖x‖p∗ , ‖x0‖p∗)‖γ
≥ ϕ > ‖R′‖pqt ≥ ‖R′

k‖pq

)

.

Thus, due to Lemma 1, for any criterion v ∈ Nu there exists a portfolio x0 6= x
such that

g(x, x0, Rk +R′
k) = f(x,Rk +R′

k) − f(x0, Rk +R′
k) =

= max
i∈Nm

(rik + r′ik)x− max
i∈Nm

(rik + r′ik)x
0 =

= min
i∈Nm

max
i′∈Nm

(rikx+ r′ikx− ri′kx
0 − r′i′kx

0) ≥

≥ f(x,Rk) − f(x0, Rk) − ‖R′
k‖pq ‖(‖x‖p∗ , ‖x

0‖p∗)‖γ =
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= g(x, x0, Rk) − ‖R′
k‖pq ‖(‖x‖p∗ , ‖x

0‖p∗)‖γ > 0, k ∈ Iv,

where r′ik is the i-th row of the k-th cut R′
k of the matrix R′. This implies

x 6∈ P (RIv +R′
Iv

), v ∈ Nu.

Therefore according to Lemma 2, we obtain that

x 6∈ Gsu
m (R +R′).

Summarizing and taking into account that x 6∈ Gsu
m (R), we conclude that for any

perturbing matrix R′ ∈ Ωpqt(ϕ), any portfolio x ∈ Gsu
m (R+R′) is also an element of

Gsu
m (R), i.e. inequality ρ ≥ ϕ is true.

Further, we prove the lower bound

ρ = ρsu
m (p, q, t) ≥ ψsu

m (p, q, t) = ψ.

We already know that ψ > 0. Therefore in order to prove ρ ≥ ψ, it suffices to show
that there exists a portfolio x∗ belonging to Gsu

m (R)∩Gsu
m (R+R′) for any perturbing

matrix R′ = [r′ijk] ∈ Ωpqt(ψ).
Since the problem Zsu

m (R) is non-trivial, according to the definition of ψ, we have

∃x0 ∈ Gsu
m (R) ∃w ∈ Nu ∀x 6∈ Gsu

m (R)

(

‖[g(x, x0, RIw)]+‖t ≥ ψ‖(‖x‖p∗, ‖x
0‖p∗)‖γ > 0

)

. (7)

Further we show that the formula

∀x 6∈ Gsu
m (R) ∀R′ ∈ Ωpqt(ψ) (x 6∈ X(x0, RIw +R′

Iw
)) (8)

holds.
We prove this by contradiction. Assume the opposite, i.e. that formula

∃x̃ 6∈ Gsu
m (R) ∃R̃ ∈ Ωpqt(ψ) (x̃ ∈ X(x0, RIw + R̃Iw))

holds. Then we get

f(x̃, RIw + R̃Iw) ≺ f(x0, RIw + R̃Iw).

Using Lemma 1 for any index k ∈ Iw, we obtain

0 ≥ g(x̃, x0, Rk + R̃k) = f(x̃, Rk + R̃k) − f(x0, Rk + R̃k) =

= max
i∈Nm

(rik + r̃ik)x̃− max
i∈Nm

(rik + r̃ik)x
0 =

= min
i∈Nm

max
i′∈Nm

(rikx̃− ri′kx
0 + r̃ikx̃− r̃i′kx

0) ≥

≥ g(x̃, x0, Rk) − ‖R̃k‖pq ‖(‖x̃‖p∗ , ‖x
0‖p∗)‖γ .
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Therefore, we get

g(x̃, x0, Rk) ≤ ‖R̃k‖pq ‖(‖x̃‖p∗ , ‖x
0‖p∗)‖γ , k ∈ Iw.

Then we continue

[g(x̃, x0, Rk)]
+ ≤ ‖R̃k‖pq ‖(‖x̃‖p∗ , ‖x

0‖p∗)‖γ , k ∈ Iw.

As a result we get a formula contradicting (7)

‖[g(x̃, x0, RIw)]+‖t ≤ ‖R̃Iw‖pqt ‖(‖x̃‖p∗ , ‖x
0‖p∗)‖γ ≤

≤ ‖R̃‖pqt ‖(‖x̃‖p∗ , ‖x
0‖p∗)‖γ < ψ‖(‖x̃‖p∗ , ‖x

0‖p∗)‖γ .

This confirms the validity of (8).
Further we show a way of selecting a portfolio x∗ ∈ Gsu

m (R)∩Gsu
m (R+R′) where

R′ ∈ Ωpqt(ψ). If x0 ∈ Gsu
m (R +R′), then we get x∗ = x0. If x0 6∈ Gsu

m (R+ R′), then
due to Lemma 2 we obtain x0 6∈ P (RIv +R′

Iv
) for any v ∈ Nu, and in particular for a

fixed w ∈ Nu we have x0 6∈ P (RJw +R′
Iw

). Then due to external stability (see [16])
of the Pareto set P (RJw +R′

Iw
), one can chose a portfolio x∗ ∈ P (RJw +R′

Iw
) (and

hence x∗ ∈ Gsu
m (R+R′)) such that x∗ ∈ X(x0, RIw +R′

Iw
). Taking into account (8),

it is easy to see that x∗ ∈ Gsu
m (R). Thus, we just have ρ ≥ ψ proven.

