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Local growth of solutions of linear differential equations

with analytic coefficients of finite iterated order

Houari Fettouch, Saada Hamouda

Abstract. In this paper, we investigate the iterated order of growth of solutions
to certain homogeneous and non–homogeneous linear differential equations where the
coefficients are analytic functions in the closed complex plane except a finite singular
point. For that we use the Nevanlinna theory with adapted definitions.
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1 Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fun-
damental results and the standard notations of the Nevanlinna value distribution
theory of meromorphic functions on the complex plane C and in the unit disc
D = {z ∈ C : |z| < 1} (see [8, 12, 18]). The importance of this theory has inspired
many authors to find modifications and generalizations to different domains. Ex-
tensions of Nevanlinna Theory to annuli have been made by [2, 9–11, 13]. Recently
in [4,7], the authors investigated the growth of solutions of certain linear differential
equations near a finite singular point. The idea began with the study of the growth
of solutions near a point on the boundary of the unit disc (see [5,6]). In this paper,
we continue this investigation near a finite singular point to study other types of
linear differential equations.

First, we recall the appropriate definitions. Set C = C ∪ {∞} and suppose that
f (z) is meromorphic in C \ {z0} where z0 ∈ C. Define the counting function near
z0 by

Nz0 (r, f) = −

r
∫

∞

n (t, f) − n (∞, f)

t
dt − n (∞, f) log r, (1.1)

where n (t, f) counts the number of poles of f (z) in the region
{z ∈ C : t ≤ |z − z0|} ∪ {∞} , each pole according to its multiplicity; and the prox-
imity function by

mz0 (r, f) =
1

2π

2π
∫

0

ln+
∣

∣f
(

z0 − reiϕ
)
∣

∣ dϕ. (1.2)
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The characteristic function of f is defined in the usual manner by

Tz0 (r, f) = mz0 (r, f) + Nz0 (r, f) . (1.3)

In the usual manner, we define the iterated p-order of meromorphic function f (z)
near z0 by

σp (f, z0) = lim sup
r→0

log+
p Tz0 (r, f)

− log r
, p ∈ N, (1.4)

where log+
1 x = log+ x = max {log x, 0} and log+

p+1 x = log+ log+
p x for p ≥ 1. For an

analytic function f (z) in C \ {z0} , we have also the definition

σp (f, z0) = lim sup
r→0

log+
p+1 Mz0 (r, f)

− log r
, (1.5)

where Mz0 (r, f) = max {|f (z)| : |z − z0| = r} .

Remark 1. It is shown in [4] that if f is a non–constant meromorphic function in
C \ {z0} and g (w) = f

(

z0 −
1
w

)

then g (w) is meromorphic in C and we have

T (R, g) = Tz0

(

1

R
, f

)

;

and so σ (f, z0) = σ (g) . Also, if f (z) is analytic in C \ {z0} , then, g (w) is entire
and thus σT (f, z0) = σM (f, z0) and in general σn,T (f, z0) = σn,M (f, z0) n ≥ 1. So,
we can use the notation σn (f, z0) without any ambiguity.

For example, the function f (z) = expp

{

1

(z0 − z)n

}

, where p, n ∈ N\ {0} , is

analytic in C \ {z0} and satisfies Mz0 (r, f) = expp

{

1

rn

}

; and then σp (f, z0) = n,

where exp1 {x} = exp {x} and expp+1 {x} = exp
{

expp {x}
}

for p ≥ 1.

Definition 1. The linear measure of a set E ⊂ (0,∞) is defined as
∞
∫

0

χE (t) dt and

the logarithmic measure of E is defined by
∞
∫

0

χE(t)
t

dt where χE (t) is the characteristic

function of the set E.

In 2001, Belaidi and Hamouda proved the following results.

Theorem A. [1] Let A0(z), . . . , Ak−1(z) be entire functions such that for real con-
stants α, β, µ, θ1, θ2 with 0 ≤ β < α, µ > 0, θ1 < θ2, we have

|A0(z)| ≥ exp{αrµ},

|Aj(z)| ≤ exp{βrµ}, j = 1, ..., k − 1,
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as z → ∞ with θ1 ≤ arg z ≤ θ2. Then every analytic solution f(z) 6≡ 0 in C \ {z0}
of the differential equation

f (k) + Ak−1(z)f (k−1) + · · · + A1(z)f ′ + A0(z)f = 0, (1.6)

has infinite order.

