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An iterative method for solving split minimization
problem in Banach space with applications
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Abstract. The purpose of this paper is to study an approximation method for
finding a solution of the split minimization problem which is also a fixed point of
a right Bregman strongly nonexpansive mapping in p-uniformly convex real Banach
spaces which are also uniformly smooth. We introduce a new iterative algorithm
with a new choice of stepsize such that its implementation does not require a prior
knowledge of the operator norm. Using the Bregman distance technique, we prove a
strong convergence theorem for the sequence generated by our algorithm. Further, we
applied our result to the approximation of solution of inverse problem arising in signal
processing and give a numerical example to show how the sequence values are affected
by the number of iterations. Our result in this paper extends and complements many
recent results in literature.
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1 Introduction

Let E be a real Banach space and 1 < ¢ < 2 < p with % + % = 1. Let dim(E) > 2,
the modulus of convexity of E is the function dg : (0,2] — [0, 1], defined by
z+y
5 el =1yl =1; e= ||z —yH}-
E is said to be uniformly smooth if and only if dg(e) > 0, for all € € (0,2], and

p-uniformly convex if there exists a C}, > 0, such that dg(€) > CpeP for any € € (0, 2].
The modulus of smoothness of E is the function pg : [0,00) — [0, 00) defined by

or ::inf{l—H

1
pp() == sup {5 (llz + g1l + Il — yll) ~ 1< lall < 1, [gl] < t}.
A Banach space F is said to be uniformly smooth if and only if

t
tim 22® _ g,

t—oo ¢

and g-uniformly smooth if there exists a Cy; > 0 such that pg(t) < C,t? for any ¢ > 0.
The duality mapping Jf : F — 2F" is defined by

Iy () ={z € B : (x,7) = [[2||”, ||z]| = [[]|"~"},
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and is said to be weak-to-weak continuous if

holds true for any y € E. It is worth noting that the [, (p > 1) space has such
property, but the L, (p > 2) space does not share this property.

It is well known that E is p-uniformly convex and uniformly smooth if and only if
its dual space E* is g-uniformly smooth and uniformly convex. Moreover, if E is
reflexive and strictly convex with a strictly convex dual, then (Jf i JqE " is single-
valued, one-to-one, surjective and it is the duality mapping from E* into E and thus
JfJf* = Ig+ and Jf* Jf = Ig, where I and Ig+ are the identity operators on
FE and E* respectively. We note that in a real Hilbert space, the duality mappings
reduce to the identity mapping. For more information on uniform convex spaces
and other geometry of Banach spaces, see [4,15,39].

Let Eq and F5 be real Banach spaces and A : E; — E5 be a bounded linear operator.
The Split Feasibility Problem (SFP) is to find a point

x € C such that Az € Q, (1)

where C' and @) are nonempty closed and convex subsets of F; and FEs respectively.
The SFP has attracted the attention of many authors due to its application in signal
processing and various algorithms have been developed for finding its solutions (see
for example, [10,27,38,40,49] and references therein). The SFP in finite-dimensional
Hilbert spaces was first introduced by Censor and Elfving [12] for modelling inverse
problems which arises from phase retrieval, in medical image reconstruction and
recently in modelling modulated radiation therapy [11].
For solving the SFP, Bryne [11] proposed the following CQ algorithm in real Hilbert
spaces:

Tnt1 = Po(zn — pnA*(I — Pg)Axy,), n>1, (2)

where Pc and Pg are metric projections onto closed convex subsets C' and @) of H;
and Hs respectively and the stepsize u, € <0, W) However, the determination of

the stepsize u,, depends on the operator norm || A|| (or the largest eigenvalue of A*A)
which is in general not an easy work in practice. It is found that the CQ algorithm
is a special case of the Gradient-Projection Method (GPM) in convex minimization.
We note that the SFP (1) can be formulated as a fixed point equation using the fact

Po(I — pA*(I — Pg)A)w = w. (3)

This means that w is a solution of (1) if and only if w solves the fixed point problem
(3), see [30,41,48] for more details.
For solving the SFP (1) in p-uniformly convex real Banach space which are also
uniformly smooth, Schépfer et.al. [34] proposed the following algorithm: For z; € F;
set .

a1 = Ho it [ JE (2,) — pn A" TP (A, — HQ(Axn))], n>1, (4)
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where II¢ and IIg are the Bregman projection onto the nonempty closed convex
sets C C Fy and Q C E5 respectively, E1 and Es are p-uniformly convex real Ba-
nach spaces which are also uniformly smooth. They proved the weak convergence
of algorithm (4) under the condition that the duality mapping of E; is sequentially
weak-to-weak continuous.

We remark here that the condition that the duality mapping of E; is sequentially
weak-to-weak continuous excludes some important Banach spaces such as the clas-
sical L, (2 < p < 00) spaces.

In this paper, we study the more general case of Split Minimization Problem (SMP)
in real Banach spaces. Let F; and FEs be real Banach spaces, A : E1 — FEy be a
bounded linear operator and f : Fy — RU{+oc} and g : F5 — RU {400} be two
proper, convex and lower semi-continuous functions. The SMP is to find a point

w € argmin f such that Aw € argmin g, (5)

where argmin f:={z € E; : f(z) < f(z), Vx € Ei}

and  argmin g := {7 € Ey: g(y) < g(y), Vy € Ea}.

We denote the set of solutions of the SMP (5) by S(f,g). If f = ic [defined as
ic(x) = 0 if z € C and +o00 otherwise] and g = ig are the indicator functions of
nonempty, closed and convex sets C' C E7 and Q C FE5 respectively, then the SMP
(5) reduces to the SFP (1).

In a real Hilbert space H, the Moreau-Yosida approximation of a proper, convex
and lower semi-continuous function f : H — RU{+o00} with parameter A also called
the proximal operator of f at z is defined by

. 1
proxyy := argmin{ f(u) + ﬁHu — x|}
ueH

The proximal mappings have some attractive properties that make them particularly
well suited for iterative algorithms. For instance, prox,y is firmly nonexpansive, i.e
Ve,y € H,

[lprows(x) — proxas(y)II* < |lv =yl = [|(x — prowas (@) — (y — proxas )|,

and its set of fixed point is precisely the set of minimizers of f.

