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On non-discrete topologization of some countable skew

fields

V. I.Arnautov, G.N.Ermakova

Abstract. If for any finite subset M of a countable skew field R there exists an
infinite subset S ⊆ R such that r · m = m · r for any r ∈ S and for any m ∈ M , then
the skew field R admits:
– A non-discrete Hausdorff skew field topology τ0.
– Continuum of non-discrete Hausdorff skew field topologies which are stronger than
the topology τ0 and such that sup{τ1, τ2} is the discrete topology for any different
topologies τ1 and τ2;
– Continuum of non-discrete Hausdorff skew field topologies which are stronger than
τ0 and such that any two of these topologies are comparable;
– Two to the power of continuum Hausdorff skew field topologies stronger than τ0,
and each of them is a coatom in the lattice of all skew field topologies of the skew
fields.

Mathematics subject classification: 22A05.
Keywords and phrases: Countable skew fields, center of skew field, topological skew
fields, Hausdorff topology, basis of the filter of neighborhoods, number of topologies
on countable skew fields, lattice of topologies on skew fields, right Ore condition, ring
of right quotients, ring of polynomials in the variable x.

1 Introduction

The study of possibility to set a non-discrete Hausdorff topology on infinite
algebraic systems in which existing operations are continuous was begun in [1]. In
this article for any countable group a method of constructing such group topologies
was given. For countable rings the problem of the possibility to set non-discrete
Hausdorff ring topologies was studied in [2, 3]. For infinite fields the problem of the
possibility to set non-discrete field topologies was studied in [2]. For countable skew
fields the problem of the possibility to set non-discrete Hausdorff topologies has not
been yet solved. The present article is a continuation of research in this direction.
The main result of this paper is Theorem 3.2, in which it is proved that if for any
finite subset S of a countable skew field R there exists an infinite subset M ⊆ R
such that r · s = s · r for any elements r ∈ M and s ∈ S, then the skew field R
permits non-discrete Hausdorff skew field topology. For countable groups, countable
rings and countable fields similar results were obtained in [4, 5, 6, 8].

2 Notations and preliminaries

To present the main results we remind the following well-known results.
Notation 2.1. If R is a skew field, then we denote its unit by e.
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Theorem 2.2. A set Ω of subsets of a skew field R is a basis of filter of neighborhoods
of zero for some Hausdorff skew field topology τ on the skew field R if and only if
the following conditions are satisfied:

1)
⋂

V ∈Ω

V = {0};

2) For any subsets V1 and V2 ∈ Ω there exists a subset V3 ∈ Ω such that V3 ⊆
V1 ∩ V2;

3) For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that V2 + V2 ⊆ V1;

4) For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that −V2 ⊆ V1;

5) For any subset V1 ∈ Ω and any element r ∈ R there exists a subset V2 ∈ Ω
such that r · V2 ⊆ V1 ;

6) For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that V2 · V2 ⊆ V1.

7) For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that (e+V2)
−1−e ⊆

V1.

Definition 2.3. If a ring R has no divisors of zero and for any non-zero elements
a, b ∈ R there are non-zero elements a1, b1 ∈ R such that a · a1 = b · b1, then we say
that the ring R satisfies the right Ore condition.

Proposition 2.4. 1 If a ring R has no divisors of zero and the ring R satisfies the
right Ore condition, then the set R̂ = {a · b−1|a, b ∈ R and 0 6= b} is a skew field.

Proposition 2.5. 2 Let R be a skew field and let α : R −→ R be an automorphism.
If x is a variable and we will define α(r) · x = x · r for any r ∈ R, then the following
statements are true:

Statement 1. Rα(x) = {
n∑

i=0

ri · x
i|ri ∈ R and n is a natural number } is an asso-

ciative ring and the ring Rα(x) has no divisors of zero;

Statement 2. The ring Rα(x) satisfies the right Ore condition.

Proof. As x · r = α(r) · x for any element r ∈ R then

( n∑

i=0

ai ·x
i
)
·
( m∑

j=0

bj ·x
j
)

=

n+m∑

k=0

∑

i+j=k

ai ·x
i · bj ·x

j =

n+m∑

k=0

( ∑

i+j=k

ai ·α
i(bj)

)
·xk ∈ R(x)

and hence R(x) is a ring.

