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An iterative method for solving split minimization

problem in Banach space with applications

L. O. Jolaoso, F. U. Ogbuisi and O. T. Mewomo

Abstract. The purpose of this paper is to study an approximation method for
finding a solution of the split minimization problem which is also a fixed point of
a right Bregman strongly nonexpansive mapping in p-uniformly convex real Banach
spaces which are also uniformly smooth. We introduce a new iterative algorithm
with a new choice of stepsize such that its implementation does not require a prior
knowledge of the operator norm. Using the Bregman distance technique, we prove a
strong convergence theorem for the sequence generated by our algorithm. Further, we
applied our result to the approximation of solution of inverse problem arising in signal
processing and give a numerical example to show how the sequence values are affected
by the number of iterations. Our result in this paper extends and complements many
recent results in literature.
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1 Introduction

Let E be a real Banach space and 1 < q ≤ 2 ≤ p with 1
p

+ 1
q

= 1. Let dim(E) ≥ 2,
the modulus of convexity of E is the function δE : (0, 2] → [0, 1], defined by

δE := inf
{

1 − ||
x + y

2
|| : ||x|| = ||y|| = 1; ǫ = ||x − y||

}
.

E is said to be uniformly smooth if and only if δE(ǫ) > 0, for all ǫ ∈ (0, 2], and
p-uniformly convex if there exists a Cp > 0, such that δE(ǫ) ≥ Cpǫ

p for any ǫ ∈ (0, 2].
The modulus of smoothness of E is the function ρE : [0,∞) → [0,∞) defined by

ρE(t) := sup
{1

2
(||x + y|| + ||x − y||) − 1 : ||x|| ≤ 1, ||y|| ≤ t

}
.

A Banach space E is said to be uniformly smooth if and only if

lim
t→∞

ρE(t)

t
= 0,

and q-uniformly smooth if there exists a Cq > 0 such that ρE(t) ≤ Cqt
q for any t > 0.

The duality mapping JE
p : E → 2E∗

is defined by

JE
p (x) = {x̄ ∈ E∗ : 〈x, x̄〉 = ||x||p, ||x̄|| = ||x||p−1},
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and is said to be weak-to-weak continuous if

xn ⇀ x ⇒ 〈JE
p (xn), y〉 → 〈JE

p (x), y〉

holds true for any y ∈ E. It is worth noting that the lp (p > 1) space has such
property, but the Lp (p > 2) space does not share this property.

It is well known that E is p-uniformly convex and uniformly smooth if and only if
its dual space E∗ is q-uniformly smooth and uniformly convex. Moreover, if E is
reflexive and strictly convex with a strictly convex dual, then (JE

p )−1 = JE∗

q is single-
valued, one-to-one, surjective and it is the duality mapping from E∗ into E and thus
JE

p JE∗

q = IE∗ and JE∗

q JE
p = IE , where IE and IE∗ are the identity operators on

E and E∗ respectively. We note that in a real Hilbert space, the duality mappings
reduce to the identity mapping. For more information on uniform convex spaces
and other geometry of Banach spaces, see [4, 15,39].

Let E1 and E2 be real Banach spaces and A : E1 → E2 be a bounded linear operator.
The Split Feasibility Problem (SFP) is to find a point

x ∈ C such that Ax ∈ Q, (1)

where C and Q are nonempty closed and convex subsets of E1 and E2 respectively.
The SFP has attracted the attention of many authors due to its application in signal
processing and various algorithms have been developed for finding its solutions (see
for example, [10,27,38,40,49] and references therein). The SFP in finite-dimensional
Hilbert spaces was first introduced by Censor and Elfving [12] for modelling inverse
problems which arises from phase retrieval, in medical image reconstruction and
recently in modelling modulated radiation therapy [11].

For solving the SFP, Bryne [11] proposed the following CQ algorithm in real Hilbert
spaces:

xn+1 = PC(xn − µnA∗(I − PQ)Axn), n ≥ 1, (2)

where PC and PQ are metric projections onto closed convex subsets C and Q of H1

and H2 respectively and the stepsize µn ∈
(
0, 2

||A||2

)
. However, the determination of

the stepsize µn depends on the operator norm ||A|| (or the largest eigenvalue of A∗A)
which is in general not an easy work in practice. It is found that the CQ algorithm
is a special case of the Gradient-Projection Method (GPM) in convex minimization.
We note that the SFP (1) can be formulated as a fixed point equation using the fact

PC(I − µA∗(I − PQ)A)w = w. (3)

This means that w is a solution of (1) if and only if w solves the fixed point problem
(3), see [30,41,48] for more details.

For solving the SFP (1) in p-uniformly convex real Banach space which are also
uniformly smooth, Schöpfer et.al. [34] proposed the following algorithm: For x1 ∈ E1

set

xn+1 = ΠCJ
E∗

1
p

[
JE1

p (xn) − µnA∗JE2
p (Axn − ΠQ(Axn))

]
, n ≥ 1, (4)
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where ΠC and ΠQ are the Bregman projection onto the nonempty closed convex
sets C ⊆ E1 and Q ⊆ E2 respectively, E1 and E2 are p-uniformly convex real Ba-
nach spaces which are also uniformly smooth. They proved the weak convergence
of algorithm (4) under the condition that the duality mapping of E1 is sequentially
weak-to-weak continuous.
We remark here that the condition that the duality mapping of E1 is sequentially
weak-to-weak continuous excludes some important Banach spaces such as the clas-
sical Lp (2 < p < ∞) spaces.

In this paper, we study the more general case of Split Minimization Problem (SMP)
in real Banach spaces. Let E1 and E2 be real Banach spaces, A : E1 → E2 be a
bounded linear operator and f : E1 → R ∪ {+∞} and g : E2 → R ∪ {+∞} be two
proper, convex and lower semi-continuous functions. The SMP is to find a point

w ∈ argmin f such that Aw ∈ argmin g, (5)

where argmin f := {x̄ ∈ E1 : f(x̄) ≤ f(x), ∀x ∈ E1}
and argmin g := {ȳ ∈ E2 : g(ȳ) ≤ g(y), ∀y ∈ E2}.
We denote the set of solutions of the SMP (5) by S(f, g). If f = iC [defined as
iC(x) = 0 if x ∈ C and +∞ otherwise] and g = iQ are the indicator functions of
nonempty, closed and convex sets C ⊆ E1 and Q ⊆ E2 respectively, then the SMP
(5) reduces to the SFP (1).

In a real Hilbert space H, the Moreau-Yosida approximation of a proper, convex
and lower semi-continuous function f : H → R∪{+∞} with parameter λ also called
the proximal operator of f at x is defined by

proxλf := argmin
u∈H

{f(u) +
1

2λ
||u − x||2}.

The proximal mappings have some attractive properties that make them particularly
well suited for iterative algorithms. For instance, proxλf is firmly nonexpansive, i.e
∀x, y ∈ H,

||proxλf (x) − proxλf (y)||2 ≤ ||x − y||2 − ||(x − proxλf (x)) − (y − proxλf (y))||2,

and its set of fixed point is precisely the set of minimizers of f .