This result has been generalized in [15] by introducing the concept of the iterated
order. In 2016, the authors proved the following results.

Theorem B. [4] Let A0(z), . . . , Ak−1(z) be meromorphic functions in C \ {z0} sat-
isfying

|A0(z)| ≥ exp{
α

rµ
}, (1.7)

|Aj(z)| ≤ exp{
β

rµ
}, j = 1, ..., k − 1, (1.8)

where α > β ≥ 0, µ > 0, arg(z0 − z) = θ ∈ (θ1, θ2) ⊂ [0, 2π) and |z0 − z| = r → 0.
Then, every analytic solution f(z) 6≡ 0 in C \ {z0} of (1.6) satisfies σ2(f, z0) ≥ µ.

Theorem C. [4] Let A0(z), . . . , Ak−1(z) be analytic functions in C \{z0} satisfying
max{σ(Aj , z0) : j 6= 0} < σ(A0, z0). Then, every analytic solution f(z) 6≡ 0 in
C \ {z0} of (1.6) satisfies σ2(f, z0) = σ(A0, z0).

In this paper, we will generalize these results and others as the following.

Theorem 1. Let A0 (z) , . . . , Ak−1 (z) be analytic functions in C\{z0} such that for
real constants α, β, µ, θ1, θ2 and a positive integer p with 0 ≤ β < α, µ > 0, θ1 < θ2.
1 ≤ p < ∞, satisfying

|A0 (z)| ≥ expp

{ α

rµ

}

, (1.9)

|Aj (z)| ≤ expp

{

β

rµ

}

, j = 1, ..., k − 1 (1.10)

where arg (z0 − z) = θ ∈ (θ1, θ2) and |z0 − z| = r → 0. Then, every analytic solution
f (z) 6≡ 0 in C \ {z0} of (1.6) satisfies σp+1 (f, z0) ≥ µ.

Theorem 2. Let A0 (z) , . . . , Ak−1 (z) be analytic functions in C\{z0} and F ⊂ (0, 1)
be a set of infinite logarithmic measure such that

|A0 (z)| ≥ expp

{ α

rµ

}

, (1.11)

|Aj (z)| ≤ expp

{

β

rµ

}

, j = 1, ..., k − 1, (1.12)

with 0 ≤ β < α, µ > 0, and |z0 − z| = r → 0 with r ∈ F . Then, every analytic
solution f (z) 6≡ 0 in C \ {z0} of the differential equation (1.6) satisfies
σp+1 (f, z0) ≥ µ.
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Theorem 3. Let A0 (z) , . . . , Ak−1 (z) be analytic functions in C \ {z0} of finite
iterated order with max {σp (Aj, z0) : j 6= 0} ≤ σp (A0, z0) = σ < +∞, 1 < p < ∞
and F ⊂ (0, 1) be a set of infinite logarithmic measure such that for some constants
0 ≤ β < α and for any given ǫ > 0, we have

|A0 (z)| ≥ expp

{ α

rσ−ǫ

}

, (1.13)

|Aj (z)| ≤ expp

{

β

rσ−ǫ

}

, j = 1, ..., k − 1, (1.14)

as r → 0 with r ∈ F . Then, every analytic solution f (z) 6≡ 0 in C \ {z0} of the
differential equation (1.6) satisfies σp+1 (f, z0) = σp (A0, z0) = σ.

Theorem 4. Let A0(z), . . . , Ak−1(z) be analytic functions in C \ {z0} satisfying
max{σp(Aj , z0) : j 6= 0} < σp(A0, z0). Then, every analytic solution f(z) 6≡ 0 in
C \ {z0} of (1.6) satisfies σp+1(f, z0) = σp(A0, z0).

