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Unified Approach to Starlike and Convex Functions

Involving Poisson Distribution Series
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Abstract. The motivation behind present paper is to establish connection between
analytic univalent functions T Sp(ζ, γ, δ) and UCT (ζ, γ, δ) by applying Hadamard
product involving Poisson distribution series. We likewise consider an integral opera-
tor connection with this series.
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1 Introduction

We letting A denote the class of functions f of the form:

f(z) = z + a2z
2 + a3z

3 + ... (1)

which are analytic in U and S the subclass of A which includes univalent functions
normalized by conditions f(0) = 0 = f′(0)−1. Let T be the subclass of A consisting
of functions whose non zero coefficient of the form second on, given by (see [19])

f(z) = z −
∞
∑

n=2

an zn. (2)

Kanas and Wisniowska [11] introduced the class δ−UCV which includes geomet-
ric aspect in connection with conic domains. The family δ−UCV is of extraordinary
enthusiasm for it contains some notable, just as new, classes of univalent functions.
The class δ − UCV map each circular arc contained in the unit disk U with a cen-
ter ξ, |ξ| ≤ δ (0 ≤ δ < 1), onto a convex arc. The notion of δ-uniformly convex
function is straightforward expansion of classical convexity. In 2011, Murugusun-
daramoorthy and Magesh [13] unified the classes Sp(γ, δ) and UCV (γ, δ) into the
classes Sp(ζ, γ, δ) and UCV (ζ, γ, δ) which is defined as, a function f ∈ A is said
to in the class δ-uniformly starlike functions of order γ, denoted by Sp(ζ, γ, δ) if it
satisfies analytic criterion

Re

{

zf ′(z)

(1 − ζ)f(z) + ζzf ′(z)
− γ

}

> δ

∣

∣

∣

∣

∣

zf ′(z)

(1 − ζ)f(z) + ζzf ′(z)
− 1

∣

∣

∣

∣

∣

, z ∈ U (3)
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and the f ∈ A is said to in the class δ-uniformly convex functions of order γ, denoted
by UCV (ζ, γ, δ) if it satisfies analytic criterion

Re

{

f ′(z) + zf ′′(z)

f ′(z) + ζzf ′′(z)
− γ

}

> δ

∣

∣

∣

∣

∣

f ′(z) + zf ′′(z)

f ′(z) + ζzf ′′(z)
− 1

∣

∣

∣

∣

∣

, z ∈ U. (4)

We note that T Sp(ζ, γ, δ) = Sp(ζ, γ, δ) ∩ T and UCT = UCV ∩ T .

Remark 1. From among the many choices of ζ, γ, δ which would provide the follow-
ing known subclasses:
1) T Sp(0, γ, δ) = T Sp(γ, δ) (see [4]),
2) T Sp(0, 0, δ) = T Sp(δ) (see [20]),
3) T Sp(0, γ, 1) = T Sp(γ) (see [4]),
4) T Sp(ζ, γ, 0) = T (ζ, γ) (see [2],[16]),
5) T Sp(0, γ, 0) = T ∗(γ) (see [19]),
6) UCT (0, γ, δ) = UCT (γ, δ) (see [4]),
7) UCT (0, 0, δ) = UCT (δ) (see [21]),
8) UCT (0, γ, 1) = UCT (γ) (see [4]),
9) UCT (ζ, γ, 0) = C(ζ, γ) (see [2]),
10) UCT (0, γ, 0) = C(γ) (see [19]).

2 Preliminary Results

A remarkably large number of special functions (series) have been presented in
geometric function theory. Among those special functions, due mainly to greater
abstruseness of their properties, Bieberbach conjecture have found special atten-
tion in various problems of geometric function theory. Recently, a large number of
special functions involving hypergeometric functions and their various extension (or
generalizations) have been investigated, see also ([3],[5],[6],[8],[9],[15],[18],[22],[23]).

