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Localization of singular points of meromorphic

functions based on interpolation by rational functions

Maria Capcelea, Titu Capcelea

Abstract. In this paper we examine two algorithms for localization of singular points
of meromorphic functions. Both algorithms apply approximation by interpolation
with rational functions. The first one is based on global interpolation and gives the
possibility to determine the singular points of the function on a domain that includes
a simple closed contour on which the values of the function are known. The second
algorithm, based on piecewise interpolation, establishes the poles and the discontinuity
points on the contour where the function values are given.
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1 Introduction and problem formulation

Let consider a function f (z) of a complex variable z, which is meromorphic on a
finite domain Ω ⊂ C so that the point 0 ∈ Ω. The finite values fj := f (zj) of the
function f (z) are known on the set {zj}, where the points zj belong to a simple
closed contour Γ ⊂ Ω, that contains the point z = 0. We admit that points zj form a
dense set on Γ. The function f (z) has a finite number of singular points of polar type
on the domain Ω, but their number s <∞ and locations zp

j are not known. Also, on
the contour Γ the function f (z) can have both poles and jump discontinuity points
(which can be considered as removable singularities). If the function f (z) has poles
on the contour Γ, in order to avoid the computation difficulties, we consider that
the values of the function f (z) at the points zj ∈ Γρ are given (here Γρ represents
a small perturbation of the contour Γ ). We aim to determine the locations of the
singular points on Ω, in particular those on the contour Γ.

An algorithm for the localization of singularities is proposed in [1]. This algo-
rithm is based on algebraic relations, which were obtained from the residue theorem
and the properties of Laurent coefficients and it can be applied in the case when
the contour Γ coincides with the circle Γ0 := {t ∈ C : |t| = 1} and the poles of the
function f (z) belong to the domain inside of Γ0.

In paper [2] the function f (z) is expressed as B (z) /A (z), and the coefficients
of the functions B (z) and A (z) are determined as a solution of the linear least-
squares problem

∑M
i=1 |A (si) f (si) −B (si)|

2 → min, where si ∈ Γ0. The zeros of
the function A (z) are the poles of the function f (z).
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In paper [3] an algebraic method for the localization of simple poles of the mero-
morphic function is proposed. This method is based on the values of the function on
a simple arc from the domain where the function is defined. The algorithm handles
both the case when the arc is closed and the case when the arc is open. The accuracy
of the pole approximations depends on whether the arc includes inside the poles of
the function and on the distance of the poles from the points of the arc.

In our earlier works we have already examined the Padé approximation with
Laurent polynomials [4] and the Padé approximation with Faber polynomials [5]. In
both cases we have considered the meromorphic functions on a finite domain of the
complex plane with given values at the points of a simple closed contour from this
domain. On the basis of the obtained results the numerical algorithms have been
proposed for the localization of poles of the function, including jump discontinuity
points on the contour.

In this paper we propose two algorithms for localizing the singular points of
meromorphic function f (z), both are based on the approximation by rational func-
tions. For M,N ∈ N let RN,M be the set of rational functions of order (N,M),
rN,M (z) = PN (z) /QM (z), where PN (z) and QM (z) are polynomials of degree M
and, respectively, N (we denote by Pn the set of polynomials of degree at most
n). According to the interpolation problem with rational functions, we determine
a function rN,M ∈ RN,M , that takes the given values f1, ..., fn at distinct points
z1, ..., zn, where n = M +N + 1.

If M = 0, then one obtains the problem of polynomial interpolation and it is
known that its solution exists and is unique. But for arbitrarily fixed M and N ,
there may not exist a rational function rN,M ∈ RN,M , that satisfies the conditions
of the interpolation problem [6]. In the case when the function f (z) is meromorphic
inside or outside the unit circle Γ0 := {z ∈ C : |z| = 1} and the number of its
poles M is known, we find out from [7, 8] that for large enough N there exists
a unique rational function rN,M ∈ RN,M satisfying the interpolation conditions
rN,M (zj) = fj, j = 1, ..., N + M + 1 at the points zj = e2πji/(N+M+1) ∈ Γ0. For
values N → ∞, theoretically the poles of the rational function rN,M (z) converge to
poles of the function f (z), accordingly. For N → ∞ the sequence rN,M (z) converges
to f (z) on the domain Ω′, obtained from the domain Ω where the meromorphic
function is defined, by eliminating the poles of f (z). The convergence is uniform on
any closed subset of Ω′.