As
(( n∑

i=0

ai · x
i
)
·
( m∑
j=0

bj · x
j
))

·
( s∑
t=0

ct · x
t
)

=

(n+m∑

k=0

∑

i+j=k

ai ·α
i(bj) ·x

i+j
)
·
( s∑

t=0

ct ·x
t
)

=
n+m+s∑

p=0

∑

i+j+t=p

ai ·α
i(bj) ·α

i+j(ct) ·x
i+j+t =

1This result is well known to specialists in algebra, and the ring R̂ is called the ring of skew field
quotients of the ring R (see [9]).

2Perhaps, this result was previously obtained by other authors, but since we do not know where
there exists proof of this result, then we present its proof below. However, we do not claim the
authorship.



86 V. I.ARNAUTOV, G. N.ERMAKOVA

( n∑

i=0

ai · x
i
)
·
(m+s∑

q=0

bj · α
j(ct)x

j+t
)

=
( n∑

i=0

ai · x
i
)
·
(( m∑

j=0

bj · x
j
)
·
( s∑

t=0

ct · x
t
))
,

and hence the ring R(x) is an associative ring.
As an · xn · bm · xm = an · αn(bm) · xn+m 6= 0 for any elements an, bm ∈ R \ {0}

and any natural numbers n and m, then
( n∑
i=0

ai · x
i
)
·
( m∑
j=0

bj · x
j
)

=

n+m∑

k=0

∑

i+j=k

ai · x
i · bj · x

j = an · αn(bm) · xn+m +
n+m−1∑

k=0

( ∑

i+j=k

ai · α
i(bj)

)
· xk 6= 0,

and hence the ring R(x) has no divisors of zero.
Thus Statement 1 is proved.

Let 0 6= f(x) =
k∑

i=0

ai · x
i ∈ R(x) and 0 6= ϕ(x) =

n∑
i=0

bi · x
i ∈ R(x) and let n ≤ k.

Further we prove Statement 2 by induction on the number k + n.
If k + n = k then n = 0, and hence 0 6= f(x) = a0 ∈ R. Then

ϕ(x) · e = a0 · (a
−1
0 · ϕ(x)) = f(x) · (a−1

0 · ϕ(x)),

i.e. the right Ore condition is true in this case.
Assume that Statement 2 is proved for the number n + k = m and let n + k =

m+ 1. Then

ψ(x) = ϕ(x)−f(x)·α−n(a−1

k
·bn)·xk−n =

n∑

i=0

bi ·x
i−

( k∑

i=0

ai ·x
i
)
·α−n(a−1

k
·bn)·xk−n =

n∑

i=0

bi · x
i −

k∑

i=0

ai · α
−n+i(a−1

k
· bn) · xk−n+i =

n−1∑

i=0

ci · x
i.

As n − 1 + k = m, then from the induction assumption it folows that there exist
f1(x) 6= 0 and ψ1(x) 6= 0 such that f(x) · f1(x) = ψ(x) · ψ1(x). Then

f(x) · f1(x) = ψ(x) · ψ1(x) =
(
ϕ(x) − f(x) · α−n(a−1

k
· bn · xk−n

)
· ψ1(x) =

ϕ(x) · ψ1(x) − f(x) · α−n(a−1
k · bn · xk−n · ψ1(x), and hence

f(x) ·
(
f1(x) + f(x) · α−n(a−1

k · bn · xk−n
)
· ψ1(x) = ψ(x) · ψ1(x).

Thus proposition is proved.

From Proposition 2.4 and Proposition 2.5 follows
Corollary 2.6. Let R be a skew field and let α : R −→ R be an automorphism. If
x is a variable and we assume that α(r) · x = x · r for any r ∈ R, then the set

R̂α(x) = {f(x) · ϕ(x)−1|f(x), ϕ(x) ∈ Rα(x) and 0 6= ϕ(x)}
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is a skew field.
Definition 2.7.

– The ring Rα(x) will be called a ring of polynomials in the variable x and with
the automorphism α : R −→ R;

– an element a ∈ R will be called a root of a polynomial fα(x) ∈ Rα(x) if
fα(a) = 0;

– any element f̂(x) ∈ R̂α(x) will be called a rational function in the variable x;
– an element a ∈ R will be called a root of a rational function f̂(x) ∈ R̂α(x)(x)

if f̂(a) = 0.

