BULETINUL ACADEMIEI DE STIINTE

A REPUBLICII MOLDOVA. MATEMATICA
Numbers 1(95)—2(96), 2021, Pages 31-68
ISSN 1024-7696

Homogenization of a lubrication problem in oscillating
domain by two-scale convergence method

Y. O. Koroleva, A. V. Korolev

Abstract. In present paper we do a homogenization with respect to a small param-
eter of a boundary-value problem describing fluid flow between two moving in space
and time rough surfaces. The two-scale convergence method was used to justify the
behavior of the flow in the limit.
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1 Introduction

A general frame of this work is the boundary-value problems in domains with
oscillating boundaries. In recent years the interest in this kind of problems appears
in connection with the development of technologies of porous, composite and other
microinhomogeneous materials, and also as a result of various physical experiments.
For example, the morphology of contacting surfaces plays an important role in the
frictional behavior of deformable bodies. The roughness of the contact surface and
the material properties near this surface are microcharacteristics which influence
the large scale behavior. The mathematical analysis of such problems based on
boundary homogenization was presented e.g. in [4-6,11,13,16,17,31] and others.

The goal of the paper is an asymptotic analysis and its rigorous mathematical
justification of a problem that models fluid flow in a thin domain bounded by two
moving rough surfaces. We study the asymptotic behavior of incompressible un-
steady Stokes flow in narrow gap described by two small parameters € and pu. The
parameter ¢ is related to the distance between the surfaces whereas p is the wave-
length of the periodic roughness. Such mathematical problem has been risen by
engineering applications dealing with lubrication theory. To increase the hydrody-
namic performance in different lubricated machine elements, e.g. journal bearings
and thrust bearings, it is important to understand the influence of surface rough-
ness. In this connection one encounters different approaches commonly based on the
equation proposed by Osborne Reynolds in 1886 [30]. The fundamental problem in
lubrication theory is to describe fluid flow in a gap between two adjacent surfaces
which are in relative motion. In the incompressible case the main unknown is the
pressure of the fluid. Having resolved the pressure it is possible to compute other
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fundamental quantities such as the velocity field and the forces on the bounding
surfaces, i.e. friction forces and load carrying forces.

The study of incompressible flow in a thin layer can be found, e.g. in [7,10,25-27].
An analysis of a flow in a thin layer between moving in time and space smooth
surfaces have been done in [19]. The novelty of present paper is to include in
consideration also the rough periodic structure of the boundary.

In order to take into account the roughness effect one needs to use some special
homogenization methods. Some averaging techniques considering surfaces roughness
have been introduced e.g. in [8,18,29]. The most natural way for mathematical
justification of problems involving rough periodic geometry is the method of two-
scale convergence that originally goes back to Nguetseng [28]. We refer to the paper
[3] where the two-scale convergence notion was introduced and also many aspects of
homogenization technique for boundary-value problems with periodically oscillating
coefficients with help of two-scale convergence method are discussed. Application of
two-scale convergence method to homogenization of fluid dynamic problems can be
found e.g. in [12,24].

Most previous studies have considered only the case when the stationary surface
is rough. In this paper the assumptions regarding curvature and motion of the
surfaces are sufficiently general to include most realistic applications and lead to a
time-dependent problem with a non-cylindrical space-time domain. This causes the
main difficulty compared to the stationary case.

Let € > 0 be a parameter characterizing the thickness of the gap between moving
surfaces while 1 > 0 is the size of period of the roughness.

The results presented here pertain to the asymptotic behavior of the velocity field
of the fluid as both € and p tend to zero. The case including only the parameter
g, i.e. smooth surfaces, has been studied in [7,10,19]. The situation with two
parameters was considered in [9,12,20]. The main contribution in the present work
is the treatment of the unstationary problem with two small parameters. Moreover,
the techniques used in the proofs differ from previous ones. In order to pass to the
limit we apply the method of two-scale convergence, see e.g. [3], on extending the
solution across the oscillating boundaries to a cylindrical domain. It is assumed that
¢ is a function of p such that

A= lim =) exists in [0, o).
p—0t [

Three cases are distinguished: A = 0 (Reynolds roughness), 0 < A < oo (Stokes
roughness) and A = oo (High frequency roughness). The corresponding homogenized
equations are all of Reynolds type and two-dimensional. They govern the limit
velocity field and have coefficients that can be calculated by solving local problems
on a periodic cell, thus taking into account the surface roughness. In the High

frequency roughness case we have discovered the critical value limo. Depending on
&H—

it two different flow behaviour are possible. In the limit as pu,e — 0, we rigorously
derive the time-dependent Reynolds equation and show how the limiting velocity
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field and pressure are governed by this equation. The two-scale convergence method
was treated to obtain and justify the homogenized model of the flow. In particular,
we have proved two-scale convergence of the original pressure and velocity field to the
limit ones. Let us mention that limit equations as u,e — 0 for velocity and pressure
for a similar problem were proposed in [20] by formal asymptotic expansion method.
In some sense the results of present paper complement studies in [20].

2 Statement of the problem

We start with notations. Let x = (21,22, 23) € R3 and 2’ = (21, 22). Denote by
ZE =1[0,Z4] x [0, =53] a periodicity cell in R?, we use variables ¢’ = (£1, &) for points
from E. For given positive T, T we write t € [0,7] and 7 € 7, where 7 = [0, T] is a
periodicity cell in R.

Let w be an open bounded subset in R?, with sufficiently smooth boundary.
Assume that h* (2, ¢ t,7) € C?(w x R? x [0,T] x R) are given periodic in ¢’ and 7
functions with

hmin < h = h+ —h™ < hmaxa

where

hmm = min(m/,5/7t,T)(h+ — h_), hmam = maX(x/,E/,w)(th — h_)
The constants h,. . b .. are defined analogously. In our analysis we assume that
the function
W€ 1, 7) = D (@ ) + Dy, (€ — v )

describes the rough structure of surfaces moving with the velocity v+ = (vli, véc, 0).
+

Here h(j)E describes the global film thickness whereas the E-periodic functions h,,
represents the roughness. We assume also that v is such that A is also periodic in
T with period T.

For each ¢ € [0,T] we define the domain occupied by fluid:

Qeu(t) = {(2/,23) €R?: 2/ € w, ehy, (2',t) < z3 < ehf(2',1)},

where
n n L (2 - vEE
hiy (@', t) = h (') + hag, <7Iu > , ¥ ew, tel0,T].

In order to clarify the notations we write

hi(:zt',t) = hi($',£',t,7)| R
# O=0=u

Moreover, we define h, = h;7 — h,. The boundary 99.,(t) can be divided in three
parts:
Bou(t) UDL,(H) U XL, (),

where
Egcu(t) ={(z/,23) €R3: 2/ cw, 23 = Ehi(azl,t)},
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e (t) = {(«',23) € R3: 2’ € Ow, ehy, (2',t) < w3 < ehf(2/,1)}.

We set for any t € [0,7] :

Qr = | Quu®) x {8, o= | S5O = {1} Sr= [ S50 x {11
0<t<T 0<t<T 0<t<T

The flow is governed by the evolution Stokes equation:

Dyt — vAu™ + Vp™ =0 in Qg p7, (2.1)

divu®™ =0 in Qg7 (2.2)

We assume no slip boundary conditions

Oht
ut = <vf,v§,s <—8Lf‘ +oF- v@c)) on XI(t) (2.3)
91 ($1,ZE2, %)
ut=g=| g2 (x1,22,2) on X%(t) (2.4)

egs (w1, 2, 2)
with initial condition
U(l) ($1, T2, %)
u(,0) =ug = | uf (21,22, 2) on  £.,(0) x {0}, (2.5)
euy (w1, 29, 2)
where g € H? (B8 R3) and ug € H'(Q.,(0);R?) are given functions,
_ [ Oh Oh
Vh = (a—xl g ) :
, . +_ (ohn .+ + 4
Sometimes for the convenience we shall denote vy = ( =5/~ + v™ - Vhy | . In addition,

our assumptions on boundary and initial data are:

ug = u on TL,(0) UL, (0), divug” =0 in Q.,(0),
vt e C(w x (0,7);R?),

the functions g, ug" and their partial derivatives are uniformly bounded. Finally, to
ensure the existence of a solution to the proposed problem, one needs to require some
compatibility condition between boundary data and functions ™. It is assumed that

oh*
divg=0 inXg,p, g(wl,xg,hi) = <vfc,v§c, a—: + 0% Vh/jf)

/OT </w Dyhg da’ + /aw 7 - ﬁdS(x’)) Gdt =0 (2.6)
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for all ¢ € L%(0,T) to be valid, where

ht "
q° :/ gdz, z= =3,
€

We remark that physically the condition (2.6) describes the mass conservation
low. The goal of the paper is to obtain and justify the behaviour of the flow in the
limit as €, 4 — 0.