Recently, Porwal [16] introduced a power series as

χ(p, z) = z +
∞
∑

n=2

e−ppn−1

(n − 1)!
zn, z ∈ U, (5)

where p > 0. Further Porwal [16] defined a series

ϕ(p, z) = 2z − χ(p, z) = z −

∞
∑

n=2

e−ppn−1

(n − 1)!
zn, z ∈ U. (6)

The convolution (or Hadamard product) of two series

(f ∗ g)(z) = (g ∗ f)(z) =

∞
∑

n=2

anbnzn.
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Porwal and Kumar [17] introduced the linear operator I(p)f : A → A defined by
using the Hadamard product as

I(p)f = χ(p, z) ∗ f(z) = z +

∞
∑

n=2

e−ppn−1

(n − 1)!
anzn, z ∈ U. (7)

Altinkaya and Yalcin [1] gave obligatory conditions for the Poisson distribution
series belonging to the class T (γ, δ). Murugusundaramoorthy et al.[14] investigated
some characterization for Poisson distribution series. In recent times, the univalent
function theorists have shown good affinity towards Possion distribution series by
relating it with the area of geometric function theory (see also,[10] [12],[16],[17]). To
prove our results, we will need the following results.

Theorem 1. [13] A function f(z) of the form (1) is in T Sp(ζ, γ, δ) if and only if

∞
∑

n=2

[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
]

|an| ≤ 1 − γ. (8)

Theorem 2. [13] A function f(z) of the form (1) is in UCT (ζ, γ, δ) if and only if

∞
∑

n=2

n
[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
]

|an| ≤ 1 − γ. (9)

Inspired by results between various subclasses of analytic univalent functions by
utilizing hypergeometric functions ([9],[15],[22]), Bessel functions ([3],[5],[6],[8]) and
Struve functions ([23]), we established connections between the classes UCT (ζ, γ, δ)
and T Sp(ζ, γ, δ) by applying the above mentioned results (8), (9) and convolution
operator given by (7).

3 Main Results

Theorem 3. The function χ(p, z) is in T Sp(ζ, γ, δ) if

pep[(1 + δ) − ζ(γ + δ)] ≤ 1 − γ (10)

holds for p > 0. Moreover ϕ(p, z) belongs to T Sp(ζ, γ, δ) if and only if (10) holds.

Proof. In view of Theorem 1, it is sufficient to show that

∞
∑

n=2

[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!
e−p ≤ 1 − γ.

Let

Ω1(p, ζ, γ, δ) =

∞
∑

n=2

[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!
e−p
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= e−p

∞
∑

n=2

[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!

= e−p

[

{(1 + δ) − ζ(γ + δ)}
∞
∑

n=2

pn−1

(n − 2)!
+ (1 − γ)

∞
∑

n=2

pn−1

(n − 1)!

]

= e−p
[

{(1 + δ) − ζ(γ + δ)}pep + (1 − γ)(ep − 1)
]

= [(1 + δ) − ζ(γ + δ)]p + (1 − γ)(1 − e−p).

But the last expression is bounded above by 1 − γ, if (10) holds. Since

ϕ(p, z) = 2z − χ(p, z) = z −
∞
∑

n=2

e−ppn−1

(n − 1)!
zn (11)

the necessary of (10) for 2z − χ(p, z) to be in T Sp(ζ, γ, δ) follows from Theorem
1.

Remark 2. Putting δ = 0 in Theorem 3, we obtain the result investigated by Porwal
[16] Theorem 3.

Corollary 1. The function χ(p, z) is in T Sp(γ, δ) if

pep(1 + δ) ≤ 1 − γ (12)

holds for p > 0.

Corollary 2. The function χ(p, z) is in T Sp(γ) if

pep ≤ 1 − γ (13)

holds for p > 0.

Corollary 3. The function χ(p, z) is in T Sp(ζ, γ, δ) if

ep
[

{(1 + δ) − ζ(γ + δ)}p
]

≤ 1 − γ (14)

holds for p > 0.

Theorem 4. The function χ(p, z) is in UCT (ζ, γ, δ) if

ep
(

{(1 + δ) − ζ(γ + δ)}p2 + {3(1 + δ) − (1 + 2ζ)(γ + δ)}p
)

≤ 1 − γ (15)

holds for p > 0.
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Proof. In view of Theorem 2, it is sufficient to show that

∞
∑

n=2

n
[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!
e−p ≤ 1 − γ.