Theorem 5. Let A0 (z) , . . . , Ak−1 (z) satisfy the hypotheses of Theorem 3, and let
H (z) 6≡ 0 be analytic functions in C \ {z0} with i (H) = q.
a) If q < p + 1 or q = p + 1, σp+1 (H, z0) < σp (A0, z0) , then every analytic solution
f (z) in C \ {z0} of the differential equation

f (k) + Ak−1 (z) f (k−1) + ... + A1 (z) f ′ + A0 (z) f = H (z) , (1.15)

satisfies λp+1 (f, z0) = λp+1 (f, z0) = σP+1 (f, z0) = σp (A0, z0) , with at most one
exceptional solution f0 satisfying i (f0) < p + 1 or σp+1 (f0, z0) < σp (A0, z0) .
b) If q > p + 1 or q = p + 1, σp (A0, z0) < σp+1 (H, z0) < +∞, then every analytic
solution f (z) in C \ {z0} of (1.15) satisfies i (f) = q and σq (f, z0) = σq (H, z0) .

The analog of Theorem 5 in the complex plane case is investigated in [15].

2 Preliminaries for proving the main results

To prove these results we need the following lemmas.

Lemma 1. [4] Let f be a non–constant meromorphic function in C \ {z0} ; let
α > 0, ε > 0 be given real constants and j ∈ N; then
i) there exists a set E1 ⊂ (0, 1) that has finite logarithmic measure and a constant
A > 0 that depends on α and j such that for all r = |z − z0| satisfying r ∈ (0, 1)\E1,
we have

∣

∣

∣

∣

∣

f (j) (z)

f (z)

∣

∣

∣

∣

∣

≤ A

[

1

r2
Tz0 (αr, f) log Tz0 (αr, f)

]j

; (2.1)

ii) there exists a set E2 ⊂ [0, 2π) that has a linear measure zero and a constant A > 0
that depends on α and j such that for all θ ∈ [0, 2π) \ E2 there exists a constant
r0 = r0 (θ) > 0 such that (2.1) holds for all z satisfying arg (z − z0) ∈ [0, 2π) \ E2

and r = |z − z0| < r0.
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Lemma 2. [7, Theorem 8] Let f be a non–constant analytic function in C \ {z0}.
Then there exists a set E ⊂ (0, 1) that has finite logarithmic measure such that for
all j = 0, ..., k, we have

f (j) (zr)

f (zr)
= (1 + o (1))

(

V (zr)

z0 − z

)j

, (2.2)

as r → 0, r /∈ E, where zr is a point in the circle |z0 − z| = r that satisfies
|f (zr)| = max

|z0−z|=r
|f (z)| .

Lemma 3. Let f be a non–constant analytic function in C \ {z0} of infinite order
with σp (f, z0) = σ, and let Vz0 (r) be the central index of f (see [7]). Then

lim
r→0

sup
log+

p Vz0 (r)

− log r
= σ. (2.3)

Proof. Set g (w) = f
(

z0 −
1
w

)

. Then g (w) is entire function of infinite order with
σp (g) = σp (f, z0) = σ, and if V (R) denotes the central index of g, then
Vz0 (r) = V

(

1
r

)

. From [3, Lemma 2], we have

lim
R→+∞

sup
log+

p V (R)

log R
= σ. (2.4)

Substituting R by 1
r

in (2.4), we get (2.3).

Lemma 4. Let f (z) be a non–constant meromorphic function in C − {z0} with
i (f) = p; Then

σp

(

f ′, z0

)

= σp (f, z0) . (2.5)

Proof. By Remark 1, g (w) = f
(

z0 −
1
w

)

is meromorphic in C and
σp (g) = σp (f, z0) . It is well known that for a meromorphic function in C we have
σp (g′) = σp (g) (see [14, 17]). We have f ′ (z) = 1

w2 g′ (w). Set h (w) = 1
w2 g′ (w) .

Obviously, we have σp (h) = σp (g′) . In the other hand, by Remark 1, we have
σp (h) = σp (f ′, z0) . So, we conclude that σp (f ′, z0) = σp (f, z0) .

Lemma 5. Let h be a non–constant analytic function in C \ {z0} of order
σp(f, z0) > α > 0. Then, there exists a set F ⊂ (0, r0] of infinite logarithmic measure
such that for all r ∈ F and |h(z)| = Mz0(r, h), we have

|h(z)| > expp

{

1

rα

}

.