3 Preliminaries to present the main result

3.1 Rescaled domain

To make an analysis of the proposed problem more simple, we use the following
transformations of the domain:
Quult) = ult) =w x [y, hf]
by the change of variables: z’ = 2/, 2z = %.
Observe that the domain 2 does not depend on any parameters and t. We denote

wr=wx[0,7], Q=0x[0,T], Qr= |J 2.0
0<t<T

Since we assume the relation e = (), we shall write also in the sequel u#, p* instead
of u®H, p*H.

In the rescaled domain we introduce

O (L DY g 010

dx1’ Oxy’ £ 0z dr1  Ory | €0z

The following lemma (see e.g. [15], [21, Theorem 3.5] and [33]) is useful for our
analysis.

Lemma 1. Let 092 be boundary of C* class, s > 2 and G € H%(8Q;Rn) be a given

function that satisfies [ G-ngdS =0 (ng is a unit outward normal vector to the
oN
boundary). Then there exists a function U € HY(Q;R™) such that

divU=01in, U=G ond

and

10Ul 10 < KNGl (3.1)

HZ(0Q)
Lemma 1 implies the existence of function G* = (GY,Gh,G%) € H'(Q,(t); R?)
such that
diveG"' =0 in Qu(t), G =u"|sq, @ on IQu(t).



36 Y. O. KOROLEVA, A. V. KOROLEV

Moreover,

16" 0,0 < Kl loauwll 43 o0, 0y

where u#|gq, satisfies (2.3)-(2.5).
Taking into account the assumptions on boundary and initial data, the function
G" satisfies the estimates
1D:G* | a0, )) + 11GH Loy < K
K,

IV-G*| Ly, 0)) + Ve DG (| Ly, r)) < -

u " " K, (3.2)
[D:G" || Ly (9,00 + [IVeGHl Ly, (0)) + IVeDtGH || Ly, 0)) < =
K
1D3GH [l 100y < —
uniformly in p. Define the extended domain
Q= {(2/,2) 12’ €w, h,, —0 < z<h} 46}, §= const >0, QF = [0, T]xQ".
(3.3)
Lemma 2. There exists an extension u* of u* such that
L. a" = u" in QF,
2. = GF in QFF\ O,
3. T € Ly(0,T; H Q%1 R3)),
4. diva* = 0 in Q5.
Proof. Applying Lemma 1 we can assume that G* is defined on Q5*" (as a divergence-

free extension). For simplicity we drop dependence on u,T" etc. Clearly, @ must be
defined as

_ u, in €,
u = )
G, in Q¥\ Q.
Set w = u — G in Q. By assumption, v and G have the same trace on 9€). Hence
w belongs to H}(€2;R3) and so the trivial extension

_ w, in €,
w =
0, in Qt\Q
belongs to Hol(Q“t; R?). The third property is thus deduced from the relation

% = W + G. To prove property 4 it suffices to show that divio* = 0 in Q**. The
latter relation is a consequence of the identity

/ pdivwt de = — / Vow" dx.

Qext Qezxt
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3.2 Definition of the weak solution.

Let us define the weak solution of Stokes problem (2.1)—(2.3). Denote by
L3@u(0) = (@' 50) s [ pae’dz =0}
Qu(t)

The couple of functions u# (a2, 2,t) € Lo(0,T; H(€,(t); R?)),
p(a’, 2,t) € La(0,T; LE(2,(t))) is the solution to (2.1)-(2.3) iff

T
/ wodr dz| —
0

Qu(t)

T

[

T
/ u* Dy da’ dz dt + V/ / UMV dr' dz dt—
Qu(t) Qu(t)

0
., (3.4)
/ / pHdivepda’ dz dt = 0
0 Q)
for any ¢ € Ly(0,T; H&(Qu(t);R?’)),
/ diveutgds’dz =0 Vg € Ly(0,T; La(2,(1))). (3.5)
Qu(t)
— G" € Ly(0,T; Hy (Qu(t); R?)). (3.6)

For proof of the existence and uniqueness of the weak solution we refer to
[19, Theorem 4.1]. Let us notice that an assumption f p*dx’ dz = 0 is chosen
Qu(t)
to ensure the uniqueness of p* satisfying (3.4). Now we shall study the asymptotic
behaviour of the weak solution as p — 0 by two-scale convergence method.

3.3 Two-scale convergence method

Before we start to formulate the main results let us remind the definition of
two-scale convergence.

Definition 1. Let 2 be an open set in R™ and = is a periodicity cell. A sequence of
functions f*(z) = f(=, %) in Lo(£2) is said to two-scale converge to a limit fO(z, &) be-
longing to L2(Q x Z) (f#(z) — fO(z,€)) if for any function ¥(z, &) in D(Q; CXL.(2)),

we have -
hm/f” (x%) dx:!:/fo(x,f)l/} (z,€) dz d€. (3.7)

The class of test-functions 1 can be enlarged to La(€2; Cper(E)), see [3, Remark
1.1]. Also for the reader convenience let us formulate the following result on two-scale
convergence proved in [3] that will be used several times in our analysis.
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Theorem 1.

Let u” be a bounded sequence in H'(Q) that converges weakly to a limit
u in HY Q). Then u* — wu(x), and there exists a function ui(z,&) in
Lo(; Hp (2)/R) such that, up to a subsequence, Vut — Vou(z)+Veur (z,€).

Let u* and pNVut be two bounded sequences in La(2). Then there exists a func-
tion ug(z,€) € La(Q; HY,,(Z)) such that, up to a subsequence, u* — u®(x, &)

per

and pNVut — Veul(z, ).
Let u* be a divergence-free bounded sequence in (L2(Q))™ such that

ut — ug(z,€) € (La(2 x Z))V.
Then the two-scale limit satisfies diveug(z,£) = 0 and [ divyug(z, &) dE = 0.

Let ut be a sequence of functions in Lo(S) that two-scale converges to

UO(x7§) € L2(Q;Cper(5))' If
}LET%]HU”HLQ(Q) = |[u"]| L, xz)
then u* converges strongly to u :

i TN —
lim ¥ ()l (e = 0

To treat two-scale convergence method for time-dependent situation we use the

following theorem (see [23]).

Theorem 2.

o Let u* be a bounded sequence in L,(2x (0,T")), then there exists a subsequence

which two-scale converges.

o Assume ut € Ly(0,T; Wol’p(Q)) such that u*(x,t) — u®(z,&,t,7) and

Veut(z,t) — z(z,t,€,7). Then the two-scale limit u° is independent of & and
u® € Ly((0,T) x T;Wy*(Q)). Moreover,
2(x,t,6,7) = Voul (z,t, 7)+Veul (z,t,€,7), where u! € L,((0,T)xT; Wl (2)).

4 The main results

Let us formulate now the main results of the paper. The first one is concerned

with the limit behavior of the velocity field.