Recenly, Moudafi and Thakur [28] studied the SMP in the case of real Hilbert spaces.
They presented the following algorithm with a way of selecting the stepsize such that
its implementation does not require any prior information of the operator norm:
Algorithm I:

Let h(xn) = 1
2 ||(I − proxλg)Axn||

2, l(xn) = 1
2 ||(I − proxµnλf )xn||

2

and θ(xn) =
√

||∇h(xn)||2 + ||∇l(xn)||2. For any initialization x0 ∈ H1, assume that
a sequence {xn} ⊂ H1 has been constructed and θ(xn) 6= 0 as follows: Compute
xn+1 via

xn+1 = proxµnλf (xn − µnA∗(I − proxλg)Axn) n ≥ 0, (6)
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where the stepsize µn = ρn
h(xn) + l(xn)

θ2(xn)
with 0 < ρ < 4.

If θ(xn) = 0, then xn+1 = xn is a solution of the problem (5) and the iterative
process stops. Otherwise, we set n := n + 1 and go to sequence (6)

Consequently, they proved the following weak convergence theorem.

Theorem 1. Suppose S(f, g) 6= ∅. Assume that the parameters in Algorithm I
satisfy the condition:

ǫ ≤ ρn ≤
4h(xn)

h(xn) + l(xn)
− ǫ,

for some ǫ > 0 small enough. Then the sequence {xn} generated by (6) weakly
converges to a solution of SMP (5).

In [37], Shehu and Ogbuisi introduced the following algorithm and proved a strong
convergence theorem for approximating the common solution of split minimization
problem and fixed point problem of a nonlinear self mapping T in real Hilbert spaces:
Given an initial point x1 ∈ H1, compute xn+1 via






un = (1 − αn)xn,

yn = proxλµnf

(
un − µA∗(I − proxλg)Aun

)
,

xn+1 = (1 − βn)yn + βnTyn,

(7)

where the step-size µn := ρn
h(un) + l(un)

θ2(un)
with 0 < ρ < 4 and θ(x), h(x) and l(x)

are as defined in Algorithm I.

Also Abass et.al. [1] proved the strong convergence of the following two iterative
algorithms for approximating the minimum norm solution of problem (5) in real
Hilbert spaces. For any initial point x1 ∈ H1, assume that xn has been constructed
and θ(xn) 6= 0, then compute xn+1 by the following iterative schemes:

xn+1 = proxλµnf

(
(1 − αn)xn − µnA∗(I − proxλg)Axn

)
, n ≥ 1, (8)

and

xn+1 = (1 − αn)proxλµnf

(
xn − µnA∗(I − proxλg)Axn

)
, n ≥ 1, (9)

where the stepsize µn := ρn
h(xn) + l(xn)

θ2(xn)
with 0 < ρn < 4 and h(xn), l(xn) and

θ(xn) are as defined in Algorithm I and the following conditions are satisfied:

(i) limn→∞ αn = 0,

(ii)
∑∞

n=1 αn = ∞,

(iii) a ≤ ρn ≤ 4(1−αn)h(xn)
h(xn)+l(xn) − a for some a > 0.
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More recently, Shehu and Iyiola [36] introduced an algorithm involving an inertial
extrapolation term for solving the split minimization problem in real Hilbert spaces.
We note here that the initial extrapolation process has been helpful in accelerating
the rate of convergence of iterative algorithms (please see [2, 3, 5, 8, 9, 20,29,31]). In
particular, the authors in [36] presented the following algorithm: Given an initial
point x0 = x1 ∈ H1. Assume that xn has been constructed and θ(yn) = 0, then
compute xn+1 via the rule






yn = xn + βn(xn − xn−1),

zn = yn − ρn
h(yn)+l(yn)

θ2(yn)

(
∇h(yn) + ∇l(yn)

)
,

xn+1 = (1 − αn)yn + αnzn, n ≥ 1,

(10)

where 0 < ρn < 4 and θ(x) =
√

||∇h(x) + ∇l(x)||2 with h(x) = 1
2 ||(I−proxλg)Ax||2

and l(x) = 1
2 ||(I−proxλf)x||2. They proved that under suitable conditions on βn, αn

and ρn, the sequence generated by (10) converges weakly to a solution of (5).

Several other modified algorithms of (6) have been presented for solving the SMP
in real Hilbert spaces (see for instance [6,50]). Then the following natural questions
arise:

• Can we obtain an algorithm which does not require a prior knowl-
edge of the operator norm for solving the split minimization problem
in higher Banach spaces than the Hilbert space?

• Also, can such an algorithm be strongly convergent?

It is our goal in this paper to study the SMP (5) in a more general Banach space
than the Hilbert space. Using the Bregman distance technique, we introduce a new
iterative algorithm with a new choice of stepsize such that its implementation does
not require a prior knowledge of the operator norm. This is very important because it
is not easy to compute the norms of many linear operators as shown by the theorem
of Hendrickx and Olshevsky [18]. We prove strong convergence of the sequence
generated by our algorithm for solving problem (5) which is also fixed point of a
right Bregman strongly nonexpansive mapping in p-uniformly convex Banach spaces
which are also uniformly smooth. We further apply our result to approximation of
solutions of split feasibility problems, split null point problems and the constrained
least-square model to the inverse problem arising in signal processing. Our result
extend and complement many important results in literature.

2 Preliminaries

In this section, we give some definitions and discuss some preliminary results which
will be used throughout the paper. We denote the weak convergence of a sequence
{xn} ⊂ E to a point w ∈ E by xn ⇀ w and the strong convergence by xn → w.
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A function φ : E → R is said to be Gâteaux differentiable at x ∈ E, if there exists
an element φ′(x) ∈ E∗ such that

〈φ′(x), y〉 = lim
t→0

φ(x + ty) − φ(x)

t
,

for every y ∈ E and t > 0. We note that the function φ : E → R is Gâteaux
differentiable if and only if it has a unique subgradient at x and in such case
φ′ = ∂φ(x). Also in a smooth Banach space, if φ(x) = 1

p
||x||p, then the duality

mapping JE
p (x) = ∂φ(x) for any x ∈ E and it is single-valued.

For a Gâteaux differentiable function φ : E 7→ R, the function

Dφ(x, y) = φ(y) − φ(x) − 〈φ′(x), y − x〉,

for all x, y ∈ E is called the Bregman distance of x to y with respect to φ.
Though, the Bregman distance is not a metric in the usual sense (e.g. it lacks

symmetric property), but it has some distance-like properties. In smooth Banach
spaces, the Bregman distance with respect to the function φ(x) = 1

p
||x||p can be

written as

Dp(x, y) =
1

q
||x||p − 〈JE

p (x), y〉 +
1

p
||y||p (11)

=
1

p
(||y||p − ||x||p) + 〈JE

p (x), x − y〉

=
1

q
(||x||p − ||y||p) − 〈JE

p (x) − JE
p (y), x〉, x, y ∈ E. (12)

In a Hilbert space, we have D2(x, y) = 1
2 ||x − y||2.

In addition, the Bregman distance possesses the following important properties:

Dp(x, y) = Dp(x, z) + Dp(y, z) + 〈z − y, JE
p (x) − JE

p (y)〉, ∀x, y, z ∈ E,

and
Dp(x, y) + Dp(y, x) = 〈x − y, JE

p (x) − JE
p (y)〉, ∀x, y ∈ E.