Proposition 2.8. Let R be a skew field and let α : R −→ R be an automorphism

of the skew field R. If f(x) =
k∑

i=0

ai · x
i ∈ Rα(x) and if f(0) 6= 0, then the set

{r ∈ R|f(r) = 0} is a finite set.

Proof. We will prove this proposition by induction on the number k. If k = 1 then
f(x) = a0 + a1 · x. As f(0) 6= 0, then a0 6= 0. Then {r ∈ R|f(r) = 0} = ∅ if a1 = 0
and {r ∈ R|f(r) = 0} = {a−1

1 · a0} if a1 6= 0.
Assume that Proposition 2.8 is proved for the number k = m and let f(x) =

m+1∑
i=0

ai · x
i ∈ Rα(x).

If {r ∈ R|f(r) = 0} = ∅, then the statement of Proposition 2.8 is correct.
Let now {r ∈ R|f(r) = 0} 6= ∅ and let an element a ∈ R be such that f(a) = 0.

Then if ϕ(x) =
m∑

i=0

bi · x
i is a polynomial of Rα(x) such that bm = am+1 and

bm−k = α−1(am−k+1 + a · bm−k+1), for 1 ≤ k ≤ m, and b0 = −a−1 · a0, then
am+1 = bm and am−k+1 = α(bm−k) − a · bm−k+1, for 1 ≤ k ≤ m, and a0 = −a · b0.
Then

(x− a) · ϕ(x) = (x− a) · (
m∑

i=0

bi · x
i) =

m∑

i=0

x · bi · x
i −

m∑

i=0

a · bi · x
i =

m∑

i=0

α(bi) · x
i+1 −

m∑

i=0

a · bi · x
i = am+1 · x

m+1 +

m∑

i=0

α−1(bi) · x
i+1 −

m∑

i=0

a · bi · x
i =

am+1 · x
m+1 +

m∑

i=0

(α−1(bi) − a · bi) · x
i+1 − a · b0 =

m+1∑

i=0

ai · x
i = fα(x).

As {r ∈ R|f(r) = 0} = {r ∈ R|ϕ(r) = 0}
⋃
{a} and according to the inductive

assumption the set {r ∈ R|ϕ(r) = 0} is a finite set, then the set {r ∈ R|f(r) = 0} is
a finite set.

Thus proposition is proved.

Proposition 2.9. Let R be a skew field and let α : R −→ R be an automorphism
of the skew field R. If f̂(x) is a rational function from R̂α(x) such that f̂(x) =
f(x) · (ϕ(x))−1 and f(0) 6= 0 and ϕ(0) 6= 0 then the set {r ∈ R|f̂(r) = 0} is a finite
set.
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Proof. Since according to Proposition 2.8 the sets {r ∈ R|f(r) = 0} and {r ∈
R|ϕ(r) = 0} are finite sets and f̂(a) = f(a) · (ϕ(a))−1 6= 0 for any a /∈ {r ∈ R|f(r) =
0}

⋃
{r ∈ R|ϕ(r) = 0} then {r ∈ R|f̂(r) = 0} is a finite set.

Thus proposition is proved.

Notation 2.10. Let V1, V2, . . . and S1, S2, . . . be sequences of non-empty symmetric
subsets of a skew field R, and let e be the unit of the skew field R. If S1 ⊆ S2 ⊆ . . .
and e ∈ S1, then for any natural number k we define by induction the subset
Fk

(
S1, . . . , Sk;V1, . . . , Vk

)
of the skew field R by taking

F1(S1;V1) = ((e+ V1) \ {0})
−1 · V1 · S1 + V1 · V1 + S1 · V1 · (e+ V1) \ {0})

−1, and

Fk+1(S1, S2, . . . , Sk+1;V1, V2, . . . , Vk+1) = F1

(
S1;V1+Fk(S2, . . . , Sk+1;V2, . . . , Vk+1)

)
.