Theorem 3. Let Q™ be defined by (3.3). There exists u» € Ly((0,T) x T

Lo

Qert- gl (), having o o Ly((0,T) x T; Ly(2°% x 2)) and also
0z

per
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v\ € La((0,T) x T; La(Q% x Z; HL, ([0,Z3]))) such that

per

T =,

0z 0z 853 ’

ou ou? . (4.1)
K Y L= 17 27

Ox; 0&;
ot 7 or

In addition,

e if 0 < A\ < 00, then u depends on \, we denote u = u” and

A A1 9w
divyu = ?;g + ?;gz + Xa(;;?’ =0 in B t,7), (2/,t,7) €wx (0,T) x T,

A + + ahi + + +
u® = vy ,v3,A ?—i—v -Veh ,  asz=h".

e if A =0 then the boundary condition is
U = (vf,véc,O) on z = ht.
e if \ =00 then u € Ly((0,T) x T; La(Q*;R3)), where
O ={(2,2): 2" €ew,h; (2/,t) <z < hf(2/ 1)}
Wi (2! t) = hy (2 — to) + ming ryezxrhie, (€, 7),
hi (@',t) = hy (2" — tv) + maxe pyezxrlper (€, 7),  he =By —h.
Moreover, the boundary conditions are
U = (vf,véc,O) onz:h*i.
In this case, if in addition hm 2( ) then u is independent of T.
Our second main result deals with the pressure convergence and reads as follows:
Theorem 4. There exists the two-scale limit p € Ly((0,T) x T; HY(w)) such that
2P —p  strongly in La((0,T) x T;9°) as u — 0

where p* = 0 in Q,(t) and P = 0 in Q' \ Q,(t). Moreover, the two-scale limit does
not depend on the way of extension p* into the domain Q.

The existence of pressure extension is given by Lemma 5. The result of Theorem 4
follows from Lemmas 5, 6, 7. The next theorem characterizes the two-scale limit u.
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Theorem 5. Let o' be defined as the unique solutions of local problems (4.8) for
0<A<o0, (4.11) for X =0, (4.18) for A = co. Then two-scale limit velocity u and
pressure p are related via

ut = Z Laj +a?, (4.2)

where p(2’,t,T) is the unique solution of

9p ¢ / 9y _
Z / 5y LT Z bizyy &' didT =

hj= 1UJT><T UJTXT

/ (4.3)
ah°
= / e o dx'dtdr — / /§Z -npdS(x)dtdr, ¢ e H'(w),
wrXT (0,T)xT Ow
/ p(a' t) d2'dtdr = 0, Eﬁl = /hd&’. (4.4)
UJTXT =

Here coefficients A = (a;;)ax2 and b= (b1, bs) depend on o' through (4.8), (4.11)
and (4.13) for different limiting cases.

Note that the identity (4.3) is the weak formulation to the following Reynolds
equation:

divy (AVp + b) + % =0 in wx (0,T)xT (4.5)
(AVyp+b—7°)-n, =0 on J(wx(0,T)x7T),

The function p being a solution of (4.3) is uniquely defined by (4.4). Thus, the limit
solution (u,p) depends on the local problems which are different for each A € [0, co].

4.1 Stokes roughness (0 < A < o)

Consider the case when 0 < A < oo, i.e. when the thickness of the layer is of
the same order as the roughness wavelength. One finds that the coefficients of the
homogenized Reynolds equation (4.3) are obtained by solving three-dimensional cell
problems which depend on the parameter A. More precisely,

¢!
zS

1 2 3
ann a2 b\ _ (og a7 oy (4.6)
- 1 2 3 : :
a1 Ao b2 Qs Q5 Gy

Here functions o’ are defined in the periodicity cell

B=DB( t,7)={(¢,2): ¢ e =, h (2, ¢ t,7) <z < ht (2, & t,7)}

and satisfy the system
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vAya = Vg’ + f! inB (i=1,2,3) (4.7)
divya' =0 inB (i=1,2,3),
where
1 0 0
ff=10], =11 and fP=| 0
0 0 0
and

A —8_2_|_a_2_|_i8_2 V — iilg di —i+i+lé
Ao Tag T ey AT 2oz ) AT 8g Tag, T Nox

The above systems of equations are cell problems, whose solutions o' and ¢’
belong to the spaces

H,..(B)={p € H'(B): ¢is { —periodic} and Lj(B)

respectively.

4.2 Reynolds roughness (A = 0)

If A = 0, then the limit pressure and velocity field depends on the two-
dimensional local problems:

h3 ,
dng/ <12—V(V§IQZ + 61)> =0 in =, (Z =1,2)
(4.9)

m

h3 h oh
dives <—@V§/q3 + §(v+ + v‘)) =5 in

—_
—

where ¢' € H},,(Z) for a.e. (2/,t,7) and €; (i = 1,2) is the canonical base in R?. In
this case the coefficients a;; and b; are as follows:

O 1 K] 2 B) 3

(cn o by (H—lazl = —az§)+<o 0
- 2] 0 le]

agn az by v \ L 149 % 00

el
S

(v + v;))
(vy +vy)
(4.10)

Iy Ty

The local functions o and ¢' are linked by

N h+2)£z —h7) <v5/qi +ei>7 (i=1,2)

—htV(z = h™ —
od = (2 )(z )ngqg 4 z
2v

(4.11)
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4.3 High frequency roughness regime (A = )

Consider the case when A = oo, i.e. the roughness wavelength is small as com-
pared with the film thickness, € > u. The limit pressure satisfies (4.3) with

h3 b (v o7 )
a;; a2 b\ _ (-1 0 —H
a1 az by 0 . he(vitvy)
120 7
it
§Z:/ gdz.
hy

Analogously to the previous two cases, u and p are related via (4.2), where

; —hH)(z —hy
aZ: (Z *)(’Z *)ei7 (12172)
2v
s_ (z—hy) o (W —2)
o = ™ v+ I
The proofs of main results will be given in Sections 7, 8 and 9 for each case. The
crucial part for the analysis are apriori estimates that we derive in Section 5.

(4.12)

(4.13)

5 Estimates

We start with derivation of a priori estimates. For simplicity we denote the norm
in L?(Q;R*), where Q is an arbitrary open set and k = 1,3,3 x 3 is clear from the
context, as |- o-

Lemma 3. The following estimates are valid for u :

ot
|| yex - <K 5.1
o+ 5 ... 65:1)
out out K
e 5l =
] Q%mt ) Q%xt g
K
Sup Hﬂuuﬂezt S - (53)
0<t<T €
(5.4)

Proof. Consider GG defined in Lemma 1. According to the regularity assumptions on
boundary and initial data and Lemma 3.1 div.G = 0 in Q! and

K
1Glier|lqeet < K1, 7 €[0,T], ||VeGlleet < ?2

We take ¢ = u* — G in the integral identity (3.4).
Then we have

T

/ / @ — G)(u* — G)dz’ dz dt +/ / Gi(ut — G)dx' dz dt+
)

0 0, (t 0 2,(1)
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T

—I-l// / VotV (ut — G)dx' dz dt = 0.
0 Qu(t)

The domain §,,(t) can be replaced by Q' since the velocity can be extended by G
into Q¢ \ Q,,(¢). This can be rewritten as

T

1 1 f
@ = Ol s+ 3Gl + [ [ Gt e’ dzat v [ [ v <

0 Qext 0 Qext
1
< 1@ — @lizolst + GG = st + 2 / / VR da de di+
0 Qext
v 2 !
+§/ / |V-G|* dz' dz dt.
0 Qext

Since

/ / Gyut dx' dz dt > ——/ / G} dx dzdt——/ / (@")? da’ dz dt

0 Qezt 0 Qezt 0 Qext
where K is the constant from inequality

[T |2eat < K||VT||2ene,  divea® = 0 in Q°F, (5.5)

we can deduce that

)
1 1
@ = Gl + Gl + Kov [ [ VP e’ dzdr <

0 Qext
1
SN — ezl + G e + / | Gtastdzaes (5.6)
0 Qext
v 2 /
5/ / |VG|* dx’ dz dt.
0 Qext

The estimate (5.6), (3.2) and regularity of the initial data implies
K

HVEH'LLHQezt S ; (57)
Obviously,
i T
‘ ou < ‘ L (5.8)
8:1;2 Qezt 9 az Qezt




44 Y. O. KOROLEVA, A. V. KOROLEV

Due to regularity of G, we deduce that

2
' <2 H—u“
Qext

By using the Friedrichs inequality in z direction for u#* — G, we conclude that

0
0z

2
Qext H 0z

o (@ = G)

2
Ol ) <x.
Qext

2

[~ Gl < Ko | 2@~ )| <Ky,

Qezxt

Hence
[ B < 20T — GllGeat + [|GllGeat) < K.