Proof. By the definition of σp(f, z0), there exists a decreasing sequence {rm} → 0
satisfying m

m+1rm > rm+1 and

lim
m→∞

logp+1 Mz0(rm, f)

− log rm
> α.
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Then, there exists m0 such that for all m > m0 and for a given ε > 0 small enough,
we have

Mz0(rm, f) > expp

{

1

rα+ε
m

}

. (2.6)

There exists m1 such that for all m > m1, and for any r ∈ [ m
m+1rm, rm] and for a

given ε > 0, we have
(

m

m + 1

)α+ε

> rε. (2.7)

By (2.6) and (2.7), for all m > m2 = max{m0,m1} and for any r ∈ [ m
m+1rm, rm], we

have

Mz0(r, f) > Mz0(rm, f) > expp

{

1

rα+ε
m

}

> expp

{

1

rα+ε
(

m

m + 1
)α+ε

}

> expp

{

1

rα

}

.

Set F = ∪∞
m=m2

[ m
m+1rm, rm]; then we have

∞
∑

m=m2

∫ rm

m
m+1

rm

dt

t
=
∑

m≥m2

log
m + 1

m
= ∞.

Lemma 6. Let Aj (z) (j = 0, ..., k − 1) be analytic functions in C\{z0} such that z0

is a singular point for at least one of the coefficients Aj (z) and σp (Aj , z0) ≤ α < ∞.
If f is a solution, that is analytic in C \ {z0} , of (1.6), then σp+1 (f, z0) ≤ α.

Proof. Let f 6≡ 0 be a solution of (1.6), that is analytic in C \ {z0} . By Lemma 1,
there exists a set E ⊂ (0, 1) that has finite logarithmic measure, such that for all
j = 0, 1, ..., k, we have

f (j) (zr)

f (zr)
= (1 + o (1))

(

Vz0 (r)

z0 − z

)j

, (2.8)

as r → 0, r /∈ E, where Vz0 (r) is the central index of f near the singular point z0,
zr is a point in the circle |z0 − z| = r that satisfies |f (zr)| = max

|z0−z|=r
|f (z)| . Set

Mz0 (r) = max
|z0−z|=r

{|Aj (z)| : j = 0, 1, ..., k − 1} . (2.9)

Since σp (Aj, z0) ≤ α < ∞, for any given ε > 0, there exists r0 > 0 such that for
r0 > r > 0, we have

Mz0 (r) ≤ expp+1

{

1

rα+ε

}

.

From (1.6), we can write

∣

∣

∣

∣

∣

f (k)

f

∣

∣

∣

∣

∣

≤ |Ak−1(z)|

∣

∣

∣

∣

∣

f (k−1)

f

∣

∣

∣

∣

∣

+ · · · + |A1(z)|

∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

+ |A0(z)| . (2.10)
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By combining (2.8)-(2.9), we get

(1 + o (1))

(

Vz0 (r)

r

)k

≤ (1 + o (1)) C

(

Vz0 (r)

r

)k−1

Mz0 (r) ;

where r near enough to z0 and C > 0; and then

Vz0 (r) ≤ (1 + o (1))Cr expp+1

{

1

rα+ε

}

. (2.11)

By (2.11) and Lemma 3, we obtain σp+1 (f, z0) ≤ α.

Lemma 7. Let f (z) be a non–constant meromorphic function in C \ {z0} , for all
z satisfying arg (z − z0) = θ and r = |z − z0|, we have

Mz0

(

r,
f (k) (z)

f (z)

)

= O

(

log (Tz0 (r, f)) + log

(

1

r

))

Proof. Set g (w) = f
(

z0 −
1
w

)

. g (w) is meromorphic in C. We have f (z) = g (w)
such that w = 1

z0−z
; we set R = |w| = 1

r
, from the logarithmic derivative lemma, we

have

Mz0

(

r,
g(k) (z)

g (z)

)

= O (log (T (R, g)) + log (R)) , (2.12)

then f ′ (z) = 1
(z0−z)2

g′ (w) and then

f ′ (z)

f (z)
=

1

(z0 − z)2
g′ (w)

g (w)
. (2.13)

By (2.13) and (2.12), we get

Mz0

(

1

R
,
f ′ (z)

f (z)

)

= M

(

R,w2 g′ (w)

g (w)

)

≤ M
(

R, w2
)

+ M

(

R,
g′ (w)

g (w)

)

≤ O (log (R)) + O (log (T (R, g)) + log (R))

≤ O (log (R)) + O

((

log

(

Tz0

(

1

R
, f

))

+ log (R)

))

≤ O

((

log (Tz0 (r, f)) + log

(

1

r

)))

.