Proposition 2.11. (see Proposition 2.4 in [8]) Let V1, V2, . . . and S1, S2, . . . be some
sequences of non-empty finite symmetric subsets of a skew field R. If e ∈ S1 ⊆ S2 ⊆
. . ., and 0 ∈ Vi for any natural number i, then the following Statements are true:

Statement 1. The following inclusions are true:
1. Fk−1(S2, . . . , Sk;V2, . . . , Vk) + Fk−1(S2, . . . , Sk;V2, . . . , Vk) ⊆

Fk(S1, S2, . . . , Sk;V1, V2 . . . , Vk) for any natural number k > 1;
2. Fk−1(S2, . . . , Sk;V2, . . . , Vk) · Fk−1(S2, . . . , Sk;V2, . . . , Vk) ⊆

Fk(S1, S2, . . . , Sk;V1, V2 . . . , Vk) for any natural number k > 1;
3. Fk−1(S2, . . . , Sk;V2, . . . , Vk) · (e+ Fk−1(S2, . . . , Sk;V2, . . . , Vk))

−1 ⊆
Fk(S1, . . . , Sk;V1, . . . , Vk) and
(e+ Fk−1(S2, . . . , Sk;V2, . . . , Vk))

−1 · Fk−1(S2, . . . , Sk;V2, . . . , Vk) ⊆
Fk(S1, . . . , Sk;V1, . . . , Vk) for any natural number k > 1;

4. S1 · Fk−1(S2, . . . , Sk;V2, . . . , Vk) ⊆ Fk(S1, . . . , Sk;V1, . . . , Vk) and
Fk−1(S2, . . . , Sk;V2, . . . , Vk) ·S1 ⊆ Fk(S1, . . . , Sk;V1, . . . , Vk) for any natural number
k > 1.

Statement 2. For any natural number k the set Fk(S1, . . . , Sk;V1, . . . , Vk) is a
finite and symmetric set;

Statement 3. Fk(S1, . . . , Sk; {0}, . . . , {0}) = {0} for any natural number k;
Statement 4. If 0 ∈ Ui ⊆ Vi ⊆ R and e ∈ Ti ⊆ Si ⊆ R for any natural number

i, then
Fk(T1, . . . , Tk;U1, . . . , Uk) ⊆ Fk(S1, . . . , Sk;V1, . . . , Vk);

Statement 5. If k and p are natural numbers and Vk+j = {0} for any natural
number 1 ≤ j ≤ p, then

Fk(S1, . . . , Sk;V1, . . . , Vk) = Fk+p(S1, . . . , Sk+p;V1, . . . , Vk+p);

Statement 6.

Fk+1(S1, . . . , Sk+1;V1, . . . , Vk+1) = Fk

(
S1, . . . , Sk;V1, . . . , Vn−1, Vk+F1(Sk+1, Vk+1)

)
.

for any natural number n;
Statement 7. If k and p are natural numbers then

Fk(Sp+1, . . . , Sk+p;Vp+1, . . . , Vk+p) ⊆ Fk+p(S1, . . . , Sk+p;V1, . . . , Vk+p).
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3 Basic results

Theorem 3.1. If R = {0,±e,±r1,±r2, . . .} is a countable skew field and Sk =
{±e,±r1, . . . ,±rk} for any natural number k, then the skew field R permits non-
discrete Hausdorff skew field topology if and only if there exists a sequence h1, h2, . . .
of elements of the skew field R such that hi 6= hj for any natural numbers i 6= j and

Sk

⋂
Fm−k(Sk+1, . . . , Sm; {−hk+1, 0, hk+1}, . . . , {−hm, 0, hm}) = ∅

for any natural numbers 0 ≤ k < m.

Proof. If a countable skew field R permits a non-discrete Hausdorff topology τ0, then
the construction of the sequence h1, h2, . . . is carried out similarly to the construction
of correspondent sequence in the proof of Statement 1 of Theorem 3.1 in [8].

If h1, h2, . . . is a sequence of nonzero elements of the skew field R such that

Sk

⋂
Fm−k(Sk+1, . . . , Sm; {−hk+1, 0, hk+1}, . . . , {−hm, 0, hm}) = ∅

for any natural numbers 0 ≤ k < m, then the construction of the topology τ0
is carried out similarly to the construction of the topology τ(A) in the proof of
Statement 1 of Theorem 3.1 in [8].

Thus Theorem is proved.

Theorem 3.2. If for any finite subset S of a countable skew field
R = {0,±e,±r1,±r2, . . .} there exists infinite subset M ⊆ R such that r ·s = s ·r for
any elements r ∈M and s ∈ S, then the skew field R permits non-discrete Hausdorff
skew field topology.