The norm and Bregman distance also have the following relation

τ ||x − y||p ≤ Dp(x, y) ≤ 〈x − y, JE
p (x) − JE

p (y)〉,

where τ > 0 is some fixed number, see [34] for more details on the properties of the
Bregman distance.
Let C be a nonempty closed and convex subset of a smooth Banach space E. The
metric projection

PCx := argmin
y∈C

||x − y||,

for all x ∈ E is the unique minimizer of the norm distance which can be characterized
by a variational inequality:

〈JE
p (x − PCx), z − PCx〉 ≤ 0, ∀ z ∈ C. (13)
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Similarly to the metric projection, we define the Bregman projection as

ΠCx := argmin
y∈C

Dp(x, y),

for all x ∈ E, which is the unique minimizer of the Bregman distance (see [33]). The
Bregman projection is also characterized by the variational inequality:

〈JE
p (x) − JE

p (ΠCx), z − ΠCx〉 ≤ 0. ∀ z ∈ C, (14)

which implies that

Dp(ΠCx, z) ≤ Dp(x, z) − Dp(x,ΠCx), (15)

for all z ∈ C.

Let E be a p-uniformly convex and uniformly smooth real Banach space. Define the
function Vp : E∗ × E → [0,∞) by

Vp(x, y) :=
1

q
||x||q − 〈x, y〉 +

1

p
||y||p, ∀ x ∈ E∗, y ∈ E. (16)

Then Vp is nonnegative and Vp(x, y) = Dp(J
E∗

p (x), y) for all x ∈ E∗ and y ∈ E.

Moreover, by the subdifferential inequality

〈φ′(x), y − x〉 ≤ φ(y) − φ(x),

with φ(x) = 1
q
||x||q and x ∈ E∗, then φ′(x) = JE∗

q . Therefore we have

〈JE∗

q (x), y〉 ≤
1

q
||x + y||q −

1

q
||x||q, (17)

and from (17), we obtain (see [35])

Vp(x̄ + ȳ, x) ≥ Vp(x̄, x) + 〈ȳ, JE∗

p (x̄) − x〉, (18)

for all x ∈ E and x̄, ȳ ∈ E∗. In addition, Vp is convex in the first variable. Thus, for
all z ∈ E,

Dp(J
E∗

q

N∑

i=1

tiJ
E
p (xi), w) ≤

N∑

i=1

tiDp(xi, w), (19)

where {xi} ⊂ E and {ti} ⊂ (0, 1) with
∑N

i=1 ti = 1.

Let C be a convex subset of intdomφp, where φp(x) = (1
p
)||x||p, 2 ≤ p < ∞ and let

T be a self-mapping of C. A point x̄ ∈ C is said to be asymptotic fixed point of T if
C contains a sequence {xn} which converges weakly to x̄ and lim

n→∞
||xn − Txn|| = 0

(see [14]). The set of asymptotic fixed points of T is denoted by F̂ (T ).
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Definition 1. A nonlinear mapping T : C → C with a nonempty asymptotic fixed
point set is said to be:
(i) Right Bregman Strongly Nonexpansive (R-BSNE) mapping with respect to a
nonempty F̂ (T ) if

Dp(Tx, y) ≤ Dp(x, y),

for all x ∈ C and y ∈ F (T ) and if whenever {xn} ⊂ C is bounded, y ∈ F̂ (T ) and

lim
n→∞

(
Dp(xn, y) − Dp(Txn, y)

)
= 0,

it follows that
lim

n→∞
Dp(xn, Txn) = 0.

According to Martin-Marquez et.al. [25,26], a R-BSNE with respect to a nonempty
F̂ (T ) is called strict right Bregman strongly nonexpansive mapping.
(ii) Right Bregman Firmly Nonexpansive (R-BFNE) mapping if

JE
p (Tx) − JE

p (Ty), Tx − Ty〉 ≤ 〈JE
p (x) − JE

p (y), Tx − Ty〉, (20)

for any x, y ∈ C or equivalently,

Dp(Tx, Ty) + Dp(Ty, Tx) + Dp(x, Tx) + Dp(y, Ty) ≤ Dp(x, Ty) + Dp(y, Tx). (21)

From [25, 26], we know that every right Bregman firmly nonexpansive mapping is
right Bregman strongly nonexpansive if F (T ) = F̂ (T ). For more information and
examples of R-BSNE and R-BFNE operators, see [25,26].

Let E be a p-uniformly convex and uniformly smooth real Banach space and
f : E → R ∪ {+∞} be a proper, convex and lower semicontiuous function, the
proximal mapping associated with f with respect to the Bregman distance is defined
as

proxλf (x) = argmin
w∈E

{
f(w) +

1

λ
Dp(w, x)

}
.

Bauschke et.al. [7] explored some important properties of the operator proxλf . We
note from [7] that

dom proxλf ⊂ intdom φ and ran proxλf ⊂ dom φ ∩ dom f,

where φ(x) = 1
p
||x||p and it is convex and Gâteaux differentiable. In addition, if

ran proxλf ⊂ intdom φ, then proxλf is R-BFNE and single-valued on its domain if
φ|intdom φ is strictly convex. The set of fixed points of proxλf are indeed the set of
minimizers of f (see [7] for more details). Throughtout this paper, we shall assume
that ran proxλf ⊂ intdom φ.
We now state the following lemmas which will be used in the sequel.

Lemma 1. (Xu [46]): Let x, y ∈ E and q > 1. If a Banach space E is q-uniformly
smooth, then there is a Cq > 0 so that

||x − y||q ≤ ||x||q − q〈y, JE
q (x)〉 + Cq||y||

q. (22)
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Lemma 2. [15] If p ≥ 1 and 1
p

+ 1
q

= 1, then for arbitrary constants a > 0 and
b > 0, we have

ab ≤
ap

p
+

bq

q
. (23)

Lemma 3. [24] Let {an} be a sequence of real numbers such that there exists a
nondecreasing subsequence {ni} of {n}, that is, ani

≤ ani+1 for all i ∈ N. Then
there exists a nondecreasing sequence {mk} ⊂ N such that mk → ∞ and the following
properties are satisfied for all (sufficiently large) numbers k ∈ N: amk

≤ amk+1 and
ak ≤ amk+1, mk = max{j ≤ k : aj ≤ aj+1}.

Lemma 4. [47] Assume {an} is a sequence of nonnegative real numbers satisfying

an+1 ≤ (1 − tn)an + tnδn ∀n ≥ 0,

where {tn} is a sequence in (0, 1) and {δn} is a sequence in R such that:

i.
∑∞

n=o tn = ∞,

ii. lim supn→∞ δn ≤ 0.

Then, limn→∞ an = 0.

3 Main Result

In this section, we introduce an iterative algorithm which does not require a prior
knowledge of the operator norm ||A|| for approximating a solution of SMP (5) which
is also a fixed point of a R-BSNE mapping and then prove the strong convergence of
the sequence generated by the algorithm in p-uniformly convex real Banach spaces
which are also uniformly smooth. Before we establish our main theorem in this
paper, let us prove the following lemma which will be used in proving the main
theorem.