Taking supremum over ¢ from both sides of (5.6), we conclude that

K
sup ||@!||qest < —,
<t<T

K
sup [|(@ — G)||gext < —, hence
€ 0<t< €

0<t<T
and we complete the proof of (5.1) and (5.2).
Now we derive estimates for pressure.
Lemma 4. There exist constants K1, Ko > 0 such that

< K17 H€2v

H€2puHLg(Q#(t)) Ep”‘H*l(Qu(t)) =

Proof. Consider the integral identity:
T

ko
B do! _ p ! E: du L
/u pdz dzo /u o dx dzdt—l—y/< 18:528332

u (t) QuT

S 1 Qut 8<,0>d Qs dt — /pu<5<,01 i 8902 n 15890 )dx/dzdt.

e2 9z 0 0r1  Oza

pnT

We take first (0,0, ), ¢ € La(0,T; H} (2,(t))) as a test-function.

/u” dx'dzT—/u” dx'dzdt—i—u/ Z@ug&p
3% 0 3¢t ox; (%cl

Qu(t) QHT

1 dub Dy , 10y
——2—"|dr'dzdt = - da' dz dt.
+E282 92 ) /paaz vz

nT

Taking into account the estimates for u*, we obtain that

dy K
[ 5t az i < Ky,

Q.1

(5.9)

< Ky (510)

(5.11)

(5.12)
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Similarly, by choosing test-function as (¢,0,0) we get that
T oul! 890 1 out’ Oy
Podx' dz| — Moy da' dz dt / 1 —l—d/ddt:
/ uy pdr Zo /ulsot T dz dt + v <Z 2, 8213@ 5 95 02 T dz
Qu(t) QMT

/ p“%’p dx’ dz dt.
1

Qur

(5.13)
From this one can conclude that

I
[ 5L e at] < S lolyn, o

T

In the similar way one can show that

o K
‘/pﬂ da’ dzdt‘ < Zlella @)

Thus,
K
1t -
Vel -1 (0,0) = 2
By applying the result

12"l L0, 1)) < K IVeP 119,09 (5.14)
(see [33, Proposition 1.2 (ii)]) one concludes that

K,
1120, ) = =2

By integrating this inequality over [0, 7], we get the desired estimates. U

6 Pressure extension and convergence

In order to apply the two-scale convergence result of passing to the limit one
needs to have the unknown pressure defined in the fixed domain. A pressure exten-
sion method was introduced by L.Tartar in [32] in connection to homogenization of
problems in porous media. His idea was widely used, see e.g. [1-3,14] and [22]. We
adopt this technique to extend the pressure through the oscillating boundary.

Lemma 5. There exists an extension p* € Lo(0,T; La(Q%Y)) of pressure p* defined
by

pt=p" inQut), P'= / P da’ dz in QNN Q,,(1). (6.1)

Qu(t)

12, (1)]
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Moreover,

1
/ ' dr’ dz =

|Qemt|
Qezt Qu(t)
Proof. The first step is to construct the operator
Ry, : Hy (" R?) — Hy (Q(8); R?)
with the following properties:
Rup = in Qu(t) if ¢ = 0 in QF\ Q,(2),
dive R, =0 in Q,(t) if divep =0 in Q' (6.3)
IRl 2 @0y < Kl ey

Fix § > 0 and constants ¢ ¢~ = h,,,. +6, c" = hl. —§. Introduce the surfaces
vt as z = ¢t vy =9~ UxyT. We denote by Q¥ C Q,(t) the union of two domains
(layers): one is between ¥, and 7~ and the other one is between vt and EZ. The
result by Tartar (see [32, Lemma 3]) says that if ¢ € H!(Q¢!), then there exist

Y € HY(QY) and q € Ly(Q¥) such that

— Ay = —A.p+Veq in QY
1

legT,Z) = leg(,D + m

/ divepda’ dz in QY
Qer\Q, (1)
1/)|«/i = 90|'yia Ylp: =0, Ylsw = @[sw.

Moreover, there exists a constant K such that

(6.4)

[l @, ) < Nlellm ety
Notice that Q°t = (Q,,(¢) \ Q%) U Q¥ U (2 \ Q,(t)). Define operator R,, by

® in Qu(t) \ Qwa
R, = Y in QY (6.5)
0 in Q\ Q,(¢).
It is easy to see that R, satisfies the properties (6.3). The next step is to define the
pressure extension p* a.e. in time by
(VP 0) -1, g aeoty = (Vep?, Ru) g1 i (e, 1)) for any ¢ € Hg(Q2°R%). (6.6)

This definition makes sense due to the properties of operator R,. Moreover, the
equivalent definition (6.1) can be obtained from (6.6) by using an appropriate test-
function ¢. The equation (6.2) follows directly from the fact that

/ p"da’ dz in Q7N Q,(1).
Qu(t)
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Remark 1. Since it is assumed from the beginning that p* € L3(Q,(t)) with respect
to the space variables, the result of Lemma 5 holds with p* = 0 in Q%" \ Q,,(¢).

Lemma 6. There exists p € Lo((0,T) x T; H(w)) such that
2" — p in Q! (6.7)

and
/pdw' = 0. (6.8)

Moreover,
29" — p in La((0,T) x T;9°") as pu — 0.

Proof. The estimate

127" | ooty = NP a0y < K

follows by the definition of p* and Lemma 4. By two-scale convergence result there
exists p € Lo(Q5% x E x [0,Z3] x 7) periodic in & = (¢,7) such that ep* — p
up to a subsequence of parameter pu. Now we show independence of p from ¢ and
z variables. Let us show first the independence of p from &3. For this we take
¢ € CH0,T;D(Q,CL.(E % [0,23] x T))), =0 in Q' \ Q,(¢) and choose

per

<0,0,cp cp<x z,t, % ﬁ ﬁ)) as a test function in the integral identity. Thus,

we have:
T
" = /chp“da:'dz — / bl da’ dz dt+
Qext 0 g}ggt
&p“ 1 oufy dpt] / 100 1 0p
dx' dzdt = Ml —— dx’ dz dt.
/ [Z Ox; Ox; 62 9. 0, | Y Prlc oz T ep O3

=1

ext ext
QT QT

Multipling this equation by €3y and using Lemma 3 and Lemma 6, we get that

/ ep [ua—(’p - %] da dt‘ |E3ult| < Ke.

ext
QT

Passing to the two-scale limit as g — 0 (= ¢ — 0), we have that

/ / pag da’ dt d€’ dés dr = 0.

Qert Ex[0,23]xT



48 Y. O. KOROLEVA, A. V. KOROLEV

This proves that p does not depend on &3. In order to show independence from z
variable, we take ¢ € C*(0,T;D(Q,C55,.(2 x T))) and choose
(0,0, p# = go(a: z,t, = 7 ﬁ>) A =0 in Q°\ Q,(t) as a test function:

T
/ﬂggp“ de' dz| — /uggot da’ dz dt+
S)ezt 0 S)%?t

/ [Z lo[Ti 890” 1 ol 890”} da’ dz dt — / pl‘lg—(’p dz’ dz dt.

18:1:Z 0z; 62 0z 0z € 0z
1=

ext ext
S?T‘ fZT

Multiply this equation by €% and use the estimates from Lemma 3:

/ e2pt [ua—(p} dx’ dt‘ < Ke.
0z

ext
QT‘

Passing to the two-scale limit, we derive

Op —
/ / py d¢' drdx’dt =0  for any ¢ € Ly(0,T;D(Q, Cpe (Ex T))), (6.9)
Qert ExT
what shows independence from z. Now our goal is to prove the independence of limit
pressure p from slow variables £’. For that we take ¢ exactly as in previous step

and choose (gp“, 0, 0> as a test function:

T
IH = /ﬂ’fcp“da:’dz —/ulcpt dx’ dz dt+
Qext 0 S)ggt

aUAIL &PM 1 aﬂif Ot , B Dy 9 /
/ [; Ox; Ox; 62 0z 0z } du’ dzdt = / P [axl + ;8—51} dz’ dz dt.

ext ext
527‘ 527

Now we multiply the obtained relation with pe?, pass to the two-scale limit and
derive that 5
P e ’
—d¢ drdz’ dt = 0.
/ / p851 <

QETH =ExT

This proves independence p from &; variable. In a similar way one can show also
independence from &;. We omit the details. Let us show now the strong convergence
g2p* — p. The estimates (5.10) imply the existence of p* such that for a.e. ¢t € (0,T)

2Pt — p* weakly in Lo(Q°), 2V p* — Vp* weakly in H~1(Q).