Further, we prove the upper bound

ρ = ρsu
m (p, q, t) ≤ χsu

m (p, q, t) = χ.

According to the definition of χ and due to assumption about problem’s non-
triviality, we have

∃x0 = (x0
1, x

0
2, ..., x

0
n)T 6∈ Gsu

m (R) ∀v ∈ Nu ∀x ∈ Gsu
m (R) ∀k ∈ Iv

(

χ‖x0 − x‖1 ≥ n1/pm1/qs1/tg(x0, x,Rk)
)

. (9)

Let ε > χ, and let the elements of perturbing matrix R0 = [r0ijk] ∈ Rm×n×s be
defined as:

r0ijk =

{

−δ if i ∈ Nm, x0
j = 1, k ∈ Ns,

δ if i ∈ Nm, x0
j = 0, k ∈ Ns,

where δ satisfies
χ < δn1/pm1/qs1/t < ε. (10)

From the above according to (6), we get

‖r0ik‖p = δn1/p, i ∈ Nm, k ∈ Ns,

‖R0
k‖pq = δn1/pm1/q, k ∈ Ns,

‖R0‖pqt = δn1/pm1/qs1/t,

R0 ∈ Ωpqt(ε).
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In addition, all the rows r0ik, i ∈ Nm, of any k-th cut R0
k, k ∈ Ns, are constructed

identically and composed of δ and −δ. So, setting c = r0ik, i ∈ Nm, k ∈ Ns, we
deduce

c(x0 − x) = −δ‖x0 − x‖1 < 0

that is true for any portfolio x 6= x0. Using (9) and (10), we conclude that for any
portfolio x ∈ Gsu

m (R) and any v ∈ Nu, the following statements are true:

g(x0, x,Rk +R0
k) = f(x0, Rk +R0

k) − f(x,Rk +R0
k) =

= max
i∈Nm

(rik + c)x0 − max
i∈Nm

(rik + c)x = max
i∈Nm

rikx
0 − max

i∈Nm

rikx+ c(x0 − x) =

= g(x0, x,Rk) + c(x0 − x) ≤
(

χ(n1/pm1/qs1/t)−1 − δ
)

‖x0 − x‖1 < 0, k ∈ Iv.

This implies x 6∈ P (RIv + R′
Iv

) for any v ∈ Nu. Then due to Lemma 2 we have
x 6∈ Gsu

m (R+R0). Thus, for any ε > χ there exists a perturbing matrix R0 ∈ Ωpqt(ε)
such that Gsu

m (R) ∩Gsu
m (R +R0) = ∅, i.e. ρ < ε for any ε > χ. Hence, ρ ≤ χ.

Finally, we show
ρ = ρsu

m (p, q, t) ≤ ‖R‖pqt.

Let x0 = (x0
1, x

0
2, ..., x

0
n)T 6∈ Gsu

m (R) and ε > ‖R‖pqt, and let us fix δ satisfying
condition

0 < δn1/pm1/qs1/t < ε− ‖R‖pqt. (11)

We introduce an auxiliary matrix V = [vijk] ∈ Rm×n×s with cuts Vk, k ∈ Ns,
defined as follows:

vijk =

{

−δ if i ∈ Nm, x0
j = 1, k ∈ Ns,

δ if i ∈ Nm, x0
j = 0, k ∈ Ns.

Using (6), we obtain

‖Vk‖pq = δn1/pm1/q, k ∈ Ns,

‖V ‖pqt = δn1/pm1/qs1/t. (12)

It is easy to see that all rows of Vk, k ∈ Ns, are identical and composed of δ and
−δ. So, we get that for any v ∈ Nu the following formula

f(x0, Vk) − f(x, Vk) = −δ‖x0 − x‖1 < 0, k ∈ Iv, (13)

is true for any x 6= x0, and in particular for x ∈ Gsu
m (R).

Further, let R0 ∈ Rm×n×s be a perturbing matrix with cuts R0
k, k ∈ Ns, defined

as:
R0

k = Vk −Rk, k ∈ Ns, (14)

i.e. R0 = V −R. Using (11) and (12), we deduce

‖R0‖pqt ≤ ‖V ‖pqt + ‖R‖pqt = δn1/pm1/qs1/t + ‖R‖pqt < ε,
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i.e. R0 ∈ Ωpqt(ε).