Let

Ω2(p, ζ, γ, δ)

=
∞
∑

n=2

n
[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!
e−p

= e−p

∞
∑

n=2

n
[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!

= e−p

[

{(1 + δ) − ζ(γ + δ)}

(

∞
∑

n=2

pn−1

(n − 3)!
+ 3

∞
∑

n=2

pn−1

(n − 2)!
+

∞
∑

n=2

pn−1

(n − 1)!

)

+ {ζ(γ + δ) − (γ + δ)}

(

∞
∑

n=2

pn−1

(n − 2)!
+

∞
∑

n=2

pn−1

(n − 1)!

)]

= e−p
(

{(1 + δ) − ζ(γ + δ)}p2ep + {3(1 + δ) − (1 + 2ζ)(γ + δ)}pep

+ (1 − γ)(ep − 1)
)

=
(

{(1 + δ) − ζ(γ + δ)}p2 + {3(1 + δ) − (1 + 2ζ)(γ + δ)}p

+ (1 − γ)(1 − e−p)
)

.

But the last expression is bounded above by 1 − γ, if (15) holds.

Remark 3. Putting δ = 0 in Theorem 4, we obtain the result investigated by Porwal
[16] Theorem 4.

Corollary 4. The function χ(p, z) is in UCT (γ, δ) if

pep
[

(1 + δ)p + 2δ − γ + 3
]

≤ 1 − γ (16)

holds for p > 0 .

Corollary 5. The function χ(p, z) is in UCT (γ) if

pep(p − γ + 3) ≤ 1 − γ (17)

holds for p > 0.

Corollary 6. The function χ(p, z) is in UCT (ζ, γ, δ) if

ep
(

{(1 + δ) − ζ(γ + δ)}p2 + {3(1 + δ) − (1 + 2ζ)(γ + δ)}p
)

≤ 1 − γ (18)

holds for p > 0.
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4 Inclusion Properties

A function f ∈ A is said to in the class Rτ
ν(δ), if it satisfies the inequality

∣

∣

∣

∣

∣

(1 − δ)f(z)
z

+ νf ′(z) − 1

2τ(1 − δ) + (1 − ν)f(z)
z

+ νf ′(z) − 1

∣

∣

∣

∣

∣

< 1, (z ∈ U)

where τ ∈ C \ {0}, δ < 1, 0 < ν ≤ 1.

The class was introduced by Swaminathan [18]. for ν = 1 the class is reduces to
familiar class introduced by Dixit and Pal [7]. Making use of following lemma, we
will prove inclusion result on the class UCT (ζ, γ, δ).

Lemma. If f ∈ Rτ
ν(δ) is of the form (1) then

|an| =
2|τ |(1 − δ)

1 + ν(n − 1)
, n ∈ N \ {1}. (19)

The bounds given in (4) is sharp.

Theorem 5. Let p > 0, τ ∈ C \ {0}, δ < 1 and 0 < ν ≤ 1. If f ∈ Rτ
ν(δ), then

I(p, z)f ∈ UCT (ζ, γ, δ) if and only if

[

{(1 + δ) − ζ(γ + δ)}p + (1 − γ)(1 − e−p)
]

≤
ν(1 − γ)

2|τ |(1 − δ)
. (20)

Proof. In view of Lemma 4 it is sufficient to show that

∞
∑

n=2

n
[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!
e−p|an| ≤ 1 − γ.

Since f ∈ Rτ
ν(δ), then by Lemma 4, we have

|an| =
2|τ |(1 − δ)

1 + ν(n − 1)
.

Let

Ω3(p, ζ, γ, δ)

=

∞
∑

n=2

n
[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!
e−p|an| ≤ 1 − γ

=
∞
∑

n=2

n
[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!
e−p 2|τ |(1 − δ)

1 + ν(n − 1)

Since 1 + ν(n − 1) ≥ νn

Ω3(p, ζ, γ, δ)
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≤
2|τ |(1 − δ)

ν

∞
∑

n=2

[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!
e−p

≤
2|τ |(1 − δ)

ν

[

{(1 + δ) − ζ(γ + δ)}p + (1 − γ)(1 − e−p)
]

.