HOMOGENIZATION OF A LUBRICATION PROBLEM 49

Let ¢ — ¢* weakly in H}(Q?).
Then, due to the estimate |(e2V.p*, ") < K|l || 3 (eaty» we deduce that

[(e2V. 7", o) — (Vp*, 0")| < |(E2Vp", " — )| + |(E2 VP — Vp*, %) <

N _ . x (6.10)
< K" — @ || g (qaeary + |(2V. P — Vp*, %) — 0 as u — 0.

Hence, for a.e. t € (0,T) e2V.p* — Vp* strongly in H~1(Q°*") what implies
that e2p* — p* strongly in LY(Q°*!) by (5.14). Since the strong convergence implies
two-scale convergence, p* = p. Finally, multiplying the equation

pdx’ dz =0
Qext

by €2 and passing to the limit, we obtain [ pda’ = 0 that proves (6.8). O
w

Lemma 7. Let p* be an extension of p* in z—direction through the oscillating
boundary. Then the two-scale limit p of £>p* does not depend on the way of extension
into the domain Q.

Proof. Let P} and P be two different extensions in z—direction such that p!' = p*
in Q,(t), i = 1,2. According to Lemma 6 there exist p; independent of z such that
2P’ — p; in Q*. Consequently,

(P} —Py) — (p1 — p2) in Q° C Q(1)
and obviously p;1 — p2 = 0 in Q*. The function p; — ps does not depend on z in

Q°®t therefore p; = py in Q°*t. Thus, we have shown the uniqueness of the two-scale
limit. O

7  Proof of main results for Stokes roughness case

7.1 Proof of Theorem 3

Now we prove theorem on two-scale convergence of the velocity field. This result
is an essential part for pressure convergence.

Proof. Lemma 3 and two-scale convergence result of Proposition 1.14 in [3] imply
that there exist u* € Lo(Q¢%% HL, (2 x [0,Z3] x 7)) and

per
vt € Ly(Q* x 2 x [0,23] x T; HJ,.([0,Z3])) satisfying (4.1). Let us prove that u*

does not depend on &3. Consider ¢ € Ly (0, T; D(Q%! x = x [0,=23])) such that ¢ =0
;). Then we derive

for z€[h_. h7)U(hT,ht,.] and choose ot = ¢(2/, 2, ¢, 2

max

e
out Op 1 0yp
oty - _ I

/ 9z~ de’dz dt /u <8z ,u8£3>

nT QuT

Odp 1 0¢
_ w27
/u ( Z—l— g3>a€x dz dt.

=
=
t
min? w?
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Integrating this equation over [0,7], multiplying after that the obtained equation
by 1 and passing to the two-scale limit in 2!, we obtain that

/ / df dr dx’ dzdz = 0.

Qezt =xT

This implies that a“A = 0 as h~ < z < h', therefore u* does not depend on &;.
Ly ¢ € Ly(0,T; Dt 02 (2 x T))) and ¢ = 0 as

per

Consider ¢* = cp(a; z,t, &
z € [h

’u p
h=)U (ht, ). The identity

man’

div.ut ! da' dz = 0,

Qext

2
Ge  10p) L8]
/[Zu <8x+u8§>+ a]da:dz—o.

Qext i=1

implies

Multiply the obtained equation by p and pass to the two-scale limit:

2
L 1 Op u_u&p ) b
0= lin, L/ [§ T oe + I | do'didz de dr =

Qerixzr =l

1
ZE/ / divyutp dx’ dz dt d€' dr de'.

E QEtxET

By choosing ¢ as p(2', 2,t,&',7) = 0(2',t,7)1(2, &) with 6 € Ly(0,T;D(w)),
v e€DB),v»=0asze€lh, ., h")U (h+,hmax] we deduce the result. Now let us
investigate the boundary conditions for the limit velocity filed. By means of Green

formula we derive

m /
/ai (w’,z,t,$,£)dx’dz:— / u“g—(’pdx/dz—i—
m 2

Oht t
+/<vf,v;,s<a—:+v+-Vh:>> (m,h:,t% ;)—
Ooh7; !
- <U1_7U2_7€ (a—: +U— : Vh;)) (70(1:,7 h;7t7 %7

for any ¢ € Lo(0,T; C°(Q*, C29.(2 x T))).
Choose ¢ = 0 as z € [h_, ,h™) U (h",h,.]. Extend the function u* to Q¢!

man? Y P max

)da'

=+
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integrate the obtained equation over [0,7] and then pass to the two-scale limit as
p— 0 (=¢e—0). Since

oh* + +
B —“—I—Ui'Vhi = aL_FUi.thi + € lal+vi.lvghi 5
ot a I I

or
it holds
/ / ({;—fgp(x’,z,t,ﬁlm) dx' dz dt d¢' dr = — / / u)‘g—j da' dz dt d€' dr+
Qert EXT Qgrt EXT
+/ / <vf,v§r,)\ <88h_: +ot- V5h+>> p(a,h* e )~
Wp EXT

oh~
- <v1_,v2_,)\ <? +ou - Vgh‘)) o(@',h™,t,¢ 1) dx’ dt d¢’ dr.
By applying again the Green formula, we conclude that

—/ /u)‘%dx’dzdtdf’dT—l—/ / W ol7Zh da! dt de' dr =

Qi}rt =xT wr ZXT

:—/ /u)‘%dx’dzdtdgldﬂ—
0z

Qert ExXT

+ .+ oh* + + I+ '
+ v, U5, A ?—I-U -Veh o' h & T)—

wr EXT
oo (o v ) ) bt 7)) da d e d
1°%2> or 13 2 ) s U, Gy T X T.

Hence,

A + * Oh* + + +
ut = (07,03, A W—I—v -Veh as z=nh

for almost every (2/,t,&',7) € wp x 2 x 7.

7.2 Definition of weak solution to local problems

Define the space

C§er(B) ={p € C®(B) : pis ¢, 7 — periodic, (¢, 7,h7) = p(¢,7,hT) =0},

,PET
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1 _ 1 X . . g
Hper( )={peH (B):pis o — periodic}

Hj per(B) = { € Hpe,(B) : (€, 7,h7) = (€', 7,h™) = 0}

The weak solution to local problems (4.7) satisfies the following identities in the
periodicity cell B :

V/V,\aiv,\gpdf’dz = /q" divy pd€ dz — /cpk d¢' dz, divy of =0, (7.1)
B B

where (o, ¢") € (Hg ., (B))? x L§(B), i = 1,2.

I//onzgvkgpdﬁl dz = /q?’divkgodf'dz, divya® =0,
B (7.2)

3 + + oh= + + +
a’ = | v ,v, A ?4_” -Veh as z = h™.

7.3 The relation between velocity and pressure

In this section we prove formula (4.2) of Theorem 5 on the relation between the
limit velocity and pressure.

Proof. Let us prove first the equation

8u/\8<,0 1 out Oy
///(Z T + 3255 5o >d dt d¢' dr dz =

T wr B (7.3)

_ y///pA(:E/,t)<g—Z + g—iz> da dt d€' dr dz

7T wr B

for any ¢ € C*(0,T; D(Q; C2.(ExT))) with o =0 for z € [h_.  h™)U(hT, bt 0]

per

and divye = 0. Take p* (2, 2,t) = p(2/, 2, t, z , %) as a test function in the original

equation (3.4). Since ¢ =0 in Q" \ Q,p, for the extended function u# we have:

T
/U“(pdy dx’ dz — /ﬂ“g@tdw’dzdt+
Qext 0 Q%zt

2
oT(Dp 10\ L 00N
Y / <; oz, <axi+ua@->+vm e 8z>dw dzdt = (7.4)

1 1 1
= / ﬁ“(m’,t)(awl L1001 Oy 100s —8903) da’ dz dt.