Recenly, Moudafi and Thakur [28] studied the SMP in the case of real Hilbert spaces.
They presented the following algorithm with a way of selecting the stepsize such that
its implementation does not require any prior information of the operator norm:
Algorithm I:

Let h(z,) = $||(I — proxag)Azy|%, Uzn) = 3|[(I — prowy, ap)n||*

and 0(zy,) = /[|Vh(zn)|]2 + [[VI(zy)|]?. For any initialization z¢ € Hj, assume that
a sequence {x,} C Hj has been constructed and 6(x,) # 0 as follows: Compute
Tpt1 Via

Tni1 = proxy,af(Tn — pn A" (I — proxyg)Azy) n >0, (6)



6 L. O. JOLAOSO, F. U. OGBUISI AND O. T. MEWOMO

h(zn) + l(xy)
0%(xy,)

If 6(z,) = 0, then z,41 = z, is a solution of the problem (5) and the iterative

process stops. Otherwise, we set n :=n + 1 and go to sequence (6)

Consequently, they proved the following weak convergence theorem.

where the stepsize u, = p, with 0 < p < 4.

Theorem 1. Suppose S(f,g) # 0. Assume that the parameters in Algorithm I

satisfy the condition:
4h(zy,)
€< pp < ——— 7 — €
h(zy) + U(xy)
for some € > 0 small enough. Then the sequence {x,} generated by (6) weakly
converges to a solution of SMP (5).

In [37], Shehu and Ogbuisi introduced the following algorithm and proved a strong
convergence theorem for approximating the common solution of split minimization
problem and fixed point problem of a nonlinear self mapping 7" in real Hilbert spaces:
Given an initial point 1 € Hy, compute x,41 via

up = (1 — ap) T,
Yn = ProX,, f <un — pA*(I — pro:n,\g)Aun), (7)
Tn+1 = (1 - ﬁn)yn + BT yn,

here the step-size =
w P-Size Up Pn 92(un)

with 0 < p < 4 and 6(x), h(z) and I(z)

are as defined in Algorithm I.

Also Abass et.al. [1] proved the strong convergence of the following two iterative
algorithms for approximating the minimum norm solution of problem (5) in real
Hilbert spaces. For any initial point x1 € Hy, assume that x, has been constructed
and 6(z,) # 0, then compute x,; by the following iterative schemes:

Tpg1 = ProTy, f ((1 — ap) Ty — AT — pro:n,\g)A:En), n>1, (8)
and
Tnt1 = (1 — apn)prozy,, f (mn — pn A (I — proxAg)Aa:n), n>1, (9)
h(x, (zn, .
where the stepsize p, := pnw with 0 < p, < 4 and h(z,),l(z,) and

0 ()
0(x,) are as defined in Algorithm I and the following conditions are satisfied:

(i) limy oo a =0,

(il) Y opy an = oo,

4(1—an)h(zn)

IO O for some a > 0.

(iii) a < p, <
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More recently, Shehu and Iyiola [36] introduced an algorithm involving an inertial
extrapolation term for solving the split minimization problem in real Hilbert spaces.
We note here that the initial extrapolation process has been helpful in accelerating
the rate of convergence of iterative algorithms (please see [2,3,5,8,9,20,29,31]). In
particular, the authors in [36] presented the following algorithm: Given an initial
point xyp = x1 € Hj. Assume that x,, has been constructed and 6(y,) = 0, then
compute x,11 via the rule

Yn = Tn + ﬂn(xn - xn—l)a
2 = Y — oG9 (T h(ya) + Vi) ), (10)

Tnt1 = (1 —an)yn + anzn, n>1,

where 0 < p, < 4 and 0(z) = /[[Vh(z) + Vi(z)|]? with h(z) = §||(I —prozs) Az||?
and I(z) = 3||(I —prozys)z||*. They proved that under suitable conditions on 3y, o,
and p,,, the sequence generated by (10) converges weakly to a solution of (5).
Several other modified algorithms of (6) have been presented for solving the SMP
in real Hilbert spaces (see for instance [6,50]). Then the following natural questions
arise:

e Can we obtain an algorithm which does not require a prior knowl-
edge of the operator norm for solving the split minimization problem
in higher Banach spaces than the Hilbert space?

e Also, can such an algorithm be strongly convergent?

It is our goal in this paper to study the SMP (5) in a more general Banach space
than the Hilbert space. Using the Bregman distance technique, we introduce a new
iterative algorithm with a new choice of stepsize such that its implementation does
not require a prior knowledge of the operator norm. This is very important because it
is not easy to compute the norms of many linear operators as shown by the theorem
of Hendrickx and Olshevsky [18]. We prove strong convergence of the sequence
generated by our algorithm for solving problem (5) which is also fixed point of a
right Bregman strongly nonexpansive mapping in p-uniformly convex Banach spaces
which are also uniformly smooth. We further apply our result to approximation of
solutions of split feasibility problems, split null point problems and the constrained
least-square model to the inverse problem arising in signal processing. Our result
extend and complement many important results in literature.

2 Preliminaries

In this section, we give some definitions and discuss some preliminary results which
will be used throughout the paper. We denote the weak convergence of a sequence
{z,} C E to a point w € FE by z,, — w and the strong convergence by z,, — w.
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A function ¢ : E — R is said to be Gateaux differentiable at x € F, if there exists
an element ¢/(z) € E* such that

(¢/(z),y) = lim ¢z +ty) — o)

t—0 t

)

for every y € E and t > 0. We note that the function ¢ : £ — R is Gateaux
differentiable if and only if it has a unique subgradient at x and in such case

¢ = 0¢(x). Also in a smooth Banach space, if ¢(x) = %||:17||p, then the duality
mapping J£ () = d¢(x) for any x € E and it is single-valued.

