
BULETINUL ACADEMIEI DE ŞTIINŢE
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Abstract. In this paper the algebraic properties of the deterministic processes with
dynamic represented by a homogeneous linear recurrence over the field C are studied.
It is started with an overview of homogeneous linear recurrent processes over C and
its subsets. Next, it is gone deeper into homogeneous linear recurrent processes over
numerical rings. After that, the recurrence criteria over sign-based ring subsets are
analyzed. Also, the deterministic processes with dynamic represented by a Littlewood,
Newman or Borwein homogeneous linear recurrence are considered.
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1 Introduction

The main goal of this paper is to study the algebraic properties of the determi-
nistic processes with dynamic represented by a homogeneous linear recurrence over
the field C. We delve into the subsets of C to see if the dynamic of the given process
is also a homogeneous linear recurrence over given subset in certain conditions. The
challenge appears when we get out from comfort zone, given by field properties.

So, we start with an overview of homogeneous linear recurrent processes over C

and its subsets. We remind the main definitions and properties, like generating vec-
tor, characteristic polynomial and minimality. Also, we formulate the minimization
method based on matrix rank definition.

Next, we go deeper into homogeneous linear recurrent processes over numerical
rings. We formulate and prove necessary and sufficient conditions for a homogeneous
linear recurrence over C to be also a homogeneous linear recurrence over a subfield
or subring, like R, Q, Z or an extension field of Q.

After that, we are interested in recurrence criteria over sign-based ring subsets.
We split the ring into two subsets, one containing the positive elements and the sec-
ond containing the negative ones. It is shown that the recurrence criteria over these
subsets are based on the number of positive real roots of the minimal characteristic
polynomial over that ring and, in the most complex case when it is a single one,
they are also based on the relationship of that positive real root with the rest of the
roots.

The last section is dedicated to deterministic processes with dynamic represented
by a Littlewood, Newman or Borwein homogeneous linear recurrence. Mainly, these
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are homogeneous linear recurrences over subsets of the set {−1, 0, 1}. Several re-
sults are presented, based on the properties of Littlewood, Newman and Borwein
polynomials.

2 Homogeneous Linear Recurrences over subsets of C

In this section we will remind the definitions regarding homogeneous linear recur-
rences from [5] and we will provide several main properties, theoretically grounded
in [6].

We consider a positive integer number m and a subset K of C. A sequence
a = {an}∞n=0 ⊆ C is a homogeneous linear m−recurrence over K if there exists
q = (qk)

m−1
k=0 ∈ Km such that

an =

m−1
∑

k=0

qkan−1−k, ∀n ≥ m.

Here q represents the generating vector and I
[a]
m = (an)m−1

n=0 represents the initial
state of the sequence a. The sequence a is a homogeneous linear recurrence over K

if there exists a positive integer m such that the sequence a is a homogeneous linear
m-recurrence over K. If qm−1 6= 0 then the sequence a is called non-degenerate,
otherwise it is called degenerate.

Denote:

Rol[K][m] is the set of non-degenerate homogeneous linear m-recurrences over K;
Rol[K] is the set of all non-degenerate homogeneous linear recurrences over K;
G[K][m](a) is the set of all generating vectors of length m of a ∈ Rol[K][m];
G[K](a) is the set of all generating vectors of the sequence a ∈ Rol[K].

The function G[a] : C → C, G[a](z) =
∞
∑

n=0
anzn, represents the generating

function of the sequence a = (an)∞n=0 ⊆ C. On the other hand, the function

G
[a]
t : C → C, G

[a]
t (z) =

t−1
∑

n=0
anzn, represents the partial generating function of

order t of the sequence a = (an)∞n=0 ⊆ C.
Let a ∈ Rol[K][m], q ∈ G[K][m](a). For this sequence we will consider the

unit characteristic polynomial H
[q]
m (z) = 1−zG

[q]
m (z) and the characteristic equation

H
[q]
m (z) = 0. Every polynomial of the form H

[q]
m,α(z) = αH

[q]
m (z) also represents a

characteristic polynomial. We introduce the following notations:

H[K][m](a) is the set of characteristic polynomials of degree m of a ∈ Rol[K];
H[K](a) is the set of characteristic polynomials of sequence a ∈ Rol[K].