Oy po&  Ory  poé  Ap 0z
Q%vt

Since divye = 0, we obtain
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T
de' dz — /ﬂ“gpt da’ dz dt+
0

/ ' dy

Qezt Q%vt
2
out [0y 1 0yp 1 out dyp , B
+ / <1/Z; oz, <83:Z- + M8§i> + 32,2 0z 8,2) dx’ dz dt =
Q%vt 1=
_ dp1  Op2
— L4 / -l “rs /
/p (2, 75)(a o + &Ez)dw dz dt.
Q%vt

Multiply the last equation by p? and pass to the two-scale limit. Taking into account
the results of Theorem 3 and Lemma 6, we deduce

ou? &p o vt Dy
/ / <Z o&; a& < + 853) > d¢ dr dz dx' dt =

Qezt =xT

1 2

_ A/ / /

_ / / » (gc,zs)<agc1 +—83:2> de' dr dz da d.
QETH =ExT

(7.5)

Due to the periodicity of v, the term with % vanishes. Finally, we use the fact
that ¢ = 0 as 2 € [h_.  h~) U (ht,ht ] to deduce (7.3). Let us prove now

man’ 7 max

that p* € Ly((0,T) x T; H'(w)) and u* satisfies a Stokes equation in B. Consider
(62, 2) € €35, (0,a] x [h=, h¥)). Suppose that ¢ = [ 4 dzdg’ # 0.
B

Take p = <%¢,0,0) , where 6 € D(w). The function ¢ can be chosen as a test in
(7.3) since divy¢p = 0. We derive

v / /VAUAVModg’dezd:n’dt: / /p)‘(aj',t)&n (if) de' dr dz da’ dt.
1

wTXTB UJTXTB

The functions 6 and p* do not depend on &, z, therefore it can be rewritten as

/ </ Vau Vg dg’ dr dZ> dr' dt =

UJTXT
= / 290 /wdgdnlz dx’ dt = /p’\aed:ndt
8:E1 0y
wrXT wrxT

The function [ VuiV i d¢’ dr dz belongs to La((0,T) x T; La(w)) since
B

Vaup € La((0,T) x T; La(Q)), hence % € L2((0,T) x T; La(w)). Analogously, by
choosing (&1, x3) one can show that ~ € Ly((0,T) x T; Lo(wr)). This proves that
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P € La(0,T5 H' (w).
Consider now ¢ = 6(z')p(, 2), where 6 € D(w), p € CgS,, and divap = 0. Taking
such 1 as a test function in (7.3), we obtain

v / 9(x')< / V,\u)‘VModﬁ'dez> da' dt =

UJTXT
<8i ) + —(9(,0) > ¢’ dr dz da’ dt =
UJTXT B
< < P11+ —cp2> d¢’ dr dz)@dx/ dt.
WTXT B

By the density, we get the following Stokes problem:

P / 817 ap)‘ ’
v | Vau'VipdE dz = — 8—4,01 + a—cpg d¢ dz  for almost every
3 2 (7.6)

(@' t,7) €wx (0,T)xT, p¢€ H017per(B), divyp =0,

where

divyu =0  for almost every (z',t7) € w x (0,T) x 7.

Using the Green formula and the fact that p* does not depend on &, z it is possible
to rewrite the last equation as follows:

2 A
- y/umwdg’ dz—i—u/ uVapdS(E) ==Y g’; /cpi de' dz. (7.7)
B 9B =1 "

According to the integral identities (7.1) and (7.2), we can substitute the integral
— [ ;i d¢' dz with
B

y/vAa"vwdg’dz—/qidivwdg’dz = y/woﬂ'vwdg’dz
B B

since divye = 0. In addition, we add zero term

0= V/VAa?’VMpdf' dz — /quiv,\gpdf’dz = V/V,\a?’v)\cpdg'dz
B B
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to the right-hand side of (7.7). Thus, we derive

2

—y/u’\A,\godf’dz—l—u/u VapdS(€ Z

B 0B -

/ V' Vo de dz+

2 op . .
—|—1//V>\a3V>\<pd§/dz = _Vzai</amwd§’dz+ /alvwdS(gf))—
el B
B

0B

—V/agAAcpdf'dz—i—V/a?’V)\cpdS(g').

B oB

This obviously implies

2 A
/(u)‘—z g%a’—a?’) Aypd€ dz =0 for almost every (z/,t,7) € wx(0,T)x7,
i=1 1

A_ 3 + on* 4 + +
ut=a” = |v;,vy, A W—H} -Veh on z =h>.

Therefore (4.2) is proved.

7.4 Proof of Reynolds equation (4.3)

Multiply the relation div. u* = 0 with ¢(2') € C'(@) € H'(w), integrate it over
the domain €2,(t) and use the Green formula, we get

- / uy 8890 dz’ dz + / ufnipdS — / ugg—id:r/dz—l—
Qu(t) oQu(t) Qu(t)

+ / ug‘nggpdS—l—é / usnzpdS = 0.
o0Qpu(t) oQu(t)

Taking into account the boundary conditions for u#, we have for every t € (0,7 :

[t wazs [ 2w —/—“ d:c—//g npdS(a!,2) = 0.
1

Qu(t) Qu(t) 0w hy,

Extend the function u* to the fixed domain ¢**. Then we obtain:

hihaz+6

/ 18('0 dx’ dz +/ ('Dd dz /—cpdx / / g-npdS(2',z) =
8%1

Qext Qext Ow h™ . —§

min
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= / (Glg(p —i—Ggg(p)dzdx —/cp / g-ndS(a,z).

Qert\Q, (1) ow 8,h U Ritan+9]

[ min~ )
The right-hand side equals 0 by div.G = 0 in Q°**\ Q,,(¢) and since G takes the same
values on boundaries z = lfr z=h .. + 9 (analogously on z = hy sz = hyi, —9).
Integrate this equation over (0 T)| x T and pass to the two-scale limit.

+ 0 oh
A 0P . B o
///< b 28x2>d§ dx' dz dt dr // / atsﬁdf de’ dt dr —

T wr B T wr ExT (78)
/ /g -npdS(z')dt, o€ H'(w),
(0 T xT 8wT
where
hT
g = /gdz.
s
Since ¢ is arbitrary it holds that
/ -’
==z¢  0h
divy ur + e 0, in wpxT (7.9)
=3¢’
<u)‘ —§Z>-ﬁ:0, on Owx (0,7] xT.

Now we substitute u* with (4.2) in (7.8):

[ 565

WTXTB =1 ‘] 1

/ / 5% d¢' dr da’ = / /gz ~npdS(z) dt dr.

wpXxT EXT (0,T)xT Ow

ol + o )8—‘%5 dr da’ dz dt—

Since p* and ¢ do not depend on ¢ and z, the last equation can be rewritten as

Z/ ggiag‘idd Z/b’\(pdxd—

bI=ly T LorxT
e T (7.10)
ah§ T
- o pdx' dr — / /gz-mpdS(x')dth, ¢ € H'(w),
wrXT (0,T)xT Ow

where

_§/
, oh oh
?\. = — ‘7 / )\ = 3 ! A, = a.
a(x,t,7) /% d¢'dz, b} (z,t,T) /ozl d¢ dz, 5 / 5 de’.
B B =



HOMOGENIZATION OF A LUBRICATION PROBLEM o7

By integrating (4.2) we obtain

—=z ! 2 8p)\_25/ :Z§, A A A
AT =Y SR el = AN+ (7.11)
i=1
where .
S T
al a2 0
A= o a3 0 (7.12)
04:1)) a% 0
and o
ad\
W= ol (7.13)
a3

This proves (4.5) and (4.6).
Let us prove now the uniqueness of the solution of (4.3) (or, equivalently, (4.5)).

It is sufficient to show that A3, ., = ai\jij:l , is symmetric and positive definite
1 ) ’

matrix. We choose a! as a test function in (7.2) for i = 2. The function a! belongs
to H&’per(B) due to its boundary conditions. Moreover, the fact that divyal = 0
leads to

V/V)\alv,\az de' dz = —/a% de' dz = ayy.
B B

Analogously, taking a? as a test function in (7.1) for s = 1, we deduce that
V/onzlvko; d¢' dz = —/oé d¢' dz = ay,.
B B

Hence, a{‘Q = ag‘l, wha‘g proves the symmetry. Let (n1,72) be an arbitrary vector in
R2. Choose now 7;n;a9* as a test function in equation with number i (i = 1,2) in
(7.1). Then we get:

vnin; / VAaiV)\aj ¢’ dz = — /mnjozg d¢' dz = ninjaf‘j.
B B

Summing up, this implies

2
Z ninjay = V/(UIVACYI +m2Vaa?)?de' dz > 0.
B

i,j=1

2
Suppose that > nmjaf‘j = (0. This means that
ij=1

/V,\(mal + n2a2)2 d¢' dz = 0.
B
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Consequently,

d
/ a—zg(mal + mpa?)?de’ dz = 0.
B

Taking into account the fact that nia! 4+ na? € H&’peT(B) and using the Friedrichs
inequality in z—direction, we deduce that

mat +ma® = 0.