Then

Mz0

(

r,
f ′ (z)

f (z)

)

= O

(

log (Tz0 (r, f)) + log

(

1

r

))

.
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For k = 2, we have f ′′ (z) = 1
(z0−z)4

g′′ (w) + 2
(z0−z)3

g′ (w); and so

f ′′ (z)

f (z)
=

1

(z0 − z)4
g′′ (w)

g (w)
+

2

(z0 − z)3
g′ (w)

g (w)
. (2.14)

By (2.13) and (2.12), we get

Mz0

(

1

R
,
f ′′ (z)

f (z)

)

= M

(

R,
1

(z0 − z)4
g′′ (w)

g (w)
+

2

(z0 − z)3
g′ (w)

g (w)

)

≤ M
(

R, w4
)

+ M

(

R,
g′′ (w)

g (w)

)

+ M
(

R,w3
)

+ M

(

R,
g′ (w)

g (w)

)

≤ O (log (R)) + O (log (T (R, g)) + log (R))

≤ O (log (R)) + O

((

log

(

Tz0

(

1

R
, f

))

+ log (R)

))

≤ O

((

log (Tz0 (r, f)) + log

(

1

r

)))

.

So

Mz0

(

r,
f ′′ (z)

f (z)

)

= O

(

log (Tz0 (r, f)) + log

(

1

r

))

.

In general, we can find that

f (k) (z) =
1

(z0 − z)2k
g(k) (w) +

ak−1

(z0 − z)2k−1
g(k−1) (w) + ... +

a1

(z0 − z)C
g′ (w) ;

where aj (j = 1, 2, ..., k − 1 ) are complex numbers; and thus

f (k) (z)

f (z)
=

1

(z0 − z)2k

g(k) (w)

g (w)
+

ak−1

(z0 − z)2k−1

g(k−1) (w)

g (w)
+ ... +

a1

(z0 − z)k+1

g′ (w)

g (w)
.

(2.15)
By (2.15) and (2.12), we get

Mz0

(

1

R
,
f (k) (z)

f (z)

)

≤ M
(

R,w2k
)

+ M

(

R,
g(k) (w)

g (w)

)

+ ... + M

(

R,
g′ (w)

g (w)

)

≤ O (log (R)) + O (log (T (R, g)) + log (R))

≤ O (log (R)) + O

((

log

(

Tz0

(

1

R
, f

))

+ log (R)

))

≤ O

((

log (Tz0 (r, f)) + log

(

1

r

)))

.

So

Mz0

(

r,
f (k) (z)

f (z)

)

= O

(

log (Tz0 (r, f)) + log

(

1

r

))

.
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Lemma 8. Let H (z) 6≡ 0, A0 (z) , ..., Ak−1 (z) be analytic functions in C \ {z0} and
let f be an analytic solution in C \ {z0} of (1.15) satisfying one of the following
conditions:
i) max {i (H) = q, i (Aj) : (j = 0, ..., k − 1} < i (f) = p + 1 (1 ≤ p ≤ +∞) ,
ii) max {σp+1 (H, z0) , σp+1 (Aj, z0) : (j = 0, ..., k − 1} < σp+1 (f, z0) = σ.
Then λp+1 (f, z0) = λp+1 (f, z0) = σp+1 (f, z0) = σp (A0, z0) .

Proof. From (1.15), we have

1

f (z)
=

1

H (z)

(

f (k) (z)

f (z)
+ Ak−1 (z)

f (k−1) (z)

f (z)
+ .... + A0 (z)

)

. (2.16)

It is easy to see that if f has a zero at z1 of order α > k, then H must have a zero
at z1 of order α − k, hence

n

(

r,
1

f

)

≤ kn

(

r,
1

f

)

+ n

(

r,
1

H

)

, (2.17)

Nz0

(

r,
1

f

)

≤ kN z0

(

r,
1

f

)

+ Nz0

(

r,
1

H

)

. (2.18)

There exists a set E1 ⊂ (0, 1) that has finite logarithmic measure such that for all
r = |z − z0| satisfying r /∈ E1 and by (2.17), we have

mz0

(

r,
1

f

)

≤ mz0

(

r,
1

H

)

+
k−1
∑

j=0

mz0 (r,Aj) + O

(

log Tz0 (r, f) + log
1

r

)

. (2.19)

By (2.17) and (2.18), for r /∈ E1, we get

Tz0 (r, f) = Tz0

(

r,
1

f

)

+ O (1) ≤ kN z0

(

r,
1

f

)

+ (2.20)

+Tz0 (r,H) +

k−1
∑

j=0

Tz0 (r,Aj) + O

(

log Tz0 (r, f) + log
1

r

)

.