Lemma 5. Let E be a p-uniformly convex Banach space which is uniformly smooth.
Let f : E → R ∪ {+∞} be a proper, convex and lower semicontinuous function and
let proxλf : E → E be the proximal operator associated with f for λ > 0, then the
following inequalities hold:

(i) for all x ∈ E and z ∈ F (proxλf ), we have

Dp(proxλf (x), z) + Dp(x, proxλf (x)) ≤ Dp(x, z), (24)

(ii) for all x, z ∈ E, we have

〈JE
p (x) − JE

p (proxλf (x)), proxλf (x) − z〉 ≥ 0. (25)
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Proof. (i) By the firm nonexpansivity of proxλf , it follows from Definition 1 and
(21) that for any x, y ∈ E, we have

Dp(proxλf (x), proxλf (y)) + Dp(proxλf (y), proxλf (x))

+ Dp(x, proxλf (x)) + Dp(y, proxλf (y))

≤ Dp(x, proxλf (y)) + Dp(y, proxλf (x)). (26)

Putting y = z ∈ F (proxλf ), then (26) becomes

Dp(proxλf (x), z)+Dp(z, proxλf (x)) + Dp(x, proxλf (x)) + Dp(z, z)

≤ Dp(x, z) + Dp(z, proxλf (x)),

which implies that

Dp(proxλf (x), z) ≤ Dp(x, z) − Dp(x, proxλf (x)). (27)

(ii) It follows from (11) and (24) that

1

q
||proxλf (x)||p − 〈JE

p (proxλf (x), z〉 ≤ −〈JE
p (x), z〉

+ 〈JE
p (x), proxλf (x)〉 −

1

p
||proxλf (x)||p,

which implies that

1

q
||proxλf (x)||p +

1

p
||proxλf (x)||p − 〈JE

p (x), proxλf (x)〉 ≤ −〈JE
p (x), z〉

+ 〈JE
p (proxλf (x), z〉. (28)

Since 1
p

+ 1
q

= 1, then p = (p − 1)q and by Lemma (2), we have that

1

p
||proxλf (x)||p +

1

q
||proxλf (x)||(p−1)q ≥ ||proxλf (x)||p−1||proxλf (x)||

= ||proxλf (x)||p

= 〈JE
p (proxλf (x), proxλf (x)〉. (29)

Therefore from (28) and (29), we have

〈JE
p (proxλf (x)), proxλf (x)〉 − 〈JE

p (x), proxλf (x)〉 ≤ 〈JE
p (proxλf (x), z〉 − 〈JE

p (x), z〉,

which implies that

〈JE
p (proxλf (x)) − JE

p (x), proxλf (x)〉 ≤ 〈JE
p (proxλf (x)) − JE

p (x), z〉,

thus
〈JE

p (proxλf (x)) − JE
p (x), proxλf (x) − z〉 ≤ 0.

Therefore, we have

〈JE
p (x) − JE

p (proxλf (x)), proxλf (x) − z〉 ≥ 0.
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We now prove the convergence of our main theorem in this paper.

Theorem 2. Let E1 and E2 be two p-uniformly convex and uniformly smooth real
Banach spaces. Let C be a nonempty, closed and convex subset of E1.
Let f : E1 → R ∪ {+∞} and g : E2 → R ∪ {+∞} be proper lower semicontinuous
functions and let A : E1 → E2 be a bounded linear operator. Let T be an R-BSNE
mapping from C into C such that F̂ (T ) = F (T ) and Γ = S(f, g) ∩ F (T ) 6= ∅. Let
{αn}, {βn} and {δn} be sequences in (0, 1) such that αn + βn + δn = 1. Let the
sequence {xn} be generated by





yn = ΠC

(
proxλf

(
J

E∗

1
q (JE1

p (xn) − µnA∗JE2
p (I − proxλg)Axn)

))
,

xn+1 = ΠC

[
J

E∗

1
q [αnJ

E∗

1
p (u) + βnJE1

p (yn) + δnJE1
p (Tyn)]

]
, n ≥ 1.

(30)

Let the stepsize µn be choosen in such a way that for a small ǫ > 0

µn ∈
(
ǫ,

( q||(I − proxλg)Axn||
p

Cq||A∗JE2
p (I − proxλg)Axn||q

− ǫ
) 1

q−1
)
, n ∈ Ω, (31)

where the index set Ω := {n ∈ N : (I − proxλg)Axn 6= 0} otherwise µn = t (t being
any nonnegative value). Suppose the following conditions are satisfied:

(i) limn→∞ αn = 0,

(ii)
∑∞

n=1 αn = 0,

(iii) (1 − αn)a < δn, αn ≤ b < 1, a ∈ (0, 1
2).

Then {xn} converges strongly to ΠΓu, where ΠΓ is the Bregman projection onto Γ.

Proof. Let w ∈ Γ. Then from (22) and (30), we have

Dp(yn, w) ≤ Dp(proxλfJ
E∗

1
q [JE1

p (xn) − µnA∗JE2
p (I − proxλg)Axn], w)

≤ Dp(J
E∗

1
q [JE1

p (xn) − µnA∗JE2
p (I − proxλg)Axn], w)

=
1

q
||JE1

p (xn) − µnA∗JE2
p (I − proxλg)Axn||

q − 〈JE1
p (xn)

−µnA∗JE2
p (I − proxλg)Axn, w〉 +

1

p
||w||p

≤
1

q
||JE1

p (xn)||q − µn〈J
E2
p (I − proxλg)Axn, Axn〉

+
Cq

q
µq

n||A
∗JE2

p (I − proxλg)Axn||
q

−〈JE1
p (xn), w〉 + 〈JE2

p (I − proxλg)Axn, Aw〉 +
1

p
||w||p

=
1

q
||xn|||

q − 〈JE1
p (xn), w〉 +

1

p
||w||p − µn〈J

E2
p (I − proxλg)Axn, Axn − Aw〉
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+
Cq

q
µq

n||A
∗JE2

p (I − proxλg)Axn||
q

= Dp(xn, w) − µn〈J
E2
p (I − proxλg)Axn, Axn − Aw〉

+
Cq

q
µq

n||A
∗JE2

p (I − proxλg)Axn||
q. (32)

But by Lemma 5 (ii), we have

〈JE2
p (I − proxλg)Axn,Axn − Aw〉 = 〈JE2

p (I − proxλg)Axn,

Axn − proxλgAxn + proxλgAxn − Aw〉

= ||Axn − proxλgAxn||
p

+ 〈JE2
p (I − proxλg)Axn, proxλgAxn − Aw〉

≥ ||Axn − proxλgAxn||
p. (33)

Therefore from (32) and (33), we have

Dp(yn, w) ≤ Dp(xn, w)

− µn

[
||Axn − proxλgAxn||

p −
Cqµ

q−1
n

q
||A∗JE2

p (I − proxλg)Axn||
q
]
, (34)

and by the condition on µn, it follows that

Dp(yn, w) ≤ Dp(xn, w). (35)

Also from (30) and (35), we have

Dp(xn+1, w) ≤ αnDp(u,w) + βnDp(yn, w) + δnDp(Tyn, w)

≤ αnDp(u,w) + βnDp(yn, w) + δnDp(yn, w)

= αnDp(u,w) + (1 − αn)Dp(yn, w)

≤ αnDp(u,w) + (1 − αn)Dp(xn, w)

≤ max{Dp(u,w),Dp(xn, w)}

...