By choosing nya! + n2a? as a test function in (7.1), we have that

/(mtpl + nmagpa) d€' dz = 0,
B

for any (p1,p2,¢3) = ¢ € H&,peT(B) with divye = 0.
Now choose ¢ = (p1(¢',7,2),0,0) such that ¢ € H017per(B), [ ¢1dg dz # 0. Then
B

we have 171 = 0. Analogously, one can prove that 1o = 0. Thus, the assumption
2
> nmjaf‘j = 0 implies that 1; = 12 = 0, and we have proved the positiveness of

ij=1
the matrix.

8 Proof of Theorems 3 and 5 in the case A =0

The proof of Theorem 3 is similar to the previous case. We use the uniform

estimates for the case % — 0 and two-scale convergence result. One can verify the

boundary conditions
u= (vf,vF,0) onz=ht

exactly in the same way by using the fact that A = 0 in the considered case.
Moreover,

2 5 ”
/Zﬂfa—gdglzo for any ¢ € H'(Z). (8.1)
2 =1
The last equation follows from the integral identity for div. w* = 0 with test-function
v = p1(x")p2(), v1 € D(w) and p2 € Hy, (E).
8.1 Proof of (4.11)
Following [10] introduce the spaces:

;i
0z

Vo ={¢ = (¢1,92) : pi € L2(B), € Ly(B), o(a',h™,t) = p(z',h",t) = 0},

2
Voo = {p € Vo: [ 397V =0 for any ¥ € H}, ()
= =1
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and

oo oo dp1 | Opa | Ops
V= {90 = (9017 902) € CO,per(B) : 3(103 € CO,per(B) such that 651 + 852 Oz = 0}
The spaces V and V()0 are Hilbert ones. In the same way as [10, Lemma 4.8], it can
be proved that

V = Voo, (8.2)

where the closure is taken with respect to the norm

lol® = llvllZ, + || IIL2

Let us prove that
Op Op
_ 1 2 3
u—aaxl—ka 8x2+a’ (8.3)

where o are the unique solutions to auxiliary problems:

Oa 8“;’ e’ dz = — / o de’ dz for all ¢ € Voo, o € Voo (8.4)
B
and
VZ/aO‘ a‘“dfd =0 for all ¢ € Voo, a® € R+ V, (8.5)
L 92 = ‘2 005 00 .
=B

with R € Ly(B), 28 € Ly(B) such that R = (vi",v3,0) on £*.

Proof. Take ¢ = (1,02, p3) € (D(Q*, ng’r( )))? such that ¢ = 0 in Q' \ Q,r
and divep = 0. Define p# (2, 2, t) = (2, 2, t, £ o ﬁ) and take (¢!, b, %goéf) as a test
function in the original equation (3.4). Since ¢ =0 in Q%' \ Q,p, for the extended
function w* we have:

[ awae [ [ (o2 200) 05

Qezxt 0 Qext

8902 1 a@z)
_|_
< Oz p 0&;

€ 8ﬂg atpg 1 atpg 8uﬂ 8%0@ 1 aﬂg 8903 / -
p 0z <8a;j p 0 522 92 Oz +E,u 9> 02 dz’ dz dt =
T 8 a

- b (! ovL Y2
//p (x’t)<ax1 +ax2>d dz dt.
0 Qext
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Multiply the last equation by €% and pass to the two-scale limit. Taking into
account the result of Lemma, 4.1, we deduce

//Zaula%dgd dz dz’ dt = // 1) (a(’pl 8"”2>d5 dr dz dz' dt.

8ZE2
wr B wr B
(8.7)
Exactly as in Theorem 5 one can show that p € Ly((0,T) x 7; H'(w)) and that
8ul 8(,0@ o 2 op(2', 1) /
B 1= B 1=

for almost every (2/,¢,7) € w x (0,T) x 7. By the density result (8.2), the equation
(8.8) holds also for any ¢ € Vjp. The uniqueness of (u1,u2) € R + Vo satisfying
(8.8) for all ¢ € Vpyp follows from the Lax-Milgram theorem. The same motivates
the uniqueness of the solutions to (8.4), (8.5). In the same way as in the proof of
Theorem 5, by using linearity and fact that p does not depend on z, we deduce (8.3)
from (8.4), (8.5) and (8.8). O

8.2 Proof of (4.11)

The weak solution to local problems (8.9) satisfy the following identities by the
definition:

3

F(Ei + ngl)vf(pdgl = 07 2 € Hper( X T) (89)

me—_

where ¢ € H;ET(E) x L3(Z), i=1,2and e; is the canonical base in R?.

h(vt +v~ Ooh
/—nggvgsﬁdﬁ —/%ngdﬁur/aj@dﬁ', (8.10)

where ¢* € H!, (2) x L3(ExT), p € HL,, (E x T).

per per

Lemma 8. The solutions to auziliary problems (8.4), (8.5) are related to q° by

NECE h+2)l(jz —h7) <V£,qi +ei>’ (i=12)

3 (z=h")(z—h") 3 z—h™ . At —2z
a’ = o) ng—I—hv—I—hv.

(8.11)

Proof. By using De Rham theorem we can conclude from (8.4) the existence of
7" € Lg(B) such that

dak 8? i’ d- /% de' dz +/§kdiwd§’ d2¥yp € Hy(B).  (8.12)

B B
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Take ¢ as (¢,0,0), (0,¢,0) and (0,0, ¢) in (8.13). This implies

2k ~k
uaa;i — G+ g—‘é, ik=1,2, (8.13)
~k
aa% —0, k=12 (8.14)

Integrating twice with respect to z and taking into account the boundary conditions,
we derive

of = aakw' (z—hT)(z—=h7), i,k=1,2 (8.15)
i 2 85@ ki y Oy y L .
SinceafGVOO,
ht o
ag"* Vo2 + - 4+ - I
7, + 0k | (22 —2(RT +h7)+hTh)dz | Ved¢ =0.

This can be rewritten as

h3 ; ) -
/ g(ez' + V@' )Vepde' =0, i=1,2, ¢ € H),,.(Z).
xT

[1]

Due to the uniqueness, ¢ = ¢*. In a similar way one can verify the validity of (8.11)
by using (8.5) and uniqueness of the solution to (8.10). O

8.3 Proof of (4.3)

Proof. Similarly to the proof of Theorem 3 one can show the validity of equation
(4.3) for limit pressure with

h3 7
aij(z',t) 2/— <5ij + 6_q> d¢', i=1,2,

J 12v 0¢;

[ h3 ¢  h(vt +v7);
(! — S S S /
bi(2!, 1) j< et > de’.

The different formulae for a;; and b; in this case (Reynolds roughness) come from
the formula for a;. Now let us prove the uniqueness of the solution. For this goal we

need to show that matrix A3, , = af‘jij: | 18 symmetric and positive definite. We
take ¢ = ¢’ in (8.9). Then
h3 . .
/ (6 Ved Ve d&' =0
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and a;; can be written in the form

h3 . .
aij = / & (6 + Ved')(ej + Ved!) dE' = aji

(1]

and the symmetry is proved. Let = (1,72) € R2. According to the definition,

2
(3 . 2 .
77’34772/@< m(eﬁvsql)) d£2C/HZm(eiJerQ’)H%dE:
1 L =1

=

2
c / S e+ C / ImVeq' +mVeq |3 de > Ol
2 i=1 Z

Here 5
minzh
C= — > 0.
2v
Thus, matrix A is positive definite, and the uniqueness is proved. O

9 Analysis of case A\ =

Now we are going to prove the results of Theorem 3 for the case when \ = oc.
The principal difference in this case as compared with the previously considered
is that we shall work in ”cut-off” domain QF = {(2/,2) : 2’ € w,h; (2/,t) < z <
hf(a',t)} x (0,T), where

h*+ ($l7 t) = h(-;_ (:E/ - tv) + min({’,T)EEXTh;_er(glv 7—)7
hy (xlv t) = h(; (‘T/ - t?}) + maX(E’,T)EEXTh;eT(Sla T)7 hy = h: —h;.
Lemma 4 implies the estimate for the pressure in €7} :

Lemma 9.
H€2p”\|9:; <K

Lemmas 5 and 6 give the two-scale convergence to a limit pressure.