For fixed values N,M we can consider the linearized problem of interpolation
with rational functions, according to which we determine the polynomials PN ∈ PN

and QM ∈ PM that satisfy the relation

f (zj)QM (zj) − PN (zj) = 0, j = 1, N +M + 1. (1)

Relation (1) is a system ofN+M+1 homogeneous linear equations withN+M+2
unknowns, that has a non-trivial solution. However, if QM (zj) = PN (zj) = 0 for
some zj , j ∈ {1, ..., N +M + 1}, then the solution of the system (1) may not define
a solution of the interpolation problem with a rational function. If QM (zj) 6= 0, j =



112 MARIA CAPCELEA, TITU CAPCELEA

1, ..., N + M + 1, then the function rN,M (z) = PN (z) /QM (z) (∈ RN,M ) satisfies
the interpolation conditions rN,M (zj) = fj , j = 1, ..., N +M + 1.

Next, in order to determine the poles of the function f (z) on the domain Ω,
an approximation algorithm by interpolation with a rational function on Ω is pro-
posed. Also, the poles and discontinuity points which belong to the contour Γ are
determined by piecewise approximation on Γ.

2 Localization of singular points based on approximation by global

interpolation with rational functions

The poles of the function f (z) on the domain Ω can be determined if it is ap-
proximated with a rational function R (z) := PN (z) /QM (z) on Ω, where PN (z)
and QM (z) are the polynomials PN (z) =

∑N
k=0 pkz

k, QM (z) =
∑M

r=0 qrz
r, and

N,M ∈ N, N ≥M . To ensure the existence and uniqueness of the rational function
R (z) we consider that q0 = 1. The zeros of the polynomial QM (z) are approxima-
tions of the poles of the function f (z) on Ω.

The coefficients (pk)
N
k=0 and (qr)

M
r=1 of the rational function R (z) are determined

by applying to the function f (z) the interpolation procedure on the set of nodes
zj ∈ Γ, j = 1, N +M + 1:

R (zj) = fj, j = 1, N +M + 1. (2)

The interpolation conditions (2) are written in linearized form (1) or explicitly in
the following form

N
∑

k=0

pk (zj)
k − f (zj)

M
∑

r=1

qr (zj)
r = f (zj) , j = 1, N +M + 1. (3)

Relations (3) represent a system Aᾱ = b̄ that contains N +M + 1 linear algebraic
equations and N +M + 1 unknowns. If we consider the vector of the unknowns in
the form ᾱ = (p0, p1, ..., pN , q1, ..., qM )T , then the lines of the coefficient matrix of
the system can be written in the form

(

1, zj, (zj)
2 , ... , (zj)

N ,−f (zj) zj ,−f (zj) (zj)
2 , ... ,−f (zj) (zj)

M
)

,

and the right member of the system b̄ = (f1, ..., fM+N+1)
T .

Thereafter, we determine the M zeros of the polynomial QM (z) =
∑M

r=0 qrz
r,

where q0 = 1, and q1, ..., qM are the last M components of the solution ᾱ to the
system (3).

Since the polynomial equation QM (z) = 0 can have multiple roots, and standard
iterative methods such as the Newton method are not well suited for calculating
multiple roots (numerical accuracy may be low), we intend to apply a specialized
algorithm [9]. This algorithm ensures high accuracy in calculating the roots of
polynomial equations, including for multiple roots and their multiplicities. The
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algorithm is derived from the following considerations. Since the multiple zeros of
the polynomial QM (z) are also zeros of the polynomial Q′

M (z) (here Q′

M (z) is the
derivative of QM (z)), it follows that all the multiple zeros of the polynomial QM (z)
are zeros of the polynomial GCD (z), that is the greatest common divisor of the
polynomials QM (z) and Q′

M (z). Therefore, if the polynomial QM (z) is divided by
the GCD (z), then a polynomial q (z) is obtained, that has M simple zeros that
coincide with the zeros of QM (z). Thus, for finding the roots of the polynomial
equation QM (z) = 0 the following algorithm can be applied:

1. Determine the derivative Q′

M (z) of the polynomial QM (z).