For r → 0, we have

O

(

log Tz0 (r, f) + log
1

r

)

≤
1

2
Tz0 (r, f) , (2.21)

Tz0 (r,A0) + ... + Tz0 (r,Ak−1) ≤ k expp

{

1

rσ+ǫ

}

, (2.22)

Tz0 (r,H) ≤ expp

{

1

rσ(H)+ǫ

}

. (2.23)
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From (2.21)-(2.22) and (2.23)

Tz0 (r,H) +

k−1
∑

j=0

Tz0 (r,Aj) + O

(

log Tz0 (r, f) + log
1

r

)

≤
1

2
Tz0 (r, f)+

k expp

{

1

rσ+ǫ

}

+ expp

{

1

rσ(H)+ǫ

}

(2.24)

By (2.20) and (2.24), for r /∈ E1,

Tz0 (r, f) ≤ 2kN z0

(

r,
1

f

)

+ 2k expp

{

1

rσ+ǫ

}

+ 2expp

{

1

rσ(H)+ǫ

}

. (2.25)

Hence for any f with σp+1 (f, z0) = σp (A0, z0) , from (2.25), we have
σp+1 (f, z0) ≤ λp+1 (f, z0) .
Therefore λp+1 (f, z0) = λp+1 (f, z0) = σp+1 (f, z0) = σp (A0, z0) .

3 Proof of theorems

Proof of Theorem 1. Assume that f 6≡ 0 is analytic solution of (1.6) in C \ {z0}.
From (1.6), we can write

−A0 (z) =
f (k)

f
+ Ak−1 (z)

f (k−1)

f
+ ... + A1 (z)

f ′

f
. (3.1)

So, we get

|A0 (z)| ≤

∣

∣

∣

∣

∣

f (k)

f

∣

∣

∣

∣

∣

+ |Ak−1 (z)|

∣

∣

∣

∣

∣

f (k−1)

f

∣

∣

∣

∣

∣

+ ... + |A1 (z)|

∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

. (3.2)

By Lemma 1, for any given α > 0 there exists a set E1 ⊂ (0, 1) that has finite
logarithmic measure and a constant λ > 0 that depends only on α such that for all
r = |z − z0| satisfying r /∈ E1, we have

∣

∣

∣

∣

∣

f (j) (z)

f (z)

∣

∣

∣

∣

∣

≤ λ

[

1

r
Tz0 (αr, f)

]2j

(j = 1, ..., k) . (3.3)

From (3.2)-(3.3), for all z satisfying r = |z − z0| /∈ E1, and the hypotheses of Theo-
rem 1 we obtain

expp

{ α

rµ

}

≤ |A0 (z)| ≤ kλ

[

1

r
Tz0 (αr, f)

]2k

expp

{

β

rµ

}

;

and thus

expp

{ α

rµ

}

≤ kλ

[

1

r
Tz0 (αr, f)

]2k

expp

{

β

rµ

}

;

then

expp

{

α − β

rµ

}

≤ kλ

[

1

r
Tz0 (αr, f)

]2k

. (3.4)

From (3.4), it is easy to obtain that σp+1 (f, z0) ≥ µ.