The non-zero sequence (with at least one non-zero element) a ∈ Rol[K] is called
m-minimal over K if a ∈ Rol[K][m] and a 6∈ Rol[K][t], ∀t < m. In this case, the
number m represents the dimension of the sequence a over K and it is denoted
dim[K](a) = m. The dimension of the zero sequence (with all elements equal to 0)
is considered 0.
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It is known from [6] that the minimal generating vector is unique, i.e.

|G[K][dim[K](a)](a)| = 1.

This unique minimal generating vector determines the unique minimal unit charac-
teristic polynomial P (Z) ∈ H[K][dim[K](a)](a). Next, we will omit the word ”unit”
and we will consider the polynomial P (z) as the minimal characteristic polynomial
of the sequence a.

Further, in [6], it was proved that the set of all characteristic polynomials is

H[K](a) = {Q(z) ∈ K[z] | Q(z)
...P (z), Q(0) 6= 0}.

This result will allow us to check if a homogeneous linear recurrence a over K is
also a homogeneous linear recurrence over a subset K2 of K. Practically, we need to
determine if there exists a multiple Q(z) of the minimal characteristic polynomial
P (z), that has the free term equal to 1 and the opposite of the rest of coefficients
belonging to the set K2.

Another important result, theoretically grounded in [6], is the following theorem
that provides an efficient minimization method based on matrix rank definition.

Theorem 1. If a ∈ Rol[C][m] is a non-zero sequence, then

dim[C](a) = R = rank(A[a]
m )

and

q = (q0, q1, . . . , qR−1) ∈ G[C][R](a),

where the reverse vector x = (qR−1, qR−2, . . . , q0) is the unique solution of the system

with linear equations A
[a]
R xT = (f

[a]
R )T with free terms f

[a]
R = (aR, aR+1, . . . , a2R−1)

and the matrix A
[a]
R = (ai+j)i,j=0,R−1 of the system.

3 Homogeneous Linear Recurrences over Numerical Rings

In this section the homogeneous linear recurrences over numerical rings will be
studied. In particular, these numerical rings can be one of the well known sets C,
R, Q, Z or an extension field of Q.

Theorem 2. Let K1 a set and K2 a subset of K1. If a ∈ Rol[K2][m], then

a ∈ Rol[K1][m] with the same generating vector.

Proof. Let a ∈ Rol[K2][m] and q ∈ G[K2][m](a). Then q ∈ Km
2 and, since K2 ⊆ K1,

we have q ∈ Km
1 . As result, we obtain that a ∈ Rol[K1][m] and q ∈ G[K1][m](a).

Theorem 3. Let K1 be a subring of C and K2 a subring of K1. Suppose that

a ∈ Rol[K1] with the minimal characteristic polynomial Q(z) over K1. If Q∗(z) is

the reciprocal polynomial of Q(z) and each complex root of Q∗(z) is integral over

K2, then a ∈ Rol[K2] with reciprocal polynomial of minimal-degree monic multiple

P (z) ∈ K2[z] of the polynomial Q∗(z) as minimal characteristic polynomial. Other-

wise, if Q∗(z) has a complex root, which is not integral over K2, then a 6∈ Rol[K2].
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Proof. Let a ∈ Rol[K1] with the minimal characteristic polynomial Q(z) over K1,
Q∗(z) the reciprocal polynomial of Q(z) and each complex root of Q∗(z) is inte-
gral over K2. This means that there exists a minimal-degree monic polynomial

P (z) ∈ K2[z], such that P (z)
...Q∗(z). In conclusion, we obtain that a ∈ Rol[K2] with

reciprocal polynomial of P (z) as minimal characteristic polynomial.
In the case when Q∗(z) has a root, which is not integral over K2, then Q∗(z)

does not have any multiple in K2[z], which implies that also Q(z) does not have any
multiple in K2[z], i.e. we have a 6∈ Rol[K2].

Corollary 1. Let K1 be a subfield of C and K2 a subfield of K1. If a ∈ Rol[K1]
with the minimal characteristic polynomial Q(z) over K1 and each root of Q(z) is

algebraic over K2, then a ∈ Rol[K2] with minimal-degree multiple P (z) ∈ K2[z]
of the polynomial Q(z) as minimal characteristic polynomial. Otherwise, if Q(z)
possesses a transcendental root over K2, then a 6∈ Rol[K2].