For a Gateaux differentiable function ¢ : E +— R, the function

Dy(z,y) = ¢(y) — d(x) — (¢’ (2),y — z),

for all z,y € FE is called the Bregman distance of z to y with respect to ¢.
Though, the Bregman distance is not a metric in the usual sense (e.g. it lacks
symmetric property), but it has some distance-like properties. In smooth Banach

spaces, the Bregman distance with respect to the function ¢(z) = %||:17||p can be
written as
1 » B 1 »
Dp(w,y) =l = () y) + Iyl (11)
1
= E(Hyllp —|lz[[P) + (J) (@), & — y)
1
= g(Hpr —lyllP) = (7 (@) = Iy (y), @), =y € E. (12)

In a Hilbert space, we have D(z,y) = ||z — y||*.
In addition, the Bregman distance possesses the following important properties:

Dp(ﬂf,y) = Dp($7z) +D;D(y7z) + <Z - Y JpE(x) - JpE(y)>7 \V/ﬂj‘,y,Z € Ea

and
Dy(@,y) + Dyly,z) = (x — y, JF(x) — T (y)), Va,y € E.

The norm and Bregman distance also have the following relation
Tlle —y|[? < Dp(z,y) < (& —y, Iy (x) = I (v)),

where 7 > 0 is some fixed number, see [34] for more details on the properties of the
Bregman distance.
Let C be a nonempty closed and convex subset of a smooth Banach space E. The
metric projection

Pox := argmin ||z — vy,

yeC

for all x € FE is the unique minimizer of the norm distance which can be characterized
by a variational inequality:

(JP(x — Pex),z — Pox) <0, V z € C. (13)
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Similarly to the metric projection, we define the Bregman projection as

ez := argmin Dy(z,y),
yeC

for all z € E, which is the unique minimizer of the Bregman distance (see [33]). The
Bregman projection is also characterized by the variational inequality:

(Jf(:z:) - JPE(H0$), z—Tgx) <0.VzeC, (14)

which implies that
Dp(HC$7z) < Dp(ﬂf,Z) _Dp($7HC$)7 (15)

for all z € C.
Let F be a p-uniformly convex and uniformly smooth real Banach space. Define the
function V, : E* x E — [0,00) by

1 1 "
V};(.’L’,y) = ngHq - <x7y> +Z_)Hpr7 Vzxek y Y € E. (16)

Then V, is nonnegative and V,(z,y) = Dp(JF (z),y) for all z € E* and y € E.
Moreover, by the subdifferential inequality

(¢ (2),y —z) < 8(y) — ¢(2),

with ¢(z) = %||x||q and z € E*, then ¢/(z) = Jf*. Therefore we have

. 1 1
(Jg (),y) < allm +yll* = 5|I$|Iq, (17)

and from (17), we obtain (see [35])
V(@ +3,2) 2 Vyp(,2) + (7, () — @), (18)

for all z € E and Z,y € E*. In addition, V), is convex in the first variable. Thus, for
all z € E|

N N
Dp(JEY tiJY (i), w) <)t Dy, w), (19)
=1 1=1

where {z;} C E and {¢;} C (0,1) with Zfil t; = 1.

Let C be a convex subset of intdome,, where ¢,(z) = (%)Hpr, 2 <p < oo and let
T be a self-mapping of C'. A point Tz € C' is said to be asymptotic fixed point of T if
C contains a sequence {z, } which converges weakly to Z and nh_)ngo l|zp — Txpl| =0

(see [14]). The set of asymptotic fixed points of T is denoted by F/(T).
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Definition 1. A nonlinear mapping T : C' — C with a nonempty asymptotic fixed
point set is said to be:
(i) Right Bregman Strongly Nonexpansive (R-BSNE) mapping with respect to a
nonempty F(T) if

Dy(Tz,y) < Dy(x,y),

for all z € C and y € F(T) and if whenever {z,} C C is bounded, y € F(T) and

lim (Dp(xn,y) — Dp(Txn,y)) =0,

n—oo

it follows that
lim D,(zy, Txy,) = 0.

éccording to Martin-Marquez et.al. [25,26], a R-BSNE with respect to a nonempty
F(T) is called strict right Bregman strongly nonexpansive mapping.
(ii) Right Bregman Firmly Nonexpansive (R-BFNE) mapping if

E E E E
for any z,y € C or equivalently,
DP(Tx7Ty) + Dp(Tval') + Dp($7T$) + Dp(y7Ty) S Dp(:Eva) + Dp(y7T$) (21)

From [25,26], we know that every right Bregman/\ﬁrmly nonexpansive mapping is
right Bregman strongly nonexpansive if F(T') = F(T). For more information and
examples of R-BSNE and R-BFNE operators, see [25, 26].

Let E be a p-uniformly convex and uniformly smooth real Banach space and

f+ E — RU{+o0} be a proper, convex and lower semicontiuous function, the
proximal mapping associated with f with respect to the Bregman distance is defined
as

) 1
proxys(x) = arug)];rém{f(w) + XDP(ZU,:E)}.

Bauschke et.al. [7] explored some important properties of the operator proxys. We
note from [7] that

dom proxyy C intdom ¢ and ran proxyy C dom ¢ Ndom f,
where ¢(z) = %Hpr and it is convex and Gateaux differentiable. In addition, if
ran proxyy C intdom ¢, then prox); is R-BFNE and single-valued on its domain if
Plintdom ¢ 18 strictly convex. The set of fixed points of proz,s are indeed the set of
minimizers of f (see [7] for more details). Throughtout this paper, we shall assume
that ran proxys C intdom ¢.
We now state the following lemmas which will be used in the sequel.

Lemma 1. (Xu [46]): Let x,y € E and q > 1. If a Banach space E is q-uniformly
smooth, then there is a Cy > 0 so that

[l =yl < llzll” — aly, I3 (2)) + Cqllyl|“. (22)
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Lemma 2. [15] If p > 1 and % —I—% = 1, then for arbitrary constants a > 0 and
b > 0, we have

al bl

ab< —+ —. (23)

p q
Lemma 3. [24] Let {a,} be a sequence of real numbers such that there exists a
nondecreasing subsequence {n;} of {n}, that is, an, < an,+1 for all i € N. Then
there exists a nondecreasing sequence {my} C N such that mj — oo and the following
properties are satisfied for all (sufficiently large) numbers k € N: ap,, < am,+1 and
ag < amy+1, mp =max{j < k:a; <aji1}.

Lemma 4. [47] Assume {a,} is a sequence of nonnegative real numbers satisfying
a1 < (1 —tp)an +t,0, Vn >0,
where {t,} is a sequence in (0,1) and {6, } is a sequence in R such that:
B Yty = 00,
it. limsup,,_, . 0, <O0.

Then, lim,,_,~ a, = 0.