2. Determine the greatest common divisor GCD (z) of the polynomials QM (z)
and Q′

M (z) by applying Euclid’s algorithm for polynomials.

3. Determine the polynomial q (z) by dividing QM (z) by GCD (z).

4. Determine the roots z̃k, k = 1,M1 (M1 ≤M) of the polynomial equation
q (z) = 0, applying a standard iterative method (such as Newton). The ob-
tained values for roots are equal to distinct roots of the equation QM (z) = 0.

5. Establish the multiplicities of the roots z̃k of the equation QM (z) = 0, com-
paring the absolute values of the polynomial QM (z) and its derivative at the
points z̃k with a sufficiently small value δ2 > 0:

nQ := ‖QM (z)‖2; vQ := |QM (z̃k)|;
m := 0;
while vQ < nQ ∗ δ2
QM (z) := Q′

M (z); vQ := |QM (z̃k)|; m := m+ 1;
end

We consider that the contour Γ is defined, using the Riemann mapping z = ψ (w),
which performs a conformal map of the outside of the circle Γ0 on the outside of Γ
such that ψ (∞) = ∞, ψ′ (∞) > 0. It is known that the function ψ (w) transforms
the unit circle Γ0 onto the contour Γ.

The method for the localization of singular points of the function f (z), based
on the approximation by interpolation with a rational function R (z), can also be
applied to localize the discontinuity points of the function f (z) on Γ. But numer-
ical experiments show that, unlike when we have only poles, higher values for the
parameter M are needed to find the discontinuity points.

The simplest approach in computing the number of poles M of the function
f (z) is to check the results generated for different values M , starting with a certain
value that is incremented if the previous result is not satisfactory. But if we take into
account that the problem of numerical computation of the solution to the system (3)
is generally poorly conditioned, amplifying the degree M of the polynomial QM (z)
usually leads to the appearance of spurious poles. However, most of the spurious
poles can be removed by applying the residual analysis procedure [10], according to
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which the spurious poles have residues that differ significantly from the residues of
the true poles (residues are very small or much larger than those for true poles).
Example 1. Consider the Riemann function z = ψ (w) that performs the conformal
map of the set {w ∈ C : |w| > 1} on the domain Ω− from the outside of the contour
Γ and ψ (w) = w+ 1

/ (

3w3
)

. Thus, ψ (w) transforms the circle Γ0 on the astroid Γ.

The function of a complex variable f (z) is defined as follows:

f (z) =
cos (2z)

(z − zc1) (z − zi1) (z − ze1) (z − ze2)
,

where zc1 = ψ (1) , zi1 = 0.2, ze1 = ψ
(

1.5eπi/6
)

, ze2 = ψ
(

−1.2e2πi/5
)

are four
simple poles (one inside Γ, one on the contour Γ and two poles outside Γ) of f (z),
i2 = −1.

We consider that there are given values fk of the examined function f (z) at the
points

zk = ψ
(

ρeiθk

)

∈ Γρ, θk = 2π (k − 1) /m, m ∈ N, m ≥ N +M + 1, k = 1, ...,m,

where N and M are the degrees of the polynomials PN (z) and, correspondingly,
QM (z), which define the rational function R (z). The approximations we obtained
for the poles of the function f (z) are presented in Figure 1 and Table 1. Here we
use the values N = 9, M = 5, ρ = 1.01.

Figure 1: Approximations of the poles in Example 1

Also, the algorithm generated a spurious pole -1.3637 + 1.2430i, which can be
easily detected and eliminated, taking into account that its residue differs signifi-
cantly from the residues of the other determined poles (see Table 1).
Example 2. The Riemann function z = ψ (w) that transforms the circle Γ0 on
the astroid Γ =

{

z ∈ C | z = ψ (w) = w + 1
/ (

3w3
)

, w ∈ Γ0

}

coincides with that in
Example 1.
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Approximations of the poles Pole residues

-1.3637 + 1.2430i 0.0029

1.2992 + 0.6523i 0.9467

1.3333 - 0.0000i 0.6014

-0.2148 - 1.2547i 0.9640

0.2001 - 0.0001i 0.4815

Table 1: The approximations obtained in Example 1

The function of a complex variable f (z) is defined as follows:

f (z) =

{

z−2i

(z−zi1)(z−zc1)(z−zc2)
2(z−ze1)