Proof. The proof follows immediately from Theorem 3. There is no need to use the
monic reciprocal polynomial for the characteristic polynomial Q(z), since the fields
are endowed with division algebraic operation, which allows us to make the free term
of the characteristic polynomial equal to 1.

Corollary 1 allows us to decide if a general homogeneous linear recurrence (over
C) is also a homogeneous linear recurrence over a subfield, like R, Q or an extension
field of Q. So, each homogeneous linear recurrence over C is also a homogeneous
linear recurrence over R, and, if its minimal characteristic polynomial over C or
R does not have a transcendental root over Q (respectively over an extension of
Q), then it is also a homogeneous linear recurrence over Q (respectively over given
extension of Q).

Next, Theorem 3 provides a criterion to decide if a homogeneous linear recurrence
over C is also a homogeneous linear recurrence over a subring, like Z. However, the
above remarks and the next theorem allow us to check easier if a homogeneous linear
recurrence over C is also a homogeneous linear recurrence over Z.

Theorem 4. Let a ∈ Rol[Q] with minimal characteristic polynomial Q(z). Then

a ∈ Rol[Z] if and only if Q(z) ∈ Z[z].

Proof. Let a ∈ Rol[Q] with minimal characteristic polynomial Q(z) (over Q). If
Q(z) ∈ Z[z], then it is obvious that a ∈ Rol[Z] and Q(z) ∈ H[Z](a).

Next, we consider the converse. Let a ∈ Rol[Z] with minimal characteristic
polynomial P (z) (over Z). Then a ∈ Rol[Q] and P (z) ∈ H[Q](a), which implies

that P (z)
...Q(z), i.e. there exists T (z) ∈ Q[z] such that P (z) = Q(z)T (z).

Since Q(z) ∈ Q[z] and Q(0) = 1, there exists q ∈ N∗ such that qQ(z) ∈ Z[z] and
qQ(0) = q. Similarly, since T (z) ∈ Q[z], P (0) = 1 and Q(0) = 1, there exists t ∈ N∗

such that tT (z) ∈ Z[z] and tT (0) = t. So, qtP (z) = (qQ(z)) · (tT (z)).
The relation P (z) ∈ Z[z] implies that the left side qtP (z) is divisible by qt.

Next, because qQ(z) ∈ Z[z], any integral divisor r of qQ(z) satisfies the inequality
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r ≤ qQ(0) = q. Similarly, since tT (z) ∈ Z[z], any integral divisor s of tT (z) satisfies
the inequality s ≤ tT (0) = t. In result, we have rs ≤ qt. But, due to fact that qt is
a divisor of (qQ(z)) · (tT (z)), this means that r = q and s = t, i.e. qQ(z) is divisible
by q and tT (z) is divisible by t. In conclusion, Q(z) ∈ Z.

4 Recurrence Criteria over Sign-Based Ring Subsets

In the context of this section, we will consider K a subset of R and (K,+, ·) a
ring with standard addition and multiplication arithmetic operations. In particular,
K can be one of the well known sets R, Q, Z or an extension field of Q.

Next, we will see in which conditions the sequence a ∈ Rol[R] is a homogeneous
linear recurrence over K or a subset of it: K∗

−, respectively K∗
+.

Lemma 1. The sets Rol[K−] and Rol[K∗
−] are equal. If P (z) ∈ H[K−][m](b), then

(z + 1)m−1P (z) ∈ H[K∗
−](b).

Proof. We will show that the sets Rol[K−] and Rol[K∗
−] are equal, i.e. Rol[K−] ⊆

Rol[K∗
−] and Rol[K∗

−] ⊆ Rol[K−].

Let ∀a ∈ Rol[K∗
−]. Since K∗

− ⊆ K−, we have a ∈ Rol[K−]. So, in consequence,
we obtain the inclusion Rol[K∗

−] ⊆ Rol[K−].

Now, we consider ∀b ∈ Rol[K−]. Let P (z) ∈ H[K−](b) be an arbitrary charac-
teristic polynomial of degree m of the sequence b. Then P (z) ∈ K+[z], which implies

that (z +1)m−1P (z) ∈ K∗
+[z]. Since (z +1)m−1P (z)

...P (z), we have b ∈ Rol[K∗
−] and

(z + 1)m−1P (z) ∈ H[K∗
−](b).