3 Main Result

In this section, we introduce an iterative algorithm which does not require a prior
knowledge of the operator norm || A|| for approximating a solution of SMP (5) which
is also a fixed point of a R-BSNE mapping and then prove the strong convergence of
the sequence generated by the algorithm in p-uniformly convex real Banach spaces
which are also uniformly smooth. Before we establish our main theorem in this
paper, let us prove the following lemma which will be used in proving the main
theorem.

Lemma 5. Let E be a p-uniformly convex Banach space which is uniformly smooth.
Let f: E — RU{+o0} be a proper, convex and lower semicontinuous function and
let proxyy : B — E be the prowimal operator associated with f for X\ > 0, then the
following inequalities hold:

(i) for all x € E and z € F(proxyys), we have
Dp(pTO:E)\f(x)v Z) + Dp($7pTO$Af($)) < Dp($7 Z)7 (24)
(ii) for all x,z € E, we have

(Jf(:n) - Jf(proxxf(:n)),prow,\f(:n) —z)y>0. (25)
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Proof. (i) By the firm nonexpansivity of prox,y, it follows from Definition 1 and
(21) that for any x,y € E, we have

Dy (prozxs(z), proxas(y)) + Dy(proxs(y), proxs(x))
+ Dp(z,prozxs(z)) + Dy(y, proxs(y))
< Dy(z,prozas(y)) + Dy(y, proxys(z)).  (26)

Putting y = z € F(prox,ys), then (26) becomes

Dy (proxys(x), 2)+Dp(z, proxas(x)) + Dp(x, proxys(x)) + Dp(z, 2)
< Dp(x,2) + Dp(z, proxxs(z)),

which implies that
Dp(pT0$)\f(x)v Z) < Dp($7 Z) - D;D(x¢pr0$)\f(x))‘ (27)
(ii) It follows from (11) and (24) that

1
5!\1”‘0%]”(%)\!’) — (I (prozap(z),2) < —(J) (x), 2)
1
+ (2 (x), prozys(x)) — 5||p7"0<vxf(fl7)||p7
which implies that
1 1
gHPTOﬂJ/\f(JJ)Hp + EHPTOHJAf(l’)Hp — (JE(x),prozys(z)) < —(JF (x), 2)
+ (Jf(prox,\f(x), z). (28)

=1, then p = (p — 1)q and by Lemma (2), we have that

Since = +

1.1
Py
1 pyl (p—1)g p—1
Sliprozas @I+ “llprozas (@) = |lproxxs(@)||P~ [ lprozas ()]
[lprowas(z)]”

= (Jy (proxxs(x),proxys(x)).  (29)
Therefore from (28) and (29), we have
(Jy (proxag (@), proxs(x)) — (Jy (@), prozap(x)) < (Jy (proxag(w), 2) — (I (x), 2),
which implies that

(T (prozap(z)) — JE (x),proxas(z)) < (JF (prozas(z)) — JE (z), 2),

thus
(Jf(pro:n,\f(x)) - Jf(x),pro;n,\f(:n) —2z) <0.

Therefore, we have

(Jf(:z:) - Jf(pro:EAf(x)),profo(:E) —z)>0.
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We now prove the convergence of our main theorem in this paper.

Theorem 2. Let Fi and Es be two p-uniformly convex and uniformly smooth real
Banach spaces. Let C' be a nonempty, closed and convex subset of Ey.

Let f: By — RU{+o0} and g : E5 — RU {+00} be proper lower semicontinuous
functions and let A : E1 — FEs be a bounded linear operator. Let T be an R-BSNE
mapping from C into C such that F(T) = F(T) and T = S(f,g) N F(T) # 0. Let
{an}, {Bn} and {56,} be sequences in (0,1) such that oy, + By + 0, = 1. Let the
sequence {x,} be generated by

yn = Il (proa;Af (JfT(J;fl (xn) — unA*J;,E? (I - 11)7“0:v>\g)A:tn))>7

E¥ E¥

(30)
Znir = Ilo [Jq o Ty (w) + BT 2 (yn) + 6, T (Tyn)]], n>1.

Let the stepsize py, be choosen in such a way that for a small € > 0

I— Az, ||P T
1 € <€< ql|( E Prozag)Azny|| _E)q 1)7 neo, 31)
OQHA*JP 2(I —pT‘Ol‘)\g)Aﬂj‘an

where the index set Q := {n € N : (I — proxyy)Azx, # 0} otherwise y, =t (t being
any nonnegative value). Suppose the following conditions are satisfied:

(i) limy, oo oy = 0,
(ii) > pzy on =0,
(iii) (1 —ap)a < 6p, o <b <1, a€(0,3).
Then {x,} converges strongly to Ilpu, where Ip is the Bregman projection onto T'.

Proof. Let w € T'. Then from (22) and (30), we have

Dy (yn,w) < Dp(prox)\quE{ [Jl;El (zn) — ,unzﬁl*Jf2 (I — proxyg)Azy], w)
< Dp(Jqu [JI',El (xn) — ,unA*Jf2 (I — proxyg)Azy], w)
= S () = AT = proms,) A [ = (I (a0)
—,unA*Jf2 (I —proxyg)Az,,w) + %||w||p
< P @Y = il I = prozag) A, As)

C
+7qu%llA*sz(I — proxag) Azy| |
1
— (7 (), w) + (J72 (I — prowag) Ay, Aw) + ];||w||p

1 1
= EH%IH" - <J1?1 (zn), w) + BHpr - Nn<<];?2 (I - prox)\g)Axn, Az, — Aw)
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+EL |41~ prozy) v, |
= Dp(xn,w) — un<Jf2(I — proxyg) Ay, Az, — Aw)

C .
+—2,91|A J;,EQ (I — proxxg)Azy,||.