≤ max{Dp(u,w),Dp(x1, w)}. (36)

Thus Dp(xn, w) is bounded and consequently, {xn} and {yn} are bounded.

Setting wn = J
E∗

1
q

[
αnJE1

p (u) + βnJE1
p (yn) + δnJE1

p (Tyn)
]
, for each n ≥ 1, then

from (18), we have

Dp(xn+1, w) ≤ Df (J
E∗

1
q [αnJE1

p (u) + βnJE1
p yn + δnJE1

p Tyn], w)

= Vp(αnJE1
p (u) + βnJE1

p yn + δnJE1
p Tyn], w)

≤ Vp(αnJE1
p (u) + βnJE1

p yn + δnJE1
p Tyn − αn(JE1

p (u) − JE1
p (w)), w)

−〈−αn(JE1
p (u) − JE1

p (w)), J
E∗

1
q [αnJE1

p (u)
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+βnJE1
p yn + δnJE1

p Tyn] − w〉

= Vp(αnJE1
p (w) + βnJE1

p yn + δnJE1
p Tyn, w)

+αn〈J
E1
p (u) − JE1

p (w), wn − w〉

= Dp(J
E∗

1
p [αnJE1

p (w) + βnJE1
p yn + δnJE1

p Tyn], w)

+αn〈J
E1
p (u) − JE1

p (w), wn − w〉

= αnDp(w,w) + βnDp(yn, w) + δnDp(Tyn, w)

+αn〈J
E1
p (u) − JE1

p (w), wn − w〉

≤ βnDp(yn, w) + δnDp(yn, w) + αn〈J
E1
p (u) − JE1

p (w), wn − w〉

= (1 − αn)Dp(yn, w) + αn〈J
E1
p (u) − JE1

p (w), wn − w〉

≤ (1 − αn)Dp(xn, w) + αn〈J
E1
p (u) − JE1

p (w), wn − w〉. (37)

We now divide the remaining part of the proof into two cases.
Case I: Suppose that there exists n1 ∈ N such that {Dp(xn, w)} is nonincreasing,
then {Dp(xn, w)} converges and thus Dp(xn, w) − Dp(xn+1, w) → 0 as n → ∞.

Setting tn = J
E∗

1
q

(
βn

1−αn
JE1

p (yn) + δn

1−αn
JE1

p (Tyn)
)
, then

Dp(tn, w) = Dp

(
J

E∗

1
q

[ βn

1 − αn
JE1

p (yn) +
δn

1 − αn
JE1

p (Tyn)
]
, w

)

≤
βn

1 − αn
Dp(yn, w) +

δn

1 − αn
Dp(Tyn, w)

=
βn + δn

1 − αn
Dp(yn, w)

= Dp(yn, w). (38)

Therefore, we have

0 ≤ Dp(xn, w) − Dp(tn, w)

= Dp(xn, w) − Dp(xn+1, w) + Dp(xn+1, w) − Dp(tn, w)

≤ Dp(xn, w) − Dp(xn+1, w) + αnDp(u,w) + (1 − αn)Dp(tn, w) − Dp(tn, w)

= Dp(xn, w) − Dp(xn+1, w) + αn[Dp(u,w) − Dp(tn, w)] → 0, as n → ∞. (39)

Moreover

Dp(tn, w) ≤
βn

1 − αn
Dp(yn, w) +

δn

1 − αn
Dp(Tyn, w)

= Dp(yn, w) −
(
1 −

βn

1 − αn

)
Dp(yn, w) +

δn

1 − αn
Dp(Tyn, w)

≤ Dp(xn, w) +
δn

1 − αn

[
Dp(Tyn, w) − Dp(yn, w)

]
. (40)

Since (1 − αn)a < δn and αn ≤ b < 1, we have

a(Dp(yn, w) − Dp(Tyn, w)) <
δn

1 − αn

[
Dp(yn, w) − Dp(Tyn, w)

]
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≤ Dp(xn, w) − Dp(tn, w) → 0, as n → ∞.

Thus

Dp(yn, w) − Dp(Tyn, w) → 0, as n → ∞. (41)

Since T is R-BSNE, we have that limn→∞ Dp(yn, T yn) = 0, which implies that

lim
n→∞

||yn − Tyn|| = 0. (42)

Furthermore, from (34) and (37), we have

µn

[
||Axn − proxλgAxn||

p −
Cqµ

q−1
n

q
||A∗JE2

p (I − prox − λg)Axn||
q
]

≤ Dp(xn, w) − Dp(yn, w)

≤ Dp(xn, w) − Dp(xn+1, w) + Dp(xn+1, w) − Dp(yn, w)

= Dp(xn, w) − Dp(xn+1, w)

+ αn[Dp(yn, w) + 〈JE1
p (u) − JE1

p (w)〉].

Therefore, since Dp(xn, w) − Dp(xn+1, w) → 0 and
αn[Dp(yn, w) + 〈JE1

p (u) − JE1
p (w), xn+1 − w〉] → 0 as n → ∞, the above inequality

implies that

µn

[
||Axn − proxλgAxn||

p −
Cqµ

q−1
n

q
||A∗JE2

p (I − proxλg)Axn||
q
]
→ 0, as n → ∞.

(43)
Using the condition on µn, that is,

µq−1
n <

q||(I − proxλgAxn||
p

Cq||A∗JE2
p (I − proxλgAxn||q

− ǫ,

which implies that

Cqµ
q−1
n ||A∗JE2

p (I − proxλg)Axn||
q < q||(I − proxλg)Axn||

p

− ǫCq||A
∗JE2

p (I − proxλg)Axn||
q,

and then by (43), we have

ǫCq

q
||A∗JE2

p (I − proxλgAxn||
q

< ||(I − proxλg)Axn||
p −

Cqµ
q−1
n

q
||A∗JE2

p (I − proxλg)Axn||
q → 0 as n → ∞.

Hence

lim
n→∞

||A∗JE2
p (I − proxλg)Axn||

q = 0. (44)
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Furthermore, we obtain from (31), (34), (37) and (44) that

0 ≤ǫ||(I − proxλg)Axn||
p ≤ µn||(I − proxλg)Axn||

p

< Dp(xn, w) − Dp(yn, w) +
Cqµ

q
n

q
||A∗JE2

p (I − proxλg)Axn||
q

≤ Dp(xn, w) − Dp(xn+1, w) + αn[Dp(yn, w) + 〈JE1
p (u) − JE1

p (w), xn+1 − w〉]

+
Cqµ

q
n

q
||A∗JE2

p (I − proxλg)Axn||
q → 0 as n → ∞,

thus
lim

n→∞
||(I − proxλg)Axn|| = 0. (45)

Now, let zn = J
E∗

1
q (JE1

p (xn) − µnA∗JE2
p (I − proxλg)Axn).