Lemma 2. The relation a ∈ Rol[K∗
−] holds if and only if a ∈ Rol[K] and its mi-

nimal characteristic polynomial Q(z) over K has no positive real roots. Additionally,

the characteristic polynomial of a over K∗
− can be chosen of the form (z + 1)nQ(z).

Proof. We consider a ∈ Rol[K∗
−]. Since K∗

− ⊆ K, we have a ∈ Rol[K]. Let
q = (qk)

m−1
k=0 ∈ G[K∗

−](a) be a generating vector of the sequence a ∈ Rol[K∗
−].

The corresponding characteristic polynomial is H
[q]
m (z) = 1 − z

m−1
∑

k=0

qkz
k ∈ K∗

+[z].

According to Descartes’ rule of signs (see [1]), the characteristic polynomial H
[q]
m (z)

has no positive real roots. Since the minimal characteristic polynomial Q(z) over

K is a divisor of the characteristic polynomial H
[q]
m (z), it also has no positive real

roots.

Now we consider that a ∈ Rol[K] and its minimal characteristic polynomial Q(z)
over K has no positive real roots. According to [1] and Lemma 1, there exists n0 ∈ N

such that, ∀n > n0, the polynomial (z + 1)nQ(z) has all its coefficients of the same

sign, i.e. (z + 1)nQ(z) ∈ R∗
+[z]. Since (z + 1)nQ(z) ∈ K∗

+[z] and (z + 1)nQ(z)
...Q(z),

we have a ∈ Rol[K∗
−] and H

[q]
m (z) = (z + 1)nQ(z) ∈ H[K∗

−](a).
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Lemma 3. If a ∈ Rol[K∗
−][m] and q ∈ G[K∗

−][m](a), then a ∈ Rol[K∗
+][m + 1] with

characteristic polynomial (1−αz)H
[q]
m (z), ∀α ∈ K, α > max

{

−q0, max
k=0,m−2

qk+1

qk

}

.

Proof. Let a ∈ Rol[K∗
−][m], q ∈ G[K∗

−][m](a) and α > max

{

−q0, max
k=0,m−2

qk+1

qk

}

,

where α ∈ K. Then we have H
[q]
m (z) = 1 − z

m−1
∑

k=0

qkz
k ∈ K∗

+[z], which implies that

(1 − αz)H [q]
m (z) = 1 −

m
∑

k=1

qk−1z
k − αz +

m
∑

k=1

αqk−1z
k+1 =

= 1 − (α + q0)z +

m
∑

k=2

qk−2

(

α −
qk−1

qk−2

)

zk + αqm−1z
m+1.

From the inequality α > max

{

−q0, max
k=0,m−2

qk+1

qk

}

> 0 we obtain

−(α + q0) < 0, αqm−1 < 0, qk−2

(

α −
qk−1

qk−2

)

< 0, k = 2,m.

Finally, since (1−αz)H
[q]
m (z)

...H
[q]
m (z), we have a ∈ Rol[K∗

+][m+1] with characteristic

polynomial (1 − αz)H
[q]
m (z).

Theorem 5. Let a ∈ Rol[K] with minimal characteristic polynomial Q(z) over K

and N+
Q the number of positive real roots of Q(z) counted with their multiplicity.

• If N+
Q = 0, then a ∈ Rol[K∗

−] ∩ Rol[K∗
+]. In this case, ∃n ∈ N such that

H [q]
m (z) = (z + 1)nQ(z) ∈ H[K∗

−](a)

and

R(z) = (1 − αz)H [q]
m (z) ∈ H[K∗

+](a),

∀α ∈ K,α > max

{

−q0, max
k=0,m−2

qk+1

qk

}

;

• If N+
Q ≥ 2, then a 6∈ Rol[K−] ∪ Rol[K+];

• If N+
Q = 1, then a 6∈ Rol[K−]. Additionally, considering R the unique positive

real root of the polynomial Q(z), we have a 6∈ Rol[K+] in each of the following

cases:

– there exists a root x of the polynomial Q(z) such that |x| < R;
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– x = −R is a simple root of the polynomial Q(z) and Q(z) has at least

one more negative real root y 6= −R;

– x = −R is a multiple root of the polynomial Q(z);

– R > 1 and K ∩ (0, 1) = ∅;

– R = 1, K ∩ (0, 1) = ∅ and there exists a root x of the polynomial Q(z)
such that |x| 6= 1.