Additionally, using (13) and (14) for any index v ∈ Nu, we have

g(x0, x,Rk +R0
k) = f(x0, Rk +R0

k) − f(x,Rk +R0
k) =

= f(x0, Vk) − f(x, Vk) = −δ‖x0 − x‖1 < 0, k ∈ Iv,

i.e. x 6∈ P (RIv +R0
Iv

) for any v ∈ Nu. Therefore, due to Lemma 2 x 6∈ Gsu
m (R+R0).

Summarizing, we get

∀ε > ‖R‖pqt ∃R0 ∈ Ωpqt(ε)
(

Gsu
m (R) ∩Gsu

m (R+R0) = ∅
)

.

The last implies ρ ≤ ‖R‖pqt.

5 Corollaries

From theorem 1 we obtain a series of known results. For the completeness
of description we list most interesting of them below. The first corollary describes
strong stability bounds for an extreme case u = 1 where the set of efficient portfolios
Gs

m(R,Ns) transforms into the set of Pareto efficient portfolios P s
m(R).

Corollary 1. [8] For s,m ∈ N and p, q, t ∈ [1,∞], the strong stability radius
ρs1

m(p, q, t) of s-criteria non-trivial problem Zs
m(R,Ns) of finding the set of Pareto

efficient portfolios P s
m(R) has the following valid lower and upper bounds:

0 < max{ϕs1
m(p, q), ψs1

m (p, q, t)} ≤ ρs1
m(p, q, t) ≤ min{χs1

m(p, q, t), ‖R‖pqt},

where

ϕs1
m(p, q) = min

x 6∈P s
m(R)

max
x′∈P (x,R)

min
k∈Ns

g(x, x′, Rk)

‖(‖x‖p∗ , ‖x′‖p∗)‖γ
,

ψs1
m (p, q, t) = max

x′∈P s
m(R)

min
x 6∈P s

m(R)

‖[g(x, x′, Rk)]
+‖t

‖(‖x‖p∗ , ‖x′‖p∗)‖γ
,

χs1
m(p, q, t) = n1/pm1/qs1/t min

x 6∈P s
m(R)

max
x′∈P s

m(R)
max
k∈Ns

g(x, x′, Rk)

‖x− x′‖1
.

Therefore, in particular case where p = q = t = ∞, we have

0 < max
x′∈P s

m(R)
min

x 6∈P s
m(R)

max
k∈Ns

g(x, x′, Rk)

‖x+ x′‖1
≤ ρs1

m(∞,∞,∞) ≤

≤ min
x 6∈P s

m(R)
max

x′∈P s
m(R)

max
k∈Ns

g(x, x′, Rk)

‖x− x′‖1
.

The second corollary describes strong stability bounds for another extreme case
u = s where the set of efficient portfolios Gs

m(R, {1}, {2}, . . . , {s}) transforms into
the set of extreme portfolios Es

m(R).
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Corollary 2. [20] For s,m ∈ N and p, q, t ∈ [1,∞], the strong stability radius
ρss

m(p, q, t) of s-criteria non-trivial problem Zs
m(R, {1}, {2}, . . . , {s}) of finding the

set of extreme portfolios Es
m(R) has the following valid lower and upper bounds:

0 < max{ϕss
m(p, q), ψss

m (p, q)} ≤ ρss
m(p, q, t) ≤ min{χss

m(p, q, t), ‖R‖pqt},

where

ϕss
m(p, q) = min

x 6∈Es
m(R)

min
k∈Ns

max
x′∈E(Rk)

g(x, x′, Rk)

‖(‖x‖p∗ , ‖x′‖p∗)‖γ
,

ψss
m(p, q) = max

x′∈Es
m(R)

max
k∈Ns

min
x 6∈Es

m(R)

g(x, x′, Rk)

‖(‖x‖p∗ , ‖x′‖p∗)‖γ
,

χss
m(p, q, t) = n1/pm1/qs1/t min

x 6∈Es
m(R)

max
k∈Ns

max
x′∈Es

m(R)

g(x, x′, Rk)

‖x− x′‖1
.

Therefore, in particular case where p = q = t = ∞, we have

0 < min
x 6∈Es

m(R)
min
k∈Ns

max
x′∈E(Rk)

g(x, x′, Rk)

‖x+ x′‖1
≤ ρss

m(∞,∞,∞) ≤

≤ min
x 6∈Es

m(R)
max
k∈Ns

max
x′∈Es

m(R)

g(x, x′, Rk)

‖x− x′‖1
.

6 Conclusion

As a summary, it is worth mentioning that the bounds proven in Theorem 1 and
corollaries, are mostly theoretical due to their analytical and enumerative structures.
Even for a single objective, the difficulty of stability radius exact value calculation is
a long-standing challenge pointed out in [13, 14]. In practical applications, one can
try to get reasonable approximation of the bounds using some meta-heuristics, e.g.
evolutionary algorithms or Monte-Carlo simulation. Another possibility to continue
research in this direction is to specify some particular classes of problems where
computational burden can be drastically reduced due to a unique structure of the
set of efficient portfolios.
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