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Numerical simulation of nonlinear processes in

semiconductor devices with the application of the
Newton’s method for linearization

Galina Sprincean

Abstract. This article relates to the use of Newton’s method and Scharfetter–
Gummel scheme, to linearize and discretize the equations, for numerical modeling of
nonlinear processes in semiconductor devices. The mathematical model of the problem
represents a system of nonlinear differential equations, in the unknowns ϕ–electrostatic
potential, n, p–the concentrations of electrons and holes, respectively. The problem
is further complicated by the fact that the boundary conditions are of two types: the
Dirichlet conditions and the Neumman conditions, which act on different portions
of the boundary. The subproblems that were solved in this paper: linearization of
nonlinear differential equations, using Newton’s method; discretization of equations,
using Scharfetter–Gummel scheme. The obtained systems have five diagonal and
nonsymmetrical matrices. The numerical method of Bi–Conjugate Gradients was
used to solve the systems.
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Simulation of semiconductor devices has been and remains to be a current prob-
lem, with a wide range of application results, obtained from experiments on the
simulation models.

The simulation of semiconductor devices involves several steps: the mathematical
formulation of the problem, the discretization of nonlinear differential equations, the
linearization of nonlinear equations, solving the algebraic systems.

The mathematical formulation of semiconductor devices is described extensively
in the literature [1,2]. The discretization steps and solving of the algebraic systems
will be briefly described in this article.

1 Mathematical formulation of the semiconductor device problem,
based on the Drift–Diffusion Model (DDM)

We consider one of the models of a semiconductor diode (Figure 1). A diode
consists of two regions, with different types of doping: the hole area (p–type area),
with a dominant concentration of holes and the electron area (n–type area), with a
dominant concentration of electrons.
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Figure 1. Two-dimensional represen-

tation of the semiconductor diode

The anode electrode is connected to the
p–type area and the cathode is connected to
the n–type area. Impurities, added to the
semiconductor material, determine the type
of conductivity of each area. In semiconduc-
tor physics the concentration of impurities is
denoted by N. The function

N(x1, x2) = N+
D (x1, x2) − N−

A (x1, x2) m−3

defines the profile of impurities and is ex-
pressed by the concentration of ionized
donors and acceptors, denoted by N+

D and
N−

D , respectively. The negative value of
N(x1, x2) is determined by the dominance of
boron acceptor atoms (p–type semiconduc-
tor) and a positive value is determined by
the domination of phosphorus donor atoms
(n–type semiconductor).

The mathematical formulation, of the
semiconductor device problem, is described
extensively in the literature [1–3]. One of
the mathematical models is given by a set
of equations with three unknown functions:
ϕ–the electrostatic potential, n, p–the con-

centrations of electrons and holes, respectively. The functions ϕ, n, p satisfy the
following system of nonlinear differential equations:

−∇ · (ε∇ϕ) = q(p − n + N); (1.1)
−∇ · (Jn) = −q(RSRH + RAUG); (1.2)
∇ · (Jp) = −q(RSRH + RAUG); (1.3)

Jn = qµnnE + qDn∇n; (1.4)
Jp = qµppE − qDp∇p; (1.5)

E = −∇ϕ. (1.6)

Here E is the intensity vector of electric field, ε is the dielectric constant, q is the
(positive) electron charge (q = 1.602176565 · 10−19 C), Dn and Dp are the electron
and hole coefficients of diffusion, N is the so-called doping profile, Jn and Jp are the
electron and hole current densities, RSRH , RAUG represent the Shockley-Hall and
Auger recombination rates, µn, µp are the electron and hole carrier mobilities.

Also ε = εr · ε0 is the absolute permitivity (dielectric constant), εr is the relative
permittivity, ε0 is the electrical constant (ε0 = 8.854187817 · 10−12 F · m−1), n and
p are the concentrations of electrons and holes, ni is the concentration of electrons
and holes in its own semiconductor; ϕT = kBT/q is thermal voltage, kB is constant
of Boltzmann (kB = 1.3806488 · 10−23J/K) and T is temperature (K).
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Connections, between diffusion coefficients Dn, Dp and mobilitie µn, µp, for
electrons and holes, respectively, are given by Einstein relations:

Dn/µn = (kBT )/q = ϕT , Dp/ϕp = (kBT )/q = ϕT (1.7)

Any diode is made of silicon. The input parameters of the problem have the
following values: ni = 1.46 · 1016 m−3, µn = 0.08 m2/(V · s), µp = 0.02 m2/(V · s),
εr = 11.8, ϕT = 0.026V at room temperature T = 300K.