Proof. Let N+
Q = 0. According to Lemma 2, we have a ∈ Rol[K∗

−] and ∃n ∈ N such
that

H [q]
m (z) = (z + 1)nQ(z) ∈ H[K∗

−](a).

Next, applying Lemma 3, we obtain that a ∈ Rol[K∗
+] and

R(z) = (1 − αz)H [q]
m (z) ∈ H[K∗

+](a),

∀α ∈ K,α > max

{

−q0, max
k=0,m−2

qk+1

qk

}

.

So, a ∈ Rol[K∗
−] ∩ Rol[K∗

+].

In the case N+
Q ≥ 2, we have N+

P ≥ 2, ∀P (z)
...Q(z). So, according to Descartes’

rule of signs, P (z) has at least 2 sign changes between consecutive coefficients, which
implies that a 6∈ Rol[K−] ∪ Rol[K+] (otherwise there would exist a polynomial

P (z)
...Q(z) with 0, respectively 1 sign changes between consecutive coefficients).

Next, we will consider N+
Q = 1 and R the unique positive real root of the poly-

nomial Q(z). Similar as above, N+
P ≥ 1, ∀P (z)

...Q(z). So, according to Descartes’
rule of signs, P (z) has at least 1 sign change between consecutive coefficients, which

implies that a 6∈ Rol[K−] (otherwise there would exist a polynomial P (z)
...Q(z) with

0 sign changes between consecutive coefficients).
Assume that a ∈ Rol[K+] and there exists a root x of the polynomial Q(z)

such that |x| < R. Then ∃M ∈ N∗ such that a ∈ Rol[K+][M ]. Considering

p = (pk)
M−1
k=0 ∈ G[K+][M ](a), we have H

[p]
M (z) = 1−

M
∑

k=1

pk−1z
k ∈ H[K+][M ], where

pk ≥ 0, k = 0,M − 1. Since Q(z) is the minimal characteristic polynomial of a, we

obtain that H
[p]
M (z)

...Q(z), i.e. the positive real root R of Q(z) is also a root of the

polynomial H
[p]
M (z). According to Descartes’ rule of signs, this is the unique po-

sitive real root of H
[p]
M (z). Then, every root z of the polynomial H

[p]
M (z) satisfies

the condition |z| ≥ r, where r is the unique positive real root of the polynomial

T (z) =
M
∑

k=1

| − pk−1|zk − 1. Since T (z) = −H
[p]
M (z), we obtain r = R, which implies

that every root z of the polynomial H
[p]
M (z) satisfies the condition |z| ≥ R. Finally,

since H
[p]
M (z)

...Q(z), we obtain that every root z of the polynomial Q(z) satisfies the
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condition |z| ≥ R, which is a contradiction with our assumption. So, if there exists
a root x of the polynomial Q(z) such that |x| < R, then a 6∈ Rol[K+].

Next, in the case when x = −R is a root of the polynomial Q(z), taking into

account that H
[p]
M (z)

...Q(z), we have H
[p]
M (−R) = H

[p]
M (R) = 0, i.e.

M
∑

k=1

pk−1R
k =

M
∑

k=1

pk−1(−R)k.

As result, we obtain
∑

k−odd, 1≤k≤M

pk−1R
k = 0, which implies that pk = 0, for every

even number k, 0 ≤ k ≤ M − 1. This means that the polynomial H
[p]
M (z) is an

even function, i.e. H
[p]
M (z) = H

[p]
M (−z), ∀z ∈ R. The existence of an additional

negative real root y 6= −R would mean that also z = −y 6= R is a positive real
root, contradiction with uniqueness of the positive real root R. Also, if x = −R

was a multiple root of the polynomial Q(z), it would be a multiple root of the

polynomial H
[p]
M (z), which would imply that

∂

∂z
H

[p]
M (z)