Proof. If S0 = ∅ and Sk = {±e,±r1, . . . ,±rk} for any natulal number k then by
induction we construct a sequence h1, h2, . . . of elements of the skew field R such
that hi 6= hj for any natural numbers i 6= j and

Sk

⋂
Fm−k(Sk+1, . . . , Sm; {−hk+1, 0, hk+1}, . . . , {−hm, 0, hm}) = ∅

for any natural numbers 0 ≤ k < m.
We will take h1 = 0. Then F1(S1; {0}) = {0}, and hence, F1(S1; {h1})

⋂
S0 =

F1(S1; {0})
⋂

∅ = ∅.
Assume that we already defined elements h1, . . . , hm of the skew field R such

that hi 6= hj for any natural numbers i 6= j and and such that

Sk

⋂
Fm−k(Sk+1, . . . , Sm; {−hk+1, 0, hk+1}, . . . , {−hm, 0, hm}) = ∅

for any natural numbers 0 ≤ k < m.
If Mm is the set all elements from R each of which is in the record of at least

one element from the set

m−1⋃

k=0

(
Sk

⋃
Fm−k(Sk+1, . . . , Sm; {−hk+1, 0, hk+1}, . . . , {−hm, 0, hm})

)
,
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then {r ∈ R|r · a = a · r, a ∈Mm} is an infinite set.
If ǫ : R −→ R is the identical automorphism of the skew field R, then for any

natural numbers 0 < k ≤ n we defined the set

Fm−k+1(Sk+1, . . . , Sm; {−hk+1, 0, hk+1}, . . . , {−hm, 0, hm}, {−x, 0, x}) − Sk

of rational functions from R̂ǫ(x).
3

As (see Statement 5 of Proposition 2.11)

Fm−k+1(Sk+1, . . . , Sm; {−hk+1, 0, hk+1}, . . . , {−hm, 0, hm}, {0}) =

Fm−k(Sk+1, . . . , Sm; {−hk+1, 0, hk+1}, . . . , {−hm, 0, hm}),

and
Sk

⋂
Fm−k(Sk+1, . . . , Sm; {−hk+1, 0, hk+1}, . . . , {−hm, 0, hm}) = ∅

for any k < m, then f̂(0) 6= 0 for any rational functions from the set

m⋃

k=1

Fm−k+1(Sk+1, . . . , Sm+1; {−hk+1, 0, hk+1}, . . . , {−hm, 0, hm}, {−x, 0, x}) − Sk,

and hence, the set {r ∈ R|f̂(r) = 0} is a finite set. Then there exists an element
0 6= hm+1 ∈ R such that hi 6= hm+1 for any i < m + 1 and f̂(hm+1) 6= 0 for any
rational functions f̂(x) from the set

n⋃

k=1

(Fm−k+1(Sk+1, . . . , Sm+1; {−hk+1, 0, hk+1}, . . . , {−hm, 0, hm}, {−x, 0, x}) − Sk),

and hence ϕ̂(hm+1) /∈ Sk for any rational functions ϕ̂(x) from the set

n⋃

k=1

Fm−k+1(Sk+1, . . . , Sm+1; {−hk+1, 0, hk+1}, . . . , {−hm, 0, hm}, {−x, 0, x}).

As hm+1 · a = a · hm+1 for any a ∈Mm, then

Sk

⋂
Fm−k(Sk+1, . . . , Sm+1; {−hk+1, 0, hk+1}, . . . , {−hm+1, 0, hm+1}) =

Sk

⋂{
f(hm+1)|f(x) ∈ Fm−k(Sk+1, . . . , Sm+1; {−hk+1, 0, hk+1}, . . . , {−hm, 0, hm},

{−x, 0, x})
}

= ∅ for any 0 ≤ k < m+ 1.
So, we defined the sequence h1, h2, . . . of nonzero elements of the skew field R

such that

Sk

⋂
Fn−k(Sk+1, . . . , Sn; {−hk+1, 0, hk+1}, . . . , {−hn, 0, hn}) = ∅

for any natural numbers n and k < n.
Then from Theorem 3.1 it follows that there exists a non-discrete Hausdorff skew

field topology on the skew field R.
Thus Theorem is proved.