2 if θ ∈ [0, ζ1]

−2 cos (z) if θ ∈ (ζ1, 2π]
,

where ζ1 = 8π/5, zi1 = 0.2, zc1 = ψ
(

eπi/8
)

, zc2 = ψ
(

e9πi/7
)

, ze1 = ψ
(

1.5eπi/4
)

.
The function f (z) has a simple pole zi1 inside Γ, a pole of the second order ze1
outside Γ and two poles zc1 (simple) and zc2 (of second order) on the contour Γ, as
well as two jump discontinuity points on Γ pc1 = ψ

(

eiζ1
)

, pc2 = ψ (1) (see Figure
2).

Values fk of the function f (z) are calculated at the same points zk, k = 1, ...,m
belonging to the contour Γρ from Example 1.

The convergence rate of the examined localization algorithm decreases due to
the discontinuity points. If the parameter M , defining the degree of the polynomial
QM (z), is incremented, starting from relatively small values, then the algorithm
first generates approximations of the poles inside and on the contour, after that it
generates two convergent sequences to the discontinuity points, thereafter, starting
with a certain value of M , it generates approximations for the pole from outside
of Γ. A relatively good approximation for all singular points is obtained for values
N = 16, M = 16, ρ = 1.01 (see Figure 2). For each of the second-order poles of the
function f (z), i.e. zc2 belonging to the contour and ze1 outside the contour, the
algorithm generates two approximations (see Table 2). Also, our algorithm generates
spurious poles (see Figure 2), which can be eliminated by residual analysis. From
the Table 2 we see that at least the residue of the pole -0.8276 + 0.2296i differs
significantly from the residues of the other determined poles.

3 Estimating the number of poles

The examined algorithm for the localization of singular points, based on the ap-
proximation with rational functions, generates M approximations of the poles of
the function f (z) on domain Ω. Since at the amplification of parameter M the
algorithm can generate more and more spurious poles, then an a priori estimation
of the number s of true poles (taking into account their multiplicities) of f (z) on
domain Ω is required. If we test the values of the parameter M near the previously
determined estimate, then we establish more quickly the poles and the discontinuity
points of the function f (z).
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Figure 2: Approximations of the poles and discontinuity points in Example 2

Approximations of the poles Pole residues

0.9908 + 0.9908i 1.069045569935890
0.9908 + 0.9908i 0.329150712708455
1.3360 + 0.0174i 0.016362612794167
1.2882 - 0.0409i 0.027456267135328
1.2295 + 0.0276i 0.032115463246755
0.0876 - 1.0569i 0.000000000273882
1.0566 - 0.0906i 0.005886863566123
1.0562 + 0.0865i 0.004647200386463
-0.8276 + 0.2296i 0.000000000000002
0.7768 - 0.2438i 0.000183044099354
0.2438 - 0.7767i 0.000000083813791
0.7060 + 0.2708i 2.881652529236829
-0.3232 - 0.6372i 1.388868211647166
-0.3232 - 0.6372i 0.536456894220026
0.4854 - 0.4854i 0.000005156848587
0.2000 - 0.0000i 3.206014132656694

Table 2: The approximations obtained in Example 2

Therefore, consider the matrix B of order t× t (t = m+N + 1)

B =











1 z1 · · · (z1)
N −f (z1) z1 · · · −f (z1) (z1)

m

1 z2 · · · (z2)
N −f (z2) z2 · · · −f (z2) (z2)

m

...
...

. . .
...

...
. . .

...

1 zt · · · (zt)
N −f (zt) zt · · · −f (zt) (zt)

m











,

that is obtained from the coefficient matrix of the system of equations (3) by replac-
ing there M by m.

Let s1 and s2 be values that mean the number of poles of the function f (z) on
Ω+ ∪Γ and, respectively, on Ω− ∪ Γ, where Ω+ (Ω−) is the domain inside (outside)
the contour Γ. The algorithm that computes an estimate for the number of poles s
of the function f (z) on domain Ω is based on the statement that the determinant
of the considered matrix B is approximately zero for values m > s1 + s2, and for
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m = s1 + s2 it takes the value |det (B)| > δ, where δ > 0 is a parameter for defining
a non-zero value.