∣

∣

∣

∣ z = −R
= 0. But this

would mean that
M−1
∑

k=0

(k + 1)pk(−R)k = 0 and, taking into account that pk = 0 for

every even number k, 0 ≤ k ≤ M − 1, this would have as a consequence the equality
∑

k−odd, 0≤k≤M−1

(k + 1)pkR
k = 0, i.e. pk = 0, for every odd number k. As result, it

would be pk = 0, k = 0,M − 1, which would be impossible. So, a 6∈ Rol[K+].
Now, we consider the last case, when K ∩ (0, 1) = ∅ and at least one of the

following conditions is true: R > 1 or (R = 1 and there exists a root x of the
polynomial Q(z) such that |x| 6= 1). If R ≥ 1, then

0 = H
[p]
M (R) = 1 −

M
∑

k=1

pk−1R
k ≤ 1 − pM−1R

M ≤ 1 − RM ≤ 1 − 1 = 0,

which may happen only in the case when R = 1 and H
[p]
M (z) = 1−zM , contradiction

with our assumption. So, a 6∈ Rol[K+].

As it was mentioned above, each homogeneous linear recurrence over C is also a
homogeneous linear recurrence over R, and, if its minimal characteristic polynomial
over R does not have a transcendental root over Q, then it is also a homogeneous
linear recurrence over Q. In this case, if Q(z) ∈ Z[z] is its minimal characteristic
polynomial over Q, then it is also a homogeneous linear recurrence over Z.

Additionally, according to Theorem 5, if Q(z) does not have positive real roots,
then it is also a homogeneous linear recurrence over N∗. Otherwise, if Q(z) has at
least two distinct positive real roots or one multiple positive real root, then it is not
a homogeneous linear recurrence over N∗.

The trickiest case is the case when Q(z) has exactly one simple positive real root
R. Theorem 5 analyzes several categories. According to it, the given homogeneous
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linear recurrence over Z is not homogeneous linear recurrent over N∗ at least in the
following situations:

• R > 1;

• R = 1 and Q(z) has at least one root |x| 6= 1;

• Q(z) has at least one root |x| < R;

• x = −R is a simple root of the polynomial Q(z) and Q(z) has at least one
more negative real root y 6= −R;

• x = −R is a multiple root of the polynomial Q(z).

It does not give necessary and sufficient conditions in this case.

5 Littlewood, Newman and Borwein Homogeneous Linear Recur-

rences

Littlewood, Newman and Borwein polynomials were defined in [2] in the fol-
lowing way. A Newman polynomial represents a polynomial with all coefficients in
{0, 1} and free term 1. Similarly, a Littlewood polynomial is a polynomial with all
coefficients belonging to {−1, 1}. In the end, the polynomials with non-zero free
term and all coefficients from the set {−1, 0, 1} are called Borwein polynomials.

A Littlewood or Borwein polynomial is called alternating if the signs of every
two consecutive non-zero coefficients are different. It is called even-alternating in
the case when the number of non-zero coefficients is odd (there is an even number
of sign changes) and odd-alternating otherwise.

Next, we will introduce similar definitions for Littlewood, Newman and Bor-
wein homogeneous linear recurrences. A homogeneous linear m−recurrence is called
Littlewood, Newman, respectively Borwein homogeneous linear m−recurrence, if it
has at least one Littlewood, Newman, respectively Borwein characteristic polyno-
mial of degree m. Similarly, a homogeneous linear recurrence is called Littlewood,
Newman, respectively Borwein, if it is a Littlewood, Newman, respectively Borwein
homogeneous linear m-recurrence for an arbitrary m.

Additionally, a Littlewood or Borwein homogeneous linear recurrence is called
alternating, if it has at least one alternating Littlewood, respectively Borwein charac-
teristic polynomial. It is called even-alternating in the case when the corresponding
characteristic polynomial is even-alternating and odd-alternating otherwise.