LOCAL GROWTH OF SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS 79

Proof of Theorem 2. From (1.6) we obtain

|A0 (z)| ≤

∣

∣

∣

∣

∣

f (k)

f

∣

∣

∣

∣

∣

+ |Ak−1 (z)|

∣

∣

∣

∣

∣

f (k−1)

f

∣

∣

∣

∣

∣

+ ... + |A1 (z)|

∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

. (3.5)

By the hypotheses of Theorem 2, there exists a set F1 ⊂ (0, 1) of infinite logarithmic
measure such that for all r ∈ F we have

|A0 (z)| ≥ expp

{ α

rµ

}

, (3.6)

|Aj (z)| ≤ expp

{

β

rµ

}

, j = 1, ..., k − 1, (3.7)

as r → 0 for r ∈ F1. Hence from 3.3, 3.5, 3.6 and 3.7, it follows that for all z
satisfying r = |z − z0| ∈ F\E1, we have

expp

{ α

rµ

}

≤ kλ

[

1

r
Tz0 (αr, f)

]2k

expp

{

β

rµ

}

;

then

expp

{

α − β

rµ

}

≤ kλ

[

1

r
Tz0 (αr, f)

]2k

. (3.8)

When α − β > 0, then expp

{

α−β
rµ

}

> 1, as r → 0. Therefore, from (3.8), it is easy

to obtain that σp+1 (f, z0) ≥ µ.

Proof of Theorem 3. From Theorem (2), we have σp+1 (f, z0) ≥ σ − ǫ, since ǫ is
arbitrary, we get

σP+1 (f, z0) ≥ σp (A0, z0) = σ. (3.9)

On the other hand, from Lemma (2), for any given ε > 0, there exists r0 > 0 such
that for 0 < r = |z0 − z| < r0, we have

|Aj (z)| ≤ exp

{

1

rσ+ε

}

, j = 0, ..., k − 1. (3.10)

By the Wiman-Valiron theory near a finite singular point (see [7]), we have

f (j) (zr)

f (zr)
= (1 + o (1))

(

Vz0 (r)

z0 − zr

)j

, (j = 0, ..., k − 1) , (3.11)

where Vz0 (r) is the central index of f and |f (zr)| = M (r, f) = max
|z0−z|=r

|f (z)| . From

(1.6), we can write

−
f (k)

f
= Ak−1 (z)

f (k−1)

f
+ ... + A1 (z)

f ′

f
+ A0 (z) . (3.12)
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Substituting (3.10) and (3.11) into (3.12), we obtain

(1 + o (1))
(Vz0 (r))k

rk
≤ k expp

{

1

rσ+ε

}

(Vz0 (r))k−1

rk−1
((1 + o (1))) ,

and so

Vz0 (r) ≤ kr expp

{

1

rσ+ε

}

(1 + o (1)) . (3.13)

By (3.13), we get

lim
r→0

sup
log+

p+1 Vz0 (r)

− log r
≤ σ + ǫ.

Since ǫ is arbitrary, we get

σp+1 (f, z0) ≤ σp (A0, z0) = σ. (3.14)

From (3.9) and (3.14), we get

σp+1 (f, z0) = σp (A0, z0) .

Proof of Theorem 4. From (1.6), we can write

|A0(z)| ≤ |
f (k)

f
| + |Ak−1(z)||

f (k−1)

f
| + · · · + |A1(z)||

f ′

f
|. (3.15)

Set max{σp(Aj , z0) : j 6= 0} < β < α < σp(A0, z0). For any given ε > 0, there exists
r0 > 0 such that for all r satisfying r0 ≥ r > 0, we have

|Aj(z)| ≤ expp{
1

rβ+ε
}, j = 1, 2, . . . , k − 1. (3.16)

By taking β + ε < α < σp(A0, z0), and by Lemma 5, there exists a set F ⊂ (0, r0]
of infinite logarithmic measure such that for all r ∈ F and |A0(z)| = Mz0(r,A0), we
have

|A0(z)| > expp{
1

rα
}. (3.17)

Using (3.16)–(3.17) with (3.3) in (3.15), we obtain

expp{
1

rα
} ≤

λ

r2k

[

Tz0(
r

γ
, f)

]2k

expp{
1

rβ+ε
}. (3.18)

From (3.18), we obtain that σp+1(f, z0) ≥ α.