Observe that Dp(zn, w) ≤ Dp(xn, w), then from (24), we have

Dp(zn, yn) = Dp(zn, proxλfzn)

≤ Dp(zn, w) − Dp(yn, w)

≤ Dp(xn, w) − Dp(yn, w)

≤ Dp(xn, w) − Dp(xn+1, w)

+ αn[Dp(yn, w) + 〈JE1
p − JE2

p , xn+1 − w〉] → 0, as n → ∞. (46)

Thus
lim

n→∞
||zn − yn|| = 0. (47)

It then follows from the definition of zn that

0 ≤ ||JE1
p (zn) − JE1

p (xn)||

≤ µn||A
∗||||JE2

p (I − proxλg)Axn||

≤ µn||A
∗||||(I − proxλg)Axn||

p−1 → 0 as n → ∞. (48)

Since J
E∗

2
p is norm-to-norm uniformly continuous on bounded subsets of E∗

1 , we have
that

lim
n→∞

||zn − xn|| = 0. (49)

Therefore, from (47) and (49) we have

||yn − xn|| ≤ ||yn − zn|| + ||zn − xn|| → 0 as n → ∞. (50)

Since {xn} is bounded in E1 and E1 is reflexive, there exists a subsequence {xni
} of

{xn} which converges weakly to x̃ in E1. By (42) and (50), it follows that x̃ ∈ F (T )
since F (T ) = F̂ (T ).
We now show that x̃ ∈ S(f, g). Since zni

− xni
→ 0 as i → ∞, it follows from

(47) that x̃ = proxλf x̃, hence x̃ is a fixed point of the proximal mapping of f or
equivalently 0 ∈ ∂f(x̃). Thus x̃ is a minimizer of f .
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Likewise, it follows from (45) that Ax̃ = proxλgAx̃, i.e Ax̃ is a fixed point of the
proximal mapping of g or equivalently 0 ∈ ∂g(Ax̃). Thus Ax̃ is a minimizer of g.
Hence x̃ ∈ S(f, g).
Therefore x̃ ∈ Γ = F (T ) ∩ S(f, g).

Next, we show that {xn} converges strongly to ΠΓu.
From (50), we have

Dp(wn, xn) = Dp(j
E∗

1
q

[
αnJE1

p (u) + βnJE1
p (yn) + δnJE1

p (Tyn)
]
, xn)

≤ αnDp(u, xn) + βnDp(yn, xn) + δnDp(Tyn, xn)

≤ αnDp(u, xn) + (1 − αn)Dp(yn, xn) → 0.

Thus

lim
n→∞

||wn − xn|| = 0. (51)

Now let x∗ = ΠΓu, from (37) we have

Dp(xn+1, x
∗) ≤ (1 − αn)Dp(xn, x∗) + αn〈J

E1
p (u) − JE1

p (x∗), wn − x∗〉. (52)

Choose a subsequence {xnj
} of {xn} such that

lim sup
n→∞

〈JE1
p (u) − JE1

p (x∗), xn − x∗〉 = lim
j→∞

〈JE1
p (u) − JE1

p (x∗), xnj
− x∗〉.

Since xnj
⇀ x̃, it follows from (14) that

lim sup
n→∞

〈JE1
p (u) − JE1

p (x∗), xn − x∗〉 = lim
j→∞

〈JE1
p (u) − JE1

p (x∗), xnj
− x∗〉

= 〈JE1
p (u) − JE1

p (x∗), x̃ − x∗〉 ≤ 0. (53)

Since ||wn − xn|| → 0, n → ∞, then

lim sup
n→∞

〈JE1
p (u) − JE1

p (x∗), wn − x∗〉 ≤ 0.

Hence by Lemma 4 and (52), we conclude that Dp(xn, x∗) → 0, n → ∞. Therefore
xn → x∗ = ΠΓu.
Case II: Suppose that there exists a subsequence {nj} of {n} such that

Dp(xnj
, w) < Dp(xnj+1, w),

for all j ∈ N. Then by Lemma 3, there exists a nondecreasing sequence {mk} ⊂ N

with mk → ∞ as n → ∞ such that

Dp(xmk
, w) ≤ Dp(xmk+1, w), Dp(xk, w) ≤ Dp(xmk+1, w),

for all k ∈ N. Following the same line of arguments as in Case I, we have that

lim
k→∞

||Tymk
− ymk

|| = 0, lim
k→∞

||(I − proxλg)Axmk
|| = 0, lim

k→∞
||zmk

− ymk
|| = 0,



ON SPLIT MINIMIZATION PROBLEM 19

and
lim sup

k→∞
〈JE1

p (u) − JE1
p (w), wmk

− x∗〉 ≤ 0, (54)

where x∗ = ΠΓu. From (37), we have

Dp(xmk+1, x
∗) ≤ (1 − αmk

)Dp(xmk
, x∗) + αmk

〈JE1
p (u) − JE1

p (x∗), wmk
− x∗〉. (55)

Since Dp(xmk
, x∗) ≤ Dp(xmk+1, x

∗), it follows from (55) that

αmk
Dp(xmk

, x∗) ≤ Dp(xmk
, x∗) − Dp(xmk+1, x

∗)

+ αmk
〈JE1

p (u) − JE1
p (x∗), wmk

− x∗〉

≤ αmk
〈JE1

p (u) − JE1
p (x∗), wmk

− x∗〉. (56)

Since αmk
> 0, we obtain

Dp(xmk
, x∗) ≤ 〈JE1

p (u) − JE1
p (x∗), wmk

− x∗〉.

Then from (54), it follows that Dp(xmk
, x∗) → 0 as k → ∞. This together with (55),

we obtain Dp(xmk+1, x
∗) → 0 as k → ∞. Since Dp(xk, x

∗) ≤ Dp(xmk+1, x
∗) for all

k ∈ N, we have xk → x∗ as k → ∞, which implies that xn → x∗ as n → ∞.
Therefore from the above two cases, we conclude that {xn} converges strongly

to x∗ = ΠΓu.
This completes the proof.

Corollary 1. Let E1 and E2 be two p-uniformly convex and uniformly smooth real
Banach spaces. Let C be a nonempty, closed and convex subset of E1.
Let f : E1 → R ∪ {+∞} and g : E2 → R ∪ {+∞} be proper lower semicontinuous
functions and let A : E1 → E2 be a bounded linear operator. Let T be an R-BSNE
mapping from C into C such that F̂ (T ) = F (T ) and Γ = S(f, g) ∩ F (T ) 6= ∅. Let
{αn} be sequences in (0, 1). For a fixed u, x1 ∈ E1, let {xn} be generated by





yn = ΠC

(
proxλf

(
J

E∗

1
q (JE1

p (xn) − µnA∗JE2
p (I − proxλg)Axn)

))
,

xn+1 = ΠCJ
E∗

1
q

[
αnJ

E∗

1
p (u) + (1 − αn)JE1

p (Tyn)
]
, n ≥ 1,

(57)

where the stepsize µn is choosen in such a way that for a small ǫ > 0

µn ∈
(
ǫ,

( q||(I − proxλg)Axn||
p

Cq||A∗JE2
p (I − proxλg)Axn||q

− ǫ
) 1

q−1
)
, n ∈ Ω, (58)

where the index set Ω := {n ∈ N : (I − proxλg)Axn 6= 0} otherwise µn = t (t being
any nonnegative value). Suppose the following conditions are satisfied:

(i) limn→∞ αn = 0,

(ii)
∑∞

n=1 αn = 0,

(iii) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1.
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Then {xn} converges strongly to ΠΓu.