Taking into account these definitions, we can conclude that Rol[{−1, 0}][m] is
the set of all Newman homogeneous linear m-recurrences, Rol[{−1, 1}][m] is the set
of all Littlewood homogeneous linear m-recurrences and Rol[{−1, 0, 1}][m] is the set
of all Borwein homogeneous linear m-recurrences. Similarly, Rol[{−1, 0}] represents
the set of all Newman homogeneous linear recurrences, Rol[{−1, 1}] is the set of all
Littlewood homogeneous linear recurrences and Rol[{−1, 0, 1}] represents the set of
all Borwein homogeneous linear recurrences.
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Newman polynomials were studied in [3]. It is known that all real roots of New-

man polynomials must lie in the interval

(

−
1 +

√
5

2
,
1 −

√
5

2

)

. Additionally, in [7]

several bounds for the location of complex roots of Newman polynomials were ob-
tained. These results can be considered as necessary conditions for a homogeneous
linear recurrence over K to be Newman, where K ⊇ {−1, 0}. For instance, if the
minimal characteristic polynomial over K has one real root outside of the interval
(

−
1 +

√
5

2
,
1 −

√
5

2

)

, then the recurrence is not Newman (since the roots of mini-

mal characteristic polynomial are also roots of any characteristic polynomial, which
cannot be Newman in this case).

Additionally, the even-alternating Borwein polynomials were mentioned in [3].
More exactly, given any positive integers d1 < d2 < . . . < dt with t even, Borwein
polynomial defined as Q(z) = 1− zd1 + zd2 − . . . + zdt has as multiple the Newman
polynomial Q(z)(1 + z + z2 + . . . + zdt). In consequence, every even-alternating
Borwein homogeneous linear m-recurrence is a Newman homogeneous linear 2m-
recurrence.

The main result from [3] is referred to cyclotomic polynomials not vanishing at 1.
It claims that every such polynomial is a divisor of a Newman polynomial. Also, a
constructive way for determining it is given. As a consequence, every homogeneous
linear recurrence, with cyclotomic polynomial not vanishing at 1 as characteristic
polynomial, is a Newman homogeneous linear recurrence.

According to [4], every Newman polynomial of degree at most 8 divides some
Littlewood polynomials. This means that each Newman homogeneous linear m-
recurrence, with m ≤ 8, is also a Littlewood homogeneous linear recurrence.

The next Theorem summarizes all above results regarding Littlewood, Newman
and Borwein homogeneous linear recurrences.

Theorem 6. The following statements are true:

• If a is a homogeneous linear recurrence over K, where K ⊇ {−1, 0}, and the

minimal characteristic polynomial of a over K has one real root outside of the

interval

(

−
1 +

√
5

2
,
1 −

√
5

2

)

, then the recurrence is not Newman;

• Every even-alternating Borwein homogeneous linear m-recurrence with cha-

racteristic polynomial of the form Q(z) = 1−zd1 +zd2 − . . .+zdt is a Newman

homogeneous linear 2m-recurrence with Q(z)(1 + z + z2 + . . . + zdt) as cha-

racteristic polynomial;

• Each homogeneous linear recurrence, with cyclotomic polynomial not vanishing

at 1 as characteristic polynomial, is a Newman homogeneous linear recurrence;

• Every Newman homogeneous linear m-recurrence, with m ≤ 8, is also a Lit-

tlewood homogeneous linear recurrence.
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The following Theorem is a direct consequence of the corresponding theorem
from [4]. It describes necessary condition for a homogeneous linear recurrence over
Z to not be a Littlewood homogeneous linear recurrence.

Theorem 7. Consider the sequence a ∈ Rol[Z] with minimal characteristic poly-

nomial Q(z) ∈ H[Z](a). Let Q∗(z) be the reciprocal polynomial of Q(z), with roots

of modulus strictly greater than 1 labelled as α1, . . . , αk, where k ≥ 1. Suppose that

there exist a positive integer N and a real number δ ≥ 0 with the property that, for

each of the 2N vectors b = (b1, . . . , bN ), where b1, . . . , bN ∈ {−1, 1}, there are two

positive integers n = n(b) ≤ N and i = i(b) ≤ k such that

(|αi| − 1)|αn
i + b1α

n−1
i + . . . + bn| ≥ 1 + δ.

Then a is not a Littlewood homogeneous linear recurrence.
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[2] Drungilas P., Jankauskas J., Šiurys J. On Littlewood and Newman polynomial multiples
of Borwein polynomials, Math. Comp., 2018, 87, 1523–1541.

[3] Dubickas A. The divisors of Newman polynomials, Fizikos ir matematikos fakulteto, Semi-
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