Thus, we define a parameter m > 0 that means an estimate of the number s1+s2,
i.e. the number of poles inside and outside the contour Γ plus twice the number of
poles and discontinuity points on Γ. If for the initial value m we have the nonzero
determinant, then we consider a higher value for m. For values m,m− 1,m − 2, ...
we compute the determinants of the matrix B of order (m+N + 1)× (m+N + 1),
until we have detB 6= 0. A relatively small parameter δ > 0 must be used to evaluate
the last condition, for example, δ = 10−3. The first value of the parameter m for
which detB 6= 0, represents the evaluation of the number s1 + s2.

Numerical experiments show that the accuracy of the result depends on the value
of the parameters N ≥ m and δ as well as on the presence of multiple poles and
discontinuity points.

However, this approach does not determine the number of singular points of
f (z) on domain Ω, but the estimate of the number s1 + s2. If we want to evaluate
the number of singular points on domains Ω+ ∪ Γ and Ω− ∪ Γ, then we can apply
the Laurent-Padé approximation algorithm, that is examined in [4]. It generates
m1 + m2 approximations of the poles of the function f (z) on Ω, where m1 is the
estimate of the number of poles s1 belonging to the domain Ω+ ∪ Γ, and m2 is the
estimate of the number of poles s2 belonging to Ω− ∪ Γ. To find an approximation
of the value s1, the algorithm computes the determinants of the matrix

C =











cN1 cN1−1 · · · cN1−(m1−1)

cN1+1 cN1 · · · cN1−(m1−2)
...

...
. . .

...
cN1+m1−1 cN1+m1−2 · · · cN1











,

starting from a value m1 and decrementing it until the absolute value of the deter-
minant becomes greater than a relatively small value δ > 0. Elements of the matrix
C are approximations of the coefficients ck = 1

2πi

∫

Γ f (z) z−k−1dz from the Laurent
series expansion for the function f (z).

Thus, for different values of the parameter m1 the determinants of the matrix C
are computed and the number of poles of the function f (z) belonging to the domain
Ω+ ∪ Γ is estimated. Subsequently, the resulting value m1 is subtracted from the
estimation of the number s1 + s2, which is calculated from the determinants of the
matrix B. The result is the estimate of the number of singular points on Ω− ∪ Γ.

Applying the described algorithm to estimate the number of singular points of
the function examined in Example 2 with the initial parameters ρ = 1.01, δ =
0.001, m = 20, N = 25, we obtain s1 + s2 = 13, m1 = 6, m2 = 7.

4 Localization of singular points based on approximation by piece-

wise interpolation with rational functions

For functions of a real variable it is known that if the approximation interval is
small enough, then the continuous function on this interval can be approximated
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well enough, using a small degree (1, 2 or 3) interpolation polynomial. This idea
underlies the piecewise polynomial approximation, according to which the interval
of definition of the function is divided into short length subintervals, and on each of
the subintervals consisting of a small number of nodes, the function is approximated
with an interpolation polynomial.

In this section we approximate the function f (z), defined on a simple closed
contour in the complex plane, with a piecewise rational function. This approach
allows us to establish the multiple poles and discontinuity points that belong to the
contour Γ, by using small-order rational functions (i.e. with polynomials PN (z) and
QM (z) of small degree), thus avoiding the generation of spurious poles.

To perform the steps of the algorithm it is necessary to know the values of the
function f (z) at T := (N +M)m+1 points zj ∈ Γρ. For a given valuem ∈ N, we di-
vide the contour Γρ intom arcs Γρ

j := arc
(

z(N+M)(j−1)+1, z(N+M)j+1

)

. The curve arc
Γρ

j , j ∈ {1, ...,m} contains the points z(N+M)(j−1)+1, z(N+M)(j−1)+2, ..., z(N+M)j+1.

The piecewise rational function on the contour Γ is defined as follows. On each

arc Γρ
j , j ∈ {1, ...,m} we consider the rational function RΓj (z) := P

Γj

N (z)
/

Q
Γj

M (z),

where N and M (N ≥M) take small values, usually, N,M ∈ {2, 3}. The coef-
ficients of the functions RΓj (z) , j = 1,m are determined by using the following
interpolation conditions:

RΓj (zi) = f (zi) , zi ∈ Γρ
j , i ∈ Ij, (4)

where Ij := {(M +N) (j − 1) + 1, ..., (M +N) j + 1}. For j = 1,m conditions (4)
are written in linearized form

f (zi)Q
Γj

M (zi) − P
Γj

N (zi) = 0, zi ∈ Γρ
j , i ∈ Ij.