The functions RSRH and RAUG are defined by the following formulas:

RSRH(n, p) =
(pn − n2

i )

((τp(n + ni) + τn(p + ni))
, (1.8)

RSRH(n, p) = (pn − n2
i )(Cnn + Cpp)

here τn and τp signify the times of existence of the carriers
(τn = τp = 0.1 · 10−6 s); Cn and Cp are Auger coefficients (Cn = 1.1 · 10−42 m6s−1,
Cp = 0.3 · 10−42m6s−1, at T = 300K). The function N, in the field of search for the
solution, is represented by the Gaussian function G:

N = NDn + NDnmaxG(x1,−x2,∞, lx2 , α) − NApmax
G(x1, x2, la, 0, α) (1.9)

here NDn is the alloying epitaxial layer of the semiconductor, NDnmax is the alloying
substrate, NApmax is the maximum value of implantation of the diffusion profile, G
is the Gaussian function [5].

G(x1, x2, a, b, α) =

=















exp[−((x1 − a)/α)2] · exp[−((x2 − b)/α)2], x1 > a, x2 > b
exp[−((x1 − a)/α)2], x1 > a, x2 6 b
exp[−((x2 − b)/α)2], x1 6 a, x2 > b
1, x1 6 a, x2 6 b

(1.10)

Figure 2. The surface of the Gaussian

function for a = 2 ·10−6, b = 1 ·10−6,

α = 2 · 10−6

The constants in formula (1.9), in the
field of search for the solution
(Figure 2), have the following values:

NDn
= 1017m−3,

NDnmax
= 1019m−3,

NApmax = 1019m−3,
α = 0.5 · 10−6m,
lx1 = 5 · 10−6m,
lx2 = 7 · 10−6m,
la = 2 · 10−6m,

li = lj = 1 · 10−6m.

Boundary conditions

It is considered that the cathode is con-
nected to ground (Vc = 0) and an external
voltage Va > 0 is applied to the anode. Then
on the boundary ΓD (thicker boundary), the
functions ϕ, n, p satisfy the relations:
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ϕ(x̄) = Va + ϕT ∗ ln
(

(N +
√

N2 + 4n2
i )/(2ni)

)

;

n(x) =
(

N +
√

N2 + 4n2
i

)

/2; p(x̄) =
(

−N +
√

N2 + 4n2
i

)

/2, x̄ ∈ ΓD. (1.11)

On the ΓN (less thickened boundary) the boundary conditions have the form of
Neumann conditions:

n̄ · ∇ϕ = ∂ϕ/∂n = 0; n̄ · J̄n = 0; n̄ · J̄p = 0, x̄ ∈ ΓN , (1.12)

Initial conditions

In the absence of external voltage on the anode (Va = 0), the solution of the
problem, on the whole surface Ω, has the form of the conditions (1.11) with Va = 0.

This solution can be used as an initial approximation of the system solution
(1.1)–(1.6), using an iterative method, with the gradual increase of the external
voltage, applied to the anode.

2 Discretization of nonlinear differential equations with the appli-
cation of finite differences and the Scharfetter–Gummel scheme

In the field of problem definition (1.1) – (1.3), a grid step is inserted: hx1(horizon-
tal step) and hx2 (vertical step). Thus, a network of internal nodes is obtained, we

denoted: Ωh = {(x
(i)
1 , x

(j)
2 ), where

x
(i)
1 = (i − 1) ∗ hx1 , x

(j)
2 = (j − 1) ∗ hx2.

Figure 3. Location of the internal

nodes in the network

By Ω = {(x
(i)
1 , x

(j)
2 )} we denote the set of

all nodes (internal and boundary nodes Ω =
Ωh
⋃

ΩD
⋃

ΩN ), where ΩD is the network of