But by Lemma 5 (ii), we have

<sz(I — proxyg) Az, Az, — Aw) = <sz(I — proxyg)Axy,
Axy, — proxygAzy, + provygAz, — Aw)
= ||Az,, — proxygAxy|P
+ <sz (I — proxyg)Axy, proxygAx, — Aw)
> ||Axy, — proxygAxy||P. (33)
Therefore from (32) and (33), we have

Dp(ym )<D (l‘n, )
Cqﬂgt_l
q

— pin ||| Az, — proxygAzy,||P — ||A*Jf2(l — proxyg) Az, ||, (34)

and by the condition on p,, it follows that
Dyp(yn, w) < Dp(zn, w). (35)

Also from (30) and (35), we have

Dp(xn+1:w) < (u, w) + B, D (ym w) + nDp(Tynaw)
< (w, w) + BnDp(Yn, w) + 60 Dp(yn, w)
= (u,w) + (1 = an) Dp(yn, w)
< apDp(u,w) + (1 — ay)Dp(zp, w)
< max{D,(u,w), Dy(z,,w)}

masc{ Dy, ), Dy(a1, )} (36)
Thus D, (zy,,w) is bounded and consequently, {z,} and {y,} are bounded.
Setting w, = Jff [aanl (W) + BndE ' (yn) + 6n I (Tyn)], for each n > 1, then

from (18), we have

Dy(@ns1,w) < D(Jy [an TP (W) + Budryn + 6, T 5 Typ], w)

Vi(om 2 (W) + Brd P yn + 00 J ) Tyn], w)

Vp(oszf1 (u) + ﬁanlyn + 6p JElTyn - ozn(Jfl (u) — Jfl (w)),w)
—(—an(JP () = I (w)), Jg  [om JP ()

IN

(32)
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—I—ﬁanlyn + 5anlTyn] —w)

= Vplan I (W) + Bud yn + 60 T Ty, w)
+an<Jfl (u) — Jfl (w), w, —w)

= Dy [anIFr(w) + BuTPryn + 6, T Ty, ], w)
+0zn<Jfl (u) — Jfl (w), w, —w)

= apDp(w,w) + ﬁn p(Yns W) + 0n Dp(Tyn, w)

+an<JE1( ) — ( ), Wn, — w)
< BnDp(yn, )+5 o (Y ) + an (T (u) = T (w), w, — w)
= (1—%) o (Y w) + an (T (1) — T (w), wy, — w)
< (1-au)D (xn,w)—l—anuEl() J, Er(w), wy, — w). (37)

We now divide the remaining part of the proof into two cases.
Case I: Suppose that there exists ny € N such that {Dp(z,,w)} is nonincreasing,
then {Dy(xy,w)} converges and thus Dy (zp, w) — Dp(zp41,w) — 0 as n — oo.

Setting t, = JqEf (f—Zanl (yn) + 22 JE1 (Tyn)>, then

Dyltaw) = Dyt [T g () + 2 g 7))

1—a, 1
Bn J

<
= 7- anDp(ymw) + 1= anDp(Tymw)

Bn + 0n
= D )

1— ay, p(y 'UJ)
= Dy(yn, w). (38)

Therefore, we have

0 < Dp(n, w) = Dp(tn, w)

(tn
= ( ) _Dp($n+17 )+Dp($n+17w) _Dp(tnvw)
< Dy(an,w) = Dp(@pt1,w) + anDp(u, w) + (1 — an) Dp(tn, w) — Dp(tn, w)
= Dp(zp,w) — Dp(zpt1,w) + on[Dp(u, w) — Dp(tn, w)] — 0, as n — 00.(39)
Moreover
B n

<

Dy(tn, w) < 1— anDp(ymw) + 1— anDp(Tymw)
B é
= Dyl w) — (1= 7=5) Dplum ) + = Dp(Tn,w)
J,
< Dplnsw) + 72— Dp(Tyasw) = Dylyn, ). (40)

n
Since (1 — ay)a < 6§, and o, < b < 1, we have

on,
1—a,

a(Dp(ynvw) - Dp(Tynvw)) < [Dp(ynvw) - Dp(Tynvw)]
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< Dp(zp,w) — Dp(tn, w) — 0, as n — oo.
Thus
Dy,(yn,w) — Dp(Typ, w) — 0, as n — oo. (41)
Since T is R-BSNE, we have that lim;,, oo Dp(Yn,Tyn) = 0, which implies that
Jim [y, — Tya|| = 0. (42)

Furthermore, from (34) and (37), we have

pon | ||Azy, — proxygAxy||P — CQNT%lHA*sz(I — prox — A\g)Axy||?
< Dp(wn, w) — Dy(yn, w)
< Dp(@n, w) = Dp(@pt1,w) + Dp(@ns1,w) — Dp(yn, w)
= Dy(xp,w) — Dp(xp41,w)
+ [ Dp (Y, w) + (J7 (u) — T (w))].

Therefore, since Dy (xy,, w) — Dp(2p41,w) — 0 and
n[Dp(yn, w) + (JF (u) — JF (W), 2n41 — w)] — 0 as n — oo, the above inequality
implies that

Cyul™!
fn ||| Az, — proxyg Azy|[P — WTHHA*JEQ(I —proxyg)Az,||?| — 0, as n — oo.
(43)
Using the condition on p,, that is,
P oV
Cyl|A*Jp? (I — proxygAxy||d
which implies that
Coapd AT T2 (I = proxg) Awy||” < qll(I — prowg) Az ||P
— quHA*Jf2 (I —proxyg)Azy,||9,
and then by (43), we have
eCy .\
Tq||A sz(I—pro:E,\gAanq
C ,u?fl
< |[(I = proxxg) Azn||P — qTHA*JfZ(I — proxzyg)Azy||? — 0 as n — oo.

Hence
lim HA*J;,E2 (I —proxyg)Az,||? = 0. (44)
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Furthermore, we obtain from (31), (34), (37) and (44) that
0 <el|(I = prozsg) AzallP < pnll(I — prozag) A
Catth
< Dylitn, w) = Doy, w) + AT = proag) A |

< Dp(n, w) = Dp(nt1,w) + an[Dp(yn, w) + <Jfl (u) — Jfl (W), Znt1 — w)]

Cypin
+ qTIuHA*sz(I — proxyg)Az,||? — 0 as n — oo,
thus
lim ||(I — proxyg)Azy,|| = 0. (45)

Now, let z, = JqE (JE () — pn A* T2 (I — proxyg) Axy,).
Observe that D (2, w) < Dp(zp,w), then from (24), we have

Dy(zn,yn) = Dp(zn,proxxszn)
< Dp(zn, w) = Dp(yn,w)
< Dp(zn, w) = Dp(yn, w)
< Dp(wn, w) — Dp(Tn41,w)
+  an[Dp(Yn, w) + <JE1 J 2 Tpy1 —w)] — 0, asn — oco. (46)
Thus

lim ||z, — yn|| = 0. (47)
It then follows from the definition of z,, that

0< HJfl(Zn) - Jfl(xnm
< pnl |[A*||[| T2 (I = prowyg) Azy||
< pn | |[AX||||(T —promAg)Aanp_l — 0 as n — oo. (48)

*

Since Jj, ? is norm-to-norm uniformly continuous on bounded subsets of E}, we have
that

lim ||z, — x| = 0. (49)
n—oo
Therefore, from (47) and (49) we have
lyn = @nll < lyn = 2all + [[2n = 2al] = 0 as n — oc. (50)

Since {x,} is bounded in E; and E is reflexive, there exists a subsequence {z,} of
{zy} which converges weakly to Z in Fj. By (42) and (50), it follows that & € F(T')
since F(T) = F(T).