But the last expression is bounded by 1 − γ, if (20) holds.

Corollary 7. Let p > 0, τ ∈ C \ {0}, δ < 1. If f ∈ Rτ
1(δ), then I(p, z)f ∈

UCT (ζ, γ, δ) if and only if

[

{(1 + δ) − ζ(γ + δ)}p + (1 − γ)(1 − e−p)
]

≤
(1 − γ)

2|τ |(1 − δ)
. (21)

Corollary 8. Let p > 0, τ ∈ C\{0}, δ < 1. If f ∈ Rτ
1(δ), then I(p, z)f ∈ UCT (γ, δ)

if and only if
[

(1 + δ)p + (1 − γ)(1 − e−p)
]

≤
(1 − γ)

2|τ |(1 − δ)
. (22)

Theorem 6. Let p > 0, τ ∈ C \ {0}, δ < 1 and 0 < ν ≤ 1. If f ∈ Rτ
ν(δ), then

I(p, z)f ∈ T Sp(ζ, γ, δ) if and only if

[

{(1 + δ) + (1− ζ)(γ + δ)}(1− e−p)−
(γ + δ)

p
(1− e−p − pe−p)

]

≤
ν(1 − γ)

2|τ |(1 − δ)
. (23)

Proof. The proof of Theorem 6 is similar to the proof of Theorem 5, therefore we
omit the details involved.

Corollary 9. Let p > 0, τ ∈ C \ {0}, δ < 1. If f ∈ Rτ
1(δ), then I(p, z)f ∈

T Sp(ζ, γ, δ) if and only if

[

{(1 + δ) + (1− ζ)(γ + δ)}(1− e−p)−
(γ + δ)

p
(1− e−p − pe−p)

]

≤
(1 − γ)

2|τ |(1 − δ)
. (24)

Corollary 10. Let p > 0, τ ∈ C\{0}, δ < 1. If f ∈ Rτ
1(δ), then I(p, z)f ∈ T Sp(γ, δ)

if and only if

[

{(1 + δ) + (γ + δ)}(1 − e−p) −
(γ + δ)

p
(1 − e−p − pe−p)

]

≤
(1 − γ)

2|τ |(1 − δ)
. (25)

5 An Integral Operator

In this section, we define a particular integral operator I(p, z) as follows:

I(p, z) =

∫ z

0

χ(p, s)

s
ds. (26)

Theorem 7. If p > 0, then I(p, z) defined by (26) is in UCT (ζ, γ, δ) if and only if

pep[(1 + δ) + (1 − ζ)(γ + δ)] ≤ 1 − γ. (27)
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Proof. It is easy to see that

I(p, z) = z −

∞
∑

n=2

e−ppn−1

n!
zn, (28)

In view of Theorem 1 it is sufficient to show that

∞
∑

n=2

[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
]pn−1

n!
e−p ≤ 1 − γ.

Let

Ω4(p, ζ, γ, δ) =
∞
∑

n=2

[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!
e−p

= e−p

∞
∑

n=2

[

n(1 + δ) − (γ + δ)(1 + nζ − ζ)
] pn−1

(n − 1)!

= e−p

[

{(1 + δ) − ζ(γ + δ)}
∞
∑

n=2

pn−1

(n − 2)!
+ (1 − γ)

∞
∑

n=2

pn−1

(n − 1)!

]

= e−p
[

{(1 + δ) − ζ(γ + δ)}pep + (1 − γ)(ep − 1)
]

= [(1 + δ) − ζ(γ + δ)]p + (1 − γ)(1 − e−p).

But the last expression is bounded by 1 − γ, if (27) holds.

Theorem 8. If p > 0, then I(p, z) defined by (26) is in T Sp(ζ, γ, δ) if and only if

[

{(1 + δ) + (1 − ζ)(γ + δ)}(1 − e−p) −
(γ + δ)

p
(1 − e−p − pe−p)

]

≤ (1 − γ). (29)

Proof. The proof of Theorem 8 is similar to the proof of Theorem 7, therefore we
omit the details involved.
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