But if we take into account the representations for the polynomials P
Γj

N (z) =
∑N

k=0 p
(Γj)
k zk, Q

Γj

M (z) = 1 +
∑M

r=1 q
(Γj)
r zr, we can write the last conditions in the

explicit form

N
∑

k=0

p
(Γj)
k (zi)

k − f (zi)

M
∑

r=1

q
(Γj)
r (zi)

r = f (zi) , zi ∈ Γρ
j , i ∈ Ij. (5)

Thus, for each j ∈ {1, ...,m} the relation (5) is a system of N+M+1 linear algebraic
equations with N +M + 1 unknowns.

For j = 1,m we determine the solution
(

p
(Γj)
0 , p

(Γj)
1 , ..., p

(Γj)
N , q

(Γj)
1 , ..., q

(Γj)
M

)T

of

the corresponding system (5). The components q
(Γj)
1 , ..., q

(Γj)
M are the coefficients of

the polynomial Q
Γj

M (z) = 1 +
∑M

r=1 q
(Γj)
r zr, z ∈ Γρ

j . Considering the concatenation

of all zeros of the polynomials Q
Γj

M (z) on the arcs Γρ
j , j = 1,m, we obtain the

approximations of the poles and of the discontinuity points of the function f (z) on
the contour Γ.



LOCALIZATION OF SINGULAR POINTS OF MEROMORPHIC FUNCTIONS ... 119

Next we describe a simple method for computing the zeros of polynomial Q
Γj

M (z)
on the arc Γρ

j . Let consider the set of polar angles

Θj :=
{

{θr}r=1,n2
: θr := θ(N+M)(j−1)+1 + r

(

θ(N+M)j+1 − θ(N+M)(j−1)+1

) /

n2

}

,

which form a grid of n2 equidistant points on
[

θ(N+M)(j−1)+1, θ(N+M)j+1

]

, where
θ(N+M)(j−1)+1 is the polar angle corresponding to the endpoint z(N+M)(j−1)+1 of the
arc Γρ

j and θ(N+M)j+1 is the polar angle corresponding to other endpoint z(N+M)j+1.

On each arc Γρ
j , j = 1,m we consider the set

Tj :=
{

z̃r ∈ Γρ
j : z̃r = ψ

(

ρeiθr

)

, r = 1, n2, θr ∈ Θj

}

,

that includes a sufficiently large number n2 of points from Γρ
j and covers uniformly

the arc Γρ
j . For each zero z̃k of the polynomial Q

Γj

M (z), determined with algorithm
described in previous section, we evaluate its distance to the elements of the set
Tj. If in Tj there is an element tk such that |tk − z̃k| < δ1, where δ1 > 0 is a
sufficiently small value, then we consider that z̃k belongs to the arc Γρ

j and we check
the multiplicity of the zero z̃k, which defines the order of the corresponding pole. If
the function f (z) has poles of multiplicity greater than the considered value M , then
our algorithm can establish the existence of multiple poles, but it can not determine
correctly their multiplicity.
Example 3. Determine the poles and discontinuity points that belong to the con-
tour Γ considering the same initial data as in Example 2. The obtained approx-
imations for the poles of the function f (z) with values M = N = 2, ρ = 1.01,
m = 125, δ1 = 0.01, δ2 = 0.001 are presented in Figure 3 and Table 3.

Figure 3: Approximations of the poles and discontinuity points in Example 3

This work is an outcome of research activity performed as a part of the project
20.80009.5007.13 ”Deterministic and stochastic methods for solving optimization
and control problems”.
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Approximations of the poles Multiplicities established for poles

1.044744+0.093004i 1

0.706012+0.270767i 1

-0.323168-0.637221i 2

0.050366-1.150733i 1

Table 3: The approximations obtained in Example 3
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Review, 2013, 55, no. 1, 101–117.

Maria Capcelea, Titu Capcelea

Moldova State University
E-mail: mariacapcelea@yahoo.com,

titu.capcelea@gmail.com

Received May 25, 2021