On the other hand, applying Lemma 6, we obtain that σp+1(f, z0) ≤ σp(A0, z0).
Since α ≤ σp+1(f, z0) ≤ σp(A0, z0) holds for every α < σp(A0, z0), then we conclude
that σp+1(f, z0) = σp(A0, z0).
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Proof of Theorem 5. a) First, we show that (1.15) can possess at most one excep-
tional solution f0 satisfying σp+1 (f0, z0) ≤ σp (A0, z0) or i (f0) < p + 1. In fact,
if f∗

0 is a second solution with σp+1 (f∗
0 , z0) ≤ σp (A0, z0) or i (f∗

0 ) < p + 1, then
σp+1 (f0 − f∗

0 , z0) ≤ σp (A0, z0) or i (f0 − f∗
0 ) < p + 1. But f0 − f∗

0 is a solution of
the corresponding homogeneous equation (1.6) of (1.15), this contradicts Theorem
(3). We assume that f is a solution with σp+1 (f, z0) ≥ σp (A0, z0) , and f1, f2, ...,
fk is solutions base of the corresponding homogeneous equation (1.6). Then f can
be expressed in the form

f(z) = B1(z)f1(z) + B2(z)f2(z) + ... + Bk(z)fk(z), (3.19)

where B1(z), B2(z), ..., Bk(z) are determined by

B′
1 (z)1 (z)f1(z) + B′

2(z)f2(z) + ... + B′
k(z)fk(z) = 0,

B′
1(z)f ′

1(z) + B′
2(z)f ′

2(z) + ... + B′
k(z)f ′

k(z) = 0,

. (3.20)

.

B′
1(z)f

(k−1)
1 (z) + B′

2(z)f
(k−1)
2 (z) + ... + B′

k(z)f
(k−1)
k (z) = H.

Since the Wronskian W (f1, f2, ..., fk) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1 (z) f2 (z) . . fk (z)
f ′
1 (z) f ′

2 (z) . . f ′
k (z)

. . . . .

. . . . .

f
(k−1)
1 f

(k−1)
2 . . f

(k−1)
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

is a differ-

ential polynomial in f1, f2, ..., fk with constant coefficients, it is easy to deduce
that

σp+1 (W, z0) ≤ σp+1 (fj, z0) = σp (A0, z0) .

From (3.20),

B′
J (Z) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1 (z) . 0 fk (z)
f ′
1 (z) . 0 f ′

k (z)
. . . .
. . . .

f
(k−1)
1 . H f

(k−1)
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

W (f1, f2, ..., fk)
=

H.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1 (z) . . fk (z)
f ′
1 (z) . . f ′

k (z)
. . . .
. . . .

f
(k−1)
1 . . f

(k−1)
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

W (f1, f2, ..., fk)

B′
j = H.Gj (f1, f2, ..., fk) .W (f1, f2, ..., fk)

−1 , j = 1, ..., k, (3.21)

where Gj (f1, f2, ..., fk) are differential polynomial in f1, f2, ..., fk with constant
coefficients, thus

σp+1 (Gj , z0) ≤ σp+1 (fj, z0) = σp (A0, z0) . (3.22)



82 H. FETTOUCH, S. HAMOUDA

Since i (H) < p + 1 or i (H) = p + 1, σp+1 (H, z0) < σp (A0, z0) from Lemma (4) and
(3.22), we have

σp+1 (Bj, z0) = σp+1

(

B′
j, z0

)

≤ max {σp+1 (H, z0) , σp (A0, z0)} = σp (A0, z0)
(3.23)

for j = 1, ..., k. By (3.19) and (3.23), we obtain

σp+1(f, z0) ≤ max {σp+1 (fj, z0) , σp+1 (Bj , z0)} = σp (A0, z0) . (3.24)

From this and the assumption σp+1(f, z0) ≥ σp (A0, z0), we conclude that

σp+1(f, z0) = σp (A0, z0) .

If f is a solution of equation (1.15) satisfying σp+1(f, z0) = σp (A0, z0) , from Lemma
8, we have

λp+1 (f, z0) = λp+1 (f, z0) = σP+1 (f, z0) = σp (A0, z0) .

b) From the hypotheses of Theorem (5) and (3.19)-(3.24), we have

σq(f, z0) ≤ σq (H, z0) . (3.25)

From (1.15), a simple consideration of order implies

σq(f, z0) ≥ σq (H, z0) . (3.26)

By (3.25)-(3.26), we have σq(f, z0) = σq (H, z0) .



LOCAL GROWTH OF SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS 83

References

[1] Belaidi B., Hamouda S. Orders of solutions of an n-th order linear differential equations with

entire coefficients, Electron. J. Differential Equations, 2001, No. 63, (2001), 1–5.
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