Lemma 10. There exists a function p(z',t,7) € Lo(wp x T) such that
2t — p(a,t,7) in U x T (9.1)

and

/ pda’ = 0. (9:2)

w

Remark 2. It will be shown that p does not depend on 7 when limo % < 00. The
/"L_)
proof of this fact is based on the properties of the limit velocity field and is given in

Section 9.1
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9.1 Proof of Theorem 3

The estimates from Lemma 3 are obviously valid in Q*, and we conclude the
existence of u € Lo(§25; per(" x [0,Z23] x 7)) and
v € Ly(U5 xEx[0, 23] x T; H),,.([0,Z3])) satisfying (4.1). Let us verify the boundary
conditions for two-scale limit u on z = h¥. By means of Green formula we derive

out Op
- pr g
P (', 2, t, )dx dzdt = /u P dx’ dz dt+
0z, 0z
oht x
+/<<U+7U+7E< >>wx/7h:7t7__
1592 ot ( M)
wr

_ ohy _ _ _
_<U1’U275<W+U -Vh*>>gp(x',h*,t,;)>d:n'dt

for any ¢ € Lo(0,T;C*(Q*,Cp,.(Z))). Passing to the two-scale limit, one obtains
that

//8cpa; 2, t, &) da' dzdtdf’ = — //u—dxddtd§+

; / / ((vr,v;,o) o' hE 1, €)= (7 7,0) w(w’,h;,t,s/>> da' dt dg’

WTE

Applying again the Green formula, we conclude that

// (’Ddx dz dt d¢' +//ucp[z hY da! dt de! = //ug—fdx/dzdtdgur

Q= wr E Q=
//( Ul 7U2 7 ( h:vt d& ) (U1_7U2_70) (10(:17/7 h>k_7t7£/)> dﬂf/ dt dé./
wr 2

Hence,

u=(vi,vFf,0) asz=ht

for almost every (2/,t,&') € wr x Z. Independence of u from &3 can be proved
analogously to the proofs in previous cases. In additional, one can show that wu is
independent of £ and 7. First we derive that diver u = 0. Indeed, we use first the
fact that diver.u* =0 in Q*. Multiply this equation with

(2 2, 1) = ¢ <x ot ;) € Ly(0, T3 D(Q; C2.(E x T))), then

Juf | Ouy  1ouf
= = dz’ dz dt =
0 /<8x1+8$2+68z>¢ v

T
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2
0ot 10p uk Ok
_ p = 873 ! :
= /(Zul <8x,+u0§z>+ T dz' dzdt

0z =1

Multiply the last equation by p and pass to the two-scale limit, one gets that

2
0:///2%22(1 dtd¢ drdz = — ///god1v§/udgg dt d¢' dr dz

T wr B*

what proves the result. Let us derive now the equation

” 90U 09 1t dt de’ dr d = 0 (9.3)
[[ [ a5

T wr B*
for any ¢ € H'(0,T; D(2*; CS5.(2 x T))) with dive p = 0, % = 0, where

per

B*(2',t) ={(¢,2) : £ € Z,h, (2,t) < 2 < hf (2, t)}.

Take " (2/,2,t) = ¢ (m’,z,t,f’ = % T = %) such that dive ¢ = 0, % =0, as
4):

a test-function in the original equation (3.

T
/u“gp dy| da'dz — /u“gpt dx’ dz dt+
o8 0 0z

2
out Oy 10y 1 Ou* Dy
+V/<Z;a—l‘i<al‘i+;8_£i>+€2 9% 92 >d dzdt =
Qr =

Op1 1001  Opa  10py 10p3
= H / - - - ! =
/p (:E’t)((‘)xl—l_,u@{l+3x2+u3§2+€82 dx’ dz dt

(9.4)

Q%
01 O0pa
= ' )| == + === | dz’ dz dt.
/p(w,)<8$1+8$2 z dz
Q7

Multiply this equation with ey and pass to the two-scale limit. Since £ — 0
and 2p* — p as u — 0, then eup” — 0 and we deduce exactly (9.3). Take now
@ = (u1 — vi,u2 — v2,0) in (9.3). Then

f ] 5]

T wp Bx =1

Ou | da’ dt de' dr dz = 0, (9.5)

hence, u is independent of § . Now we want to show that uz = 0. For this we pass
to the two-scale limit in the identity

duy  Ouy  1ouy\ ,
= - dz' d
0 /€<8x1+8x2+682>('0 vas

O*
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and conclude that

dui  Ouy  Ouz  Ous
0_///<8£1 +E+8>(pd$dtd£d7dz

T wr B*

Taking into account independence of uq,us from &' and periodicity of v3, we

obtain that
8’&3

0z
This together with the fact that uz = 0 on z = AT implies that uz = 0 in B* by the
Friedrich’s inequality. Let us show that

au 890 dp1  Opa /
Qp T

for ¢ vanishing on z = h¥ and % = 0. Indeed, it is derived by multiplying the

=0 in B".

integral identity with €2, where @*(2/, 2,t) = ¢ <x’, z,t, T = ﬁ) and passing to the
two-scale limit.
Choose the test function (¢, ¢4, 0) with ¢! = ¢ <x’, z,t, T = ﬁ) in the integral

identity (3.4), multiplied by u :

T
u/u“cpdy dx/dz—/ < 9¢ +8_<p> dx’ dz dt+
0 J F)
T

Q*
out O OuH dyp
/ ( H s O —Wa—>d dzdt = (97)
dp1 | Opa
H t.
/,up (o, t)<8 1+8x2>d dzd
O

Let us notice that in the considered case (when lir% .= 00)
n—

out 8 Mo
L R ——»0 and,up“:%gp”—»yp as pu — 0, Wherey-h M2
or; (%cl € —0¢

Three cases are possible depending on either v = 0,00 or 0 < v < co. Now we
prove that in the case 0 < v < o0 u1,ue and p does not depend on 7. If v = 0, then
passing to the two-scale limit in (9.7), one derives

//uﬁ da’ dt dr dz = 0. (9.8)



66 Y. O. KOROLEVA, A. V. KOROLEV

This implies that u is independent of 7, hence, due to (9.6), p does not depend
on 7 as well. Consider now the situation when 0 < v < co. Then the two-scale limit
of (9.7) is the following identity:

Oy Ou Oy i , B
v // <u§ 3.9, + ypdivy <p> dr' dtdr dz = 0. (9.9)
o5 T

This equation can be simplified due to (9.6). It becomes exactly (9.8) and we
complete the proof as in the case v = 0. Finally, in the case v = oo, dividing

equation (9.9) by v one gets (9.6) since the term [ fug—f dx’ dt dr dz vanishes.
QT

9.2 Proof of Theorem 5
Proof. Let us show first the validity of (4.2) with

- —hi)(z—hy
wiz 2)1(/7’ e (1=1,2)
3 (z—=h")(z—h") 3 z—hy . hf—z _
o’ = 2 Veq® + I v+ I v o
Choose ¢ = (u; — v1,us — v9,0) in (9.6). Since u is independent of ¢ and p is

independent of £ and 7, it follows that

hi
2
v / / V@—erp oda' dt drdz = 0.
022

TXwr b

(9.10)

If we take into account also the boundary conditions for u on z = h¥, this equation
reduces to

2
Op (z—hi)(z—hy) z—hy . hi—z _ , _
1// <u— oz, o e; — ™ v+ I v | pdx’ dtdrdz = 0.

Thus, (4.2) and (9.10) are proved. Then, similarly to previous two cases, we write
the integral identity for div.u” = 0 in Q*, integrate by parts taking into account
boundary conditions and pass to the two-scale limit. After that we substitute u
with (5.8), where o’ satisfy (9.10). Since p does not depend on z, and o, hf do not
depend on &', we derive (4.3) with

3 ha (v +07) nit
ai a2 b — | 12w 0 % gz: gdz
ag ag by 0 _hi he(gdvy) J” e

20 2 : *
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