Putting p = 2 = q, then Theorem 2 becomes:

Corollary 2. Let E1 and E2 be two real Hilbert spaces with subsets C and Q respec-
tively. Let f : E1 → R∪{+∞} and g : E2 → R∪{+∞} be proper lower semicontinu-
ous functions and let A : E1 → E2 be a bounded linear operator. Let T be an R-BSNE
mapping from C into C such that F̂ (T ) = F (T ) and Γ = S(f, g) ∩ F (T ) 6= ∅. Let
{αn}, {βn} and {δn} be sequences in (0, 1) such that αn + βn + δn = 1. Let the
sequence {xn} be generated by





yn = PC

(
proxλf

(
xn − µnA∗(I − proxλg)Axn

))
,

xn+1 = PC

[
αnu + βnyn + δnTyn

]
, n ≥ 1.

(59)

Let the stepsize µn be choosen in such a way that for a small ǫ > 0

µn ∈
(
ǫ,

2||(I − proxλg)Axn||
2

||A∗(I − proxλg)Axn||2
− ǫ

)
, n ∈ Ω, (60)

where the index set Ω := {n ∈ N : (I − proxλg)Axn 6= 0} otherwise µn = t (t being
any nonnegative value). Suppose the following conditions are satisfied:

(i) limn→∞ αn = 0,

(ii)
∑∞

n=1 αn = 0,

(iii) (1 − αn)a < δn, αn ≤ b < 1, a ∈ (0, 1
2).

Then {xn} converges strongly to PΓu, where PΓ is the metric projection onto Γ.

4 Applications

In this section, we give applications of our main result to approximation of
solutions of some other nonlinear problems.

4.1 Split Feasibility Problems

Taking f = iC and g = iQ the indicator functions of the nonempty closed and
convex sets C ⊆ E1 and Q ⊆ E2 respectively, then the SMP (5) reduces to the SFP
(1). Thus, we have the following theorem for approximating common solution of
SFP and fixed point problem of R-BSNE mappings.

Theorem 3. Let E1 and E2 be two p-uniformly convex and uniformly smooth real
Banach spaces. Let C and Q be nonempty, closed and convex subsets of E1 and E2

respectively. Let A : E1 → E2 be a bounded linear operator.
Suppose Θ := {x ∈ C : Ax ∈ Q} and let T : E1 → E2 be an R-BSNE mapping such
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that F̂ (T ) = F (T ) and Γ = Θ∩F (T ) 6= ∅. Let {αn}, {βn} and {δn} be sequences in
(0, 1) such that αn + βn + δn = 1. Let the sequence {xn} be generated by





yn = PC

[
J

E∗

1
q (JE1

p (xn) − µnA∗JE2
p (I − PQ)Axn)

]
,

xn+1 = ΠCJ
E∗

1
q

[
αnJ

E∗

1
p (u) + βnJE1

p (yn) + δnJE1
p (Tyn)

]
, n ≥ 1.

(61)

Let the stepsize µn be choosen in such a way that for a small ǫ > 0

µn ∈
(
ǫ,

( q||(I − PQ)Axn||
p

Cq||A∗JE2
p (I − PQ)Axn||q

− ǫ
) 1

q−1
)
, n ∈ Ω, (62)

where the index set Ω := {n ∈ N : (I − PQ)Axn 6= 0} otherwise µn = t (t being any
nonnegative value). Suppose the following conditions are satisfied:

(i) limn→∞ αn = 0,

(ii)
∑∞

n=1 αn = 0,

(iii) (1 − αn)a < δn, αn ≤ b < 1, a ∈ (0, 1
2).

Then {xn} converges strongly to ΠΓu.

4.2 Split Null Point Problem

Let A : E1 → E2 be a bounded linear operator. Let N : E1 → 2E1 and
M : E2 → 2E2 be maximal monotone operators. The split null point problem
(SNPP) is to find

x∗ ∈ N−1(0) such that Ax∗ ∈ M−1(0). (63)

Several iterative methods have been introduced to approximate the solution of SNPP
and related optimization problems in real Hilbert and Banach spaces, see [19,21,22,
43] and the references therein. The resolvent operator ResλM : E → 2E associated
with a maximal monotone operator M for λ > 0 is defined by

ResλM (x) = {z ∈ E : JE
p (x) ∈ JE

p (z) + λM(z)}.

Equivalently, ResλM (x) := (JE
p + λM)−1JE

p (x), for all x ∈ E. Moreover, ResλM

is single-valued and also N−1(0) = F (ResλM ) (see Section 5 in [42]). We shall
denote the set of solutions of SNPP (63) by SNPP (N,M). It is well known that
the resolvent operator ResλM is BFNE, that is

〈JE
p (ResλM (x)) − JE

p (ResλM (y)), ResλM (x) − ResλM (y)〉

≤ 〈JE
p (x) − JE

p (y), ResλM (x) − ResλM (y)〉, for all x, y ∈ C (see [32]).
Taking f = N and g = M the maximal monotone operators in E1 and E2

respectively, we have the following theorem for approximating solutions of SNPP in
real Banach spaces.
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Theorem 4. Let E1 and E2 be two p-uniformly convex and uniformly smooth real
Banach spaces. Let C and Q be nonempty, closed and convex subsets of E1 and E2

respectively. Let A : E1 → E2 be a bounded linear operator, N : E1 → 2E1 and
M : E2 → 2E2 be maximal monotone operators and T : E1 → E2 be an R-BSNE
mapping such that F̂ (T ) = F (T ). Suppose Γ = SNPP (N,M) ∩ F (T ) 6= ∅. Let
{αn}, {βn} and {δn} be sequences in (0, 1) such that αn + βn + δn = 1. Let the
sequence {xn} be generated by





yn = ΠC

(
ResλN

(
J

E∗

1
q (JE1

p (xn) − µnA∗JE2
p (I − ResλM )Axn)

))
,

xn+1 = ΠCJ
E∗

1
q

[
αnJ

E∗

1
p (u) + βnJE1

p (yn) + δnJE1
p (Tyn)

]
, n ≥ 1.

(64)

Let the stepsize µn be choosen in such a way that for a small ǫ > 0

µn ∈
(
ǫ,

( q||(I − ResλM )Axn||
p

Cq||A∗JE2
p (I − ResλM )Axn||q

− ǫ
) 1

q−1
)
, n ∈ Ω, (65)

where the index set Ω := {n ∈ N : (I − ResλM )Axn 6= 0} otherwise µn = t (t being
any nonnegative value). Suppose the following conditions are satisfied:

(i) limn→∞ αn = 0,

(ii)
∑∞

n=1 αn = 0,

(iii) (1 − αn)a < δn, αn ≤ b < 1, a ∈ (0, 1
2).

Then {xn} converges strongly to ΠΓu.