We now show that z € S(f,g). Since z,, — z,, — 0 as i — oo, it follows from
(47) that = proxsZ, hence 7 is a fixed point of the proximal mapping of f or
equivalently 0 € 9f(Z). Thus Z is a minimizer of f.
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Likewise, it follows from (45) that AZ = prox),AZ, i.e AZ is a fixed point of the
proximal mapping of g or equivalently 0 € dg(AZ). Thus AZ is a minimizer of g.
Hence € S(f,9).
Therefore z € ' = F(T) N S(f, 9).

Next, we show that {x,} converges strongly to IIpu.
From (50), we have

.E*
Dynsn) = Dylig [P () + 60T () + 00T (T 22)
Oanp(u, xn) + 6nDp(ym mn) + 6nDp(Tym mn)
anDp(u, ) + (1 — an)Dy(yn, xn) — 0.

IN A

Thus
nh_)ngo ||wn, — zp|| = 0. (51)
Now let z* = IIru, from (37) we have
Dp(zp+1,2") < (1 — an)Dp(zy, %) + an(Jfl (u) — Jfl (%), wy, — ). (52)
Choose a subsequence {x,;} of {z,} such that

limsup(J;,’,E1 (u) — Jfl (), xp —2*) = lim <JI’,El (u) — Jfl (%), zn; — 7).

n—oo J—00

Since z,,;, — Z, it follows from (14) that

limsup( 7 (u) = J7 (), an — 2} = im (7 () = S (27), o, — @)
E E *\ o~ *
= (Jy'(u) = J, ("), 7 —2") <0. (53)

Since ||wy, — zy|| — 0, n — oo, then

li]rnsup(J;,J,E1 (u) — Jfl (), w, —z*) <0.

n—oo

Hence by Lemma 4 and (52), we conclude that Dy(x,,z*) — 0, n — oco. Therefore
z, — 2 = Ipu.
Case II: Suppose that there exists a subsequence {n;} of {n} such that

Dp(ﬂj‘nj,U)) < Dp(xnj—i-l) U)),

for all j € N. Then by Lemma 3, there exists a nondecreasing sequence {my} C N
with m; — 0o as n — oo such that

Dp($mk7w) < Dp($mk+17w)7 Dp(xkaw) < Dp(xmk-l-law)a
for all £ € N. Following the same line of arguments as in Case I, we have that

Bm [|TYm, — Ym, || =0, lm |[(I —proxyg)Azp,, || =0, lim ||z, —Ym,|| =0,
k—o0 k—oo k—oo
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and
lim sup(JIﬁEl (u) — Jfl (W), wp,, —2*) <0, (54)

k—o0

where x* = IIpu. From (37), we have
Dp(xmk-i-l’m*) < (1 - amk)Dp(xmwx*) + Qmy, (JEI (u) - Jfl (x*)7wmk - x*> (55)
Since Dp(xp, , ") < Dp(xm,+1,2"), it follows from (55) that

Dp(zpm,, ") — Dp(Tmy+1,27)
(T () = Ty (%), Wy, — 27)

oy (T2 () = (), 7). (56)

Wy, Dp (T, )

IN 4+ IA

Since oy, > 0, we obtain
Dp(xmwx*) < <J£1(u) - Jfl(x*),wmk - x*>

Then from (54), it follows that Dy(zy,, ,2z*) — 0 as k — oo. This together with (55),

we obtain Dp(Zm,,+1,2*) — 0 as k — oo. Since Dy (xy,2*) < Dp(@pm,+1,2") for all

k € N, we have z, — z* as k — oo, which implies that z,, — z* as n — oc.
Therefore from the above two cases, we conclude that {x,} converges strongly

to x* = Ilru.

This completes the proof. O

Corollary 1. Let E1 and Ey be two p-uniformly conver and uniformly smooth real
Banach spaces. Let C' be a nonempty, closed and convexr subset of Ey.

Let f: By — RU{+o0} and g : E5 — RU {+o00} be proper lower semicontinuous
functions and let A : E1 — FEs be a bounded linear operator. Let T be an R-BSNE
mapping from C into C such that F(T) = F(T) and T = S(f,g) N F(T) # 0. Let
{an} be sequences in (0,1). For a fized u,z1 € En, let {xy} be generated by

EY *
yn =T (prowas (7 (JF (wn) = jn A TE2 (I = prowy,) Azy) ) ),

. . (57)
Tpg1 = Hchl [aanl (u)+ (1 — ozn),]fl (Tyn)], n>1,

where the stepsize p, is choosen in such a way that for a small € > 0

1

I— Az, ||P L
1 € <€< q|l( - proxyg) Azy|| _E)q 1)7 neo, (58)
OQHA*JP 2(1 —pT‘Ol‘)\g)Aﬂj‘an

where the index set Q := {n € N : (I — proxyy)Azx, # 0} otherwise y, =t (t being
any nonnegative value). Suppose the following conditions are satisfied:

(i) limy, oo oy = 0,
(i) >y on =0,

(iii) 0 < liminfa,, < limsupa, < 1.
n—o0 n—00
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Then {x,} converges strongly to Ilpu.
Putting p = 2 = ¢, then Theorem 2 becomes:

Corollary 2. Let E1 and Ey be two real Hilbert spaces with subsets C and () respec-
tively. Let f : By — RU{+o0} and g : B3 — RU{+00} be proper lower semicontinu-
ous functions and let A : 4 — E5 be a bounded linear operator. LetT be an R-BSNE
mapping from C into C such that F(T) = F(T) and T = S(f,g) N F(T) # 0. Let
{an}, {Bn} and {6,} be sequences in (0,1) such that am, + (Bn + 0p, = 1. Let the
sequence {x,} be generated by

yn = Po (pro:n,\f (:En — pn A*(I — proxxg)A:En)),

(59)
Tn+1 = Po [anu + Bnyn + 5nTyn}, n > 1.
Let the stepsize p, be choosen in such a way that for a small € > 0
2||(I — proxrg) Azy||?
G(e, —6), n €, 60
Hn [|A*(I — proxyg) Az, ||? (60)

where the index set Q := {n € N: (I — proxyg)Ax, # 0} otherwise i, =t (t being
any nonnegative value). Suppose the following conditions are satisfied:

(i) limy, oo oy =0,
(i1) 32n=y an =0,
(iii) (1 —ap)a < 6p, an <b <1, a€(0,3).

Then {x,} converges strongly to Pru, where Pr is the metric projection onto T'.

4 Applications

In this section, we give applications of our main result to approximation of
solutions of some other nonlinear problems.

4.1 Split Feasibility Problems

Taking f = ic and g = i@ the indicator functions of the nonempty closed and
convex sets C' C Ey and Q C E5 respectively, then the SMP (5) reduces to the SFP
(1). Thus, we have the following theorem for approximating common solution of
SFP and fixed point problem of R-BSNE mappings.

Theorem 3. Let Fy and E5 be two p-uniformly conver and uniformly smooth real
Banach spaces. Let C and @) be nonempty, closed and conver subsets of 1 and Es

respectively. Let A : E1 — Ey be a bounded linear operator.
Suppose © :={x € C': Az € Q} and let T : By — E3 be an R-BSNE mapping such
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that F(T) = F(T) and T = ©NF(T) # 0. Let {o}, {Bn} and {6,} be sequences in
(0,1) such that a,, + By, + 0p, = 1. Let the sequence {x,} be generated by
U = Po [Jff (JE () — pn A* T2 (I — PQ)Aa:n)],

Ion ior B B (61)
wni1 = Tedy [andy () + B F (yn) + 60 (Tyn) |, n = 1.

Let the stepsize p, be choosen in such a way that for a small € > 0

I — Pp)Az,||P L
1y € <€< qII(E Q)Azn|| —e)" 1>’ neq (62)
Oq”A*JpQ(I_PQ)Aanq

where the index set Q := {n € N: (I — Pg)Ax,, # 0} otherwise j,, =1t (t being any
nonnegative value). Suppose the following conditions are satisfied:

(i) limy, oo oy =0,
(i) 3 ey om =0,
(ii) (1 — ap)a < 6n, an <b<1,ac(0,1).

Then {x,} converges strongly to Ilpu.

4.2 Split Null Point Problem

Let A : E; — E3 be a bounded linear operator. Let N : E; — 2F1 and
M : E; — 2F2 be maximal monotone operators. The split null point problem
(SNPP) is to find

z* € N~Y0) such that Az* € M~1(0). (63)

Several iterative methods have been introduced to approximate the solution of SNPP
and related optimization problems in real Hilbert and Banach spaces, see [19,21,22,
43] and the references therein. The resolvent operator Resyy : E — 2F associated
with a maximal monotone operator M for A > 0 is defined by

Resyy(z) ={z € E: Jf(az) € Jf(z) + AM(2)}.

Equivalently, Resyy(x) := (Jf + )\M)_lJf(a:), for all x € E. Moreover, Resy
is single-valued and also N~1(0) = F(Resyys) (see Section 5 in [42]). We shall
denote the set of solutions of SNPP (63) by SNPP(N,M). It is well known that
the resolvent operator Resyys is BEFNE, that is

(JY (Resxnr(x)) — 7 (Resani(y)), Resan (x) — Resanr(y))
< (JF (@) — JF(y), Resan(z) — Resan (), for all z,y € C (see [32]).

Taking f = N and ¢ = M the maximal monotone operators in F; and FEs
respectively, we have the following theorem for approximating solutions of SNPP in
real Banach spaces.



22 L. O. JOLAOSO, F. U. OGBUISI AND O. T. MEWOMO

Theorem 4. Let Fi and Es be two p-uniformly convex and uniformly smooth real
Banach spaces. Let C and @) be nonempty, closed and conver subsets of 1 and Es
respectively. Let A : Ey — Es be a bounded linear operator, N : E; — 21 and
M : Ey — 252 be mazimal monotone operators and T : E1 — Es be an R-BSNE
mapping such that F(T) = F(T). Suppose I' = SNPP(N,M)N F(T) # 0. Let
{an}, {Bn} and {6,} be sequences in (0,1) such that a, + Bn + 0p, = 1. Let the
sequence {x,} be generated by

E* ¥
yn = Io (Res,\N <Jq ! (J;,‘,E1 () — punA Jf2 (I — Res,\M)Axn)>>,

By By B B (64)
nir = T J 0 [an,}p (w) 4 BB (yn) + 6 T 1(Tyn)}, n>1.

Let the stepsize p, be choosen in such a way that for a small € > 0

I-— Az, ||P 4
i e (e 47~ Resaor) Acul| —)7"), neq, (65)
Cql|A*Jp2 (I — Resanr)Axy||?

where the index set Q@ := {n € N : (I — Resxn)Az, # 0} otherwise u, =t (t being
any nonnegative value). Suppose the following conditions are satisfied:

(i) lim, o0 oy, =0,
(ii) > pzy on =0,
(iii) (1 —ap)a < 6p, an <b <1, a€(0,3).

Then {x,} converges strongly to Ilpu.

4.3 Inverse Problem in Signal Processing

Many problems in signal and image processing can be formulated as inverting
the equation system
z = Az +¢, (66)

where € RY are the data to be recovered, z € RM is the vector of noisy ob-
servations (or measurements) and ¢ is an additive noise with bounded variance,
A RN — RM is a bounded linear observation operator which is typically ill be-
haved because it models an acquisition process that encounters loss of information.
Two typical problems covered by model (66) are:

(i) Compressed sensing, where A is an M x N matrix and one only takes M < N
measurements of the input signal M.

(ii) Deconvolution or wavelet-based signal restoration, where the operator A can
be written as A = RW such that R is the convolution by blurring kernel and
W represents an inverse wavelet transformation.
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When attempting to find sparse solutions to linear inverse problems of type (66), a
successful model is the convex unconstrained minimization problem

1
min =||z — Az||* + v||z||1, 67
min, 5[z = x>+ vle]l (67)

where v is a postive number, || - || is the Euclidean norm and || - ||; is the /3 norm.
The aim of the /1 term, which is the convex sparsity-promoting penalty, is to make
the small component of x become zero. By means of convex analysis, one is able to
show that a minimizer to (67) is actually a solution to the constrained least-square
problem

1 2
min —||z — Ax subject to ||x|]1 < t, 68
min o] | j [|z][1 (68)

for any nonnegative real number ¢ (see [17]). We note that problem (68) is a par-
ticular case of SFP (1) where C = {z € RV : ||z||; <t} and Q = {z}, that is, find
||z||1 <t such that Az = z. The projection onto the closed [; ball in RY of radius
t can be computed through soft thresholding;:

Sa(u) = argmin {||z — u||2 + 2X||z] |1},
zERN

where A is a certain positive real number and Sy is the soft thresholding operator
with threshold A defined by (Sx(y))i = Sa(vi), with 1 < ¢ < N with

Yy + T, Y < _)‘7
S)\(y) = 07 =T é Yy é A) (69)
y—7, A<uy.

See [16,17] for more information on the soft thresholding. Several optimization
algorithms have been developed to solve (68) (see, for example [23,44] and references
therein).

Let E be a finite — dimensional Hilbert space (typically, the real vector space RV)
equipped with the inner product (-,-). Let f: E — R U {+o0} be a proper, convex
and lower semicontinuous function. When f(z) = A||z||; where A > 0, the proximal
operator associated with f is given as

) 1
prox¢(z) = argmin {7||z — 2||* + Allzll1}-
z€EE

The optimality condition becomes
0eV(|z—z||*)+0\||z||1) © 0 € z —x + \||2]]:. (70)

We now consider two cases for the components of the [{-norm.
Case 1: Suppose z; = 0, then the subdifferential of the /y-norm is the interval [—1, 1],
thus (70) becomes

0€ 2+ A1,1] & 2 € [-\ A
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& ol <A (71)

Case 2: Assume z; # 0, then 0||z;||1 = sign(z;), where sign is the signum function,
that is,

1, if z >0,
sign(z;) = 0, if z=0,
-1, if z <O.
Then we have from (70) that
0=z —x; + Asign(z;) < 2] = z; — Asign(z]), (72)

where 27 is the optimum point of f. Now if 2] > 0, then z; > X and if z; < 0, then
x; < —A. Thus |z;| > A and sign(z]) = sign(z;). Substituting this in (72) yields

27 = x; — Asign(z;). (73)
Therefore from (71) and (73), we have that

x; — Asign(z;), if z; > A,

prosy@li == = {
= sign(x;) max <|x2| - )\,0>.

This shows that the proximal operator of f is indeed the soft-thresholding operator
with threshold A. Also Sy is an example of left Bregman strongly nonexpansive
mapping (see [26]).

Choosen C = {z € RY : |jz]|; < t}, Q = {2}, f(z) = A|z||; and g(2) = =

in Theorem 2, we have the following result for approximating the solution of the
constrained least-square problem (68).

Theorem 5. Let E; and Es be real Hilbert spaces (typically, the real vector space
RY) and let A be as defined in (66). Let C = {x € RN : ||z||; < t}, Q = {z},
f(z) = A||z||1 and g(z) = z, where z € RM is an observation vector generated by
z = Az +e¢ with noise € whose variance is bounded and M < N. Let {c,},{0n} and
{6n} be sequences in (0,1) such that oy, + By + 0p, = 1. Choose some initial values
r1 € RY and u € RN and let {x,} be generated iteratively by

{ Yn = Sx(Tn — pnA* (2 — Axy)),

74
Tn+1 = Sk(anu + ﬂnyn + 6nS)\yn)a n = 17 ( )

where the stepsize p, is choosen in such a way that for a small € > 0

2||(z — Az)|P?
A (z = Az

,un€<e —e), n € €,

where the index set Q := {n € N : z — Az, # 0} otherwise p, =t (t being any
nonnegative value). Suppose the following conditions are satisfied:
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(i) limy, oo oy =0,

(ii) > 07 o =0,
(iii) (1 —op)a <6bp, an <b<1,a€(0,3).

Then {xy,} converges strongly to Syu which is the solution to the least-square problem
(68).

4.4 Numerical Example

We now present a numerical experiment to demonstrate the performance of our
algorithm (74). We consider the following simple numerical example to show how
the change in initial values affects the number of iterations.

Let By = RN = Ej, consider C = {x € RV : ||z||; < t} and Q = {z}. Let
f(x) =||z||1 and g(z) = z, then the soft thresholding is given by

r+1, »< -1,
proxs(y) =Si(z) = 0, 2| <1,
r—1, 1<z

Choose oy, = ——, 3, = and 9,

1 L then algorithm (74) becomes

3(n+1) +1) = 3rT)

{ Yn = Sl (xn ,U*nAT(Z - Awn))
Tn+1 = Sl(n_,,_lu + 3(n+1)yn + 3(n+1)S)\yn) n =1

Let Ax = z, and z = randn(N, 1) be random generated vectors whose elements are

normally distributed, we make different choices of NV as follow: N = 1000, N = 5000

and N = 10000.

Case 1: u = randn(N,1) and z1 = randn(N, 1).

Case II: w = 3 x randn(N,1) and x; = 0.5 X randn(N, 1).

Hxn-i-l -
|lwg — 21|
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We use < 1079 as stopping criterion.
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Figure 1. Case I: errors vs number of iterations: N = 1000, 0.0027sec (top-left),
N = 5000, 0.0071sec (top-right), N = 10000, 0.0232sec (bottom).
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Figure 2. Case I: errors vs number of iterations: N = 1000, 0.0038sec (top-left),
N = 5000, 0.0157sec (top-right), N = 10000, 0.0565sec (bottom).
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