3As r · x = x · r for any r ∈ R, then Fm−k+1(Sk+1, . . . , Sm; {−hk+1, 0, hk+1}, . . . , {−hm, 0, hm},

{−x, 0, x}) − Sk ⊆ R̂(x).
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Corollary 3.3. If the center of a countable skew field R is an infinite set (in
particular, if the characteristic of the skew field R is zero), then there exists a non-
discrete Hausdorff skew field topology on the skew field R.

From Theorem 3.2 and ([8], Theorem 3.1) follows
Corollary 3.4. If for any finite subset S of a countable skew field R there exists
infinite subset M ⊆ R such that r · s = s · r for any elements r ∈M and s ∈ S, then
the following statements are true:

Statement 1. There are continuum of skew field topologies such that any two
of them are comparable to each other;

Statement 2. There are two to the power of continuum coatoms in the lattice
of all skew field topologies of the skew field R.

Remark 3.4. There exists a countable skew field R with the finite center and such
that for any finite subset M ⊆ R the set {r ∈ R|r ·a = a·r for any a ∈M} is infinite.
Such a skew field will be constructed in the following example. It is possible that
the method that is used to build such a skew field has already been published by
other authors, but since we do not know where it is published, then we present a
detailed construction of such a skew field, and we not pretend on the authorship of
this result.
Example 3.5. Let F be the algebraic closure of the finite simple field Z/(p · Z)

of characteristic p and let e be the unit of the field F . Then F =
∞⋃

n=1

Fn, where

Fn = {a ∈ F |apn

= a} is a finite subfield of the field F and Fn ⊆ Fn+1 for any
natural number n.

If α : F −→ F is a mapping such that α(a) = ap, then α is an automorphism and
F̂α(x) is the skew field of rational functions in variable x over field F (see Corollary
2.6) and since a · x = α−1(a) 6= x · a for any a ∈ F \ (Z/(p · Z)), then the center of
the skew field F̂α(x) is finite.

Let M = {f̂1(x) = f1(x) · ϕ1(x)
−1, . . . , f̂n(x) = fn(x) · ϕn(x)−1} ⊆ F̂α(x) be a

finite set. If fi(x) =
ki∑

j=0

ai,j · x
j and ϕi(x) =

k′

i∑
j=0

bi,j · x
j for 1 ≤ i ≤ n, then there

exists a natural number m such that

(

n⋃

i=1

{ai,1, . . . , ai,ki
})

⋃
(

n⋃

i=1

{bi,1, . . . , bi,k′

i
}) ⊆ Fm.

Then xm·s · a = am·s · xm·s = a · xm·s for any natural number s and any

a ∈ (
n⋃

i=1

{ai,1, . . . , ai,ki
})

⋃
(

n⋃

i=1

{bi,1, . . . , bi,k′

i
}) ⊆ Fm,

and hence

xm·s · fi(x) =

ki∑

j=0

xm·s · ai,j · x
j =

ki∑

j=0

ai,j · x
m·s · xj =

ki∑

j=0

ai,j · x
j · xm·s = fi(x) · x

m·s
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and

xm·s ·ϕi(x) =

k′

i∑

j=0

xm·s · bi,j · x
j =

ki∑

j=0

bi,j · x
m·s · xj =

ki∑

j=0

bi,j · x
j · xm·s = ϕi(x) · x

m·s

for any natural number s and any 1 ≤ i ≤ n. As ϕi(x) · xm·s · (ϕi(x))
−1 =

= xm·s · ϕi(x) · (ϕi(x))
−1 = xm·s · e = e · xm·s = ϕi(x) · (ϕi(x))

−1 · xm·s for any
1 ≤ i ≤ n and F̂α(x) is the skew field then xm·s · (ϕi(x))

−1 = (ϕi(x))
−1 ·xm·s for any

1 ≤ i ≤ n.
Then xm·s · fi(x) · (ϕi(x))

−1 = fi(x) · (ϕi(x))
−1 · xm·s for any 1 ≤ i ≤ n, and

hence the set {r ∈ F̂α(x)|r · fi(x) · (ϕi(x))
−1 = fi(x) · (ϕi(x))

−1 · r for 1 ≤ i ≤ n} is
infinite.
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