4.3 Inverse Problem in Signal Processing

Many problems in signal and image processing can be formulated as inverting
the equation system

z = Ax + ε, (66)

where x ∈ R
N are the data to be recovered, z ∈ R

M is the vector of noisy ob-
servations (or measurements) and ε is an additive noise with bounded variance,
A : R

N → R
M is a bounded linear observation operator which is typically ill be-

haved because it models an acquisition process that encounters loss of information.
Two typical problems covered by model (66) are:

(i) Compressed sensing, where A is an M ×N matrix and one only takes M < N

measurements of the input signal M .

(ii) Deconvolution or wavelet-based signal restoration, where the operator A can
be written as A = RW such that R is the convolution by blurring kernel and
W represents an inverse wavelet transformation.
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When attempting to find sparse solutions to linear inverse problems of type (66), a
successful model is the convex unconstrained minimization problem

min
x∈RN

1

2
||z − Ax||2 + ν||x||1, (67)

where ν is a postive number, || · || is the Euclidean norm and || · ||1 is the l1 norm.
The aim of the l1 term, which is the convex sparsity-promoting penalty, is to make
the small component of x become zero. By means of convex analysis, one is able to
show that a minimizer to (67) is actually a solution to the constrained least-square
problem

min
x∈RN

1

2
||z − Ax||2 subject to ||x||1 < t, (68)

for any nonnegative real number t (see [17]). We note that problem (68) is a par-
ticular case of SFP (1) where C = {x ∈ R

N : ||x||1 ≤ t} and Q = {z}, that is, find
||x||1 ≤ t such that Ax = z. The projection onto the closed l1 ball in R

N of radius
t can be computed through soft thresholding:

Sλ(u) = argmin
x∈RN

{||x − u||2 + 2λ||x||1},

where λ is a certain positive real number and Sλ is the soft thresholding operator
with threshold λ defined by (Sλ(y))i = Sλ(yi), with 1 ≤ i ≤ N with

Sλ(y) =






y + τ, y < −λ,

0, −τ ≤ y ≤ λ,

y − τ, λ < y.

(69)

See [16, 17] for more information on the soft thresholding. Several optimization
algorithms have been developed to solve (68) (see, for example [23,44] and references
therein).
Let E be a finite – dimensional Hilbert space (typically, the real vector space R

N )
equipped with the inner product 〈·, ·〉. Let f : E → R ∪ {+∞} be a proper, convex
and lower semicontinuous function. When f(x) = λ||x||1 where λ > 0, the proximal
operator associated with f is given as

proxf(x) = argmin
z∈E

{
1

2
||z − x||2 + λ||z||1}.

The optimality condition becomes

0 ∈ ∇(||z − x||2) + ∂(λ||z||1) ⇔ 0 ∈ z − x + λ∂||z||1. (70)

We now consider two cases for the components of the l1-norm.
Case 1: Suppose zi = 0, then the subdifferential of the l1-norm is the interval [−1, 1],
thus (70) becomes

0 ∈ −xi + λ[−1, 1] ⇔ xi ∈ [−λ, λ]
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⇔ |xi| ≤ λ. (71)

Case 2: Assume zi 6= 0, then ∂||zi||1 = sign(zi), where sign is the signum function,
that is,

sign(zi) =






1, if zi > 0,
0, if zi = 0,
−1, if zi < 0.

Then we have from (70) that

0 = zi − xi + λsign(zi) ⇔ z∗i = xi − λsign(z∗i ), (72)

where z∗i is the optimum point of f . Now if z∗i > 0, then xi > λ and if zi < 0, then
xi < −λ. Thus |xi| > λ and sign(z∗i ) = sign(xi). Substituting this in (72) yields

z∗i = xi − λsign(xi). (73)

Therefore from (71) and (73), we have that

[proxf (x)]i = z∗i =

{
0, if |xi| ≤ λ,

xi − λsign(xi), if xi > λ,

= sign(xi)max
(
|xi| − λ, 0

)
.

This shows that the proximal operator of f is indeed the soft-thresholding operator
with threshold λ. Also Sλ is an example of left Bregman strongly nonexpansive
mapping (see [26]).
Choosen C = {x ∈ R

N : ||x||1 ≤ t}, Q = {z}, f(x) = λ||x||1 and g(z) = z

in Theorem 2, we have the following result for approximating the solution of the
constrained least-square problem (68).

Theorem 5. Let E1 and E2 be real Hilbert spaces (typically, the real vector space
R

N) and let A be as defined in (66). Let C = {x ∈ R
N : ||x||1 ≤ t}, Q = {z},

f(x) = λ||x||1 and g(z) = z, where z ∈ R
M is an observation vector generated by

z = Ax+ε with noise ε whose variance is bounded and M < N . Let {αn}, {βn} and
{δn} be sequences in (0, 1) such that αn + βn + δn = 1. Choose some initial values
x1 ∈ R

N and u ∈ R
N and let {xn} be generated iteratively by

{
yn = Sλ(xn − µnA∗(z − Axn)),
xn+1 = Sλ(αnu + βnyn + δnSλyn), n ≥ 1,

(74)

where the stepsize µn is choosen in such a way that for a small ǫ > 0

µn ∈
(
ǫ,

2||(z − Axn)||2

||A∗(z − Axn)||2
− ǫ

)
, n ∈ Ω,

where the index set Ω := {n ∈ N : z − Axn 6= 0} otherwise µn = t (t being any
nonnegative value). Suppose the following conditions are satisfied:
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(i) limn→∞ αn = 0,

(ii)
∑∞

n=1 αn = 0,

(iii) (1 − αn)a < δn, αn ≤ b < 1, a ∈ (0, 1
2).

Then {xn} converges strongly to Sλu which is the solution to the least-square problem
(68).

4.4 Numerical Example

We now present a numerical experiment to demonstrate the performance of our
algorithm (74). We consider the following simple numerical example to show how
the change in initial values affects the number of iterations.

Let E1 = R
N = E2, consider C = {x ∈ R

N : ||x||1 ≤ t} and Q = {z}. Let
f(x) = ||x||1 and g(z) = z, then the soft thresholding is given by

proxf (y) = S1(x) =






x + 1, x < −1,
0, |x| ≤ 1,
x − 1, 1 < x.

Choose αn = 1
n+1 , βn = 2n

3(n+1) , and δn = n
3(n+1) , then algorithm (74) becomes

{
yn = S1(xn − µnAT (z − Axn)),
xn+1 = S1(

1
n+1u + 2n

3(n+1)yn + n
3(n+1)Sλyn), n ≥ 1.

Let Ax = x, and z = randn(N, 1) be random generated vectors whose elements are
normally distributed, we make different choices of N as follow: N = 1000, N = 5000
and N = 10000.
Case 1: u = randn(N, 1) and x1 = randn(N, 1).
Case II: u = 3 × randn(N, 1) and x1 = 0.5 × randn(N, 1).

We use
||xn+1 − xn||

||x2 − x1||
< 10−6 as stopping criterion.
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Figure 1. Case I: errors vs number of iterations: N = 1000, 0.0027sec (top-left),
N = 5000, 0.0071sec (top-right), N = 10000, 0.0232sec (bottom).



ON SPLIT MINIMIZATION PROBLEM 27

Figure 2. Case I: errors vs number of iterations: N = 1000, 0.0038sec (top-left),
N = 5000, 0.0157sec (top-right), N = 10000, 0.0565sec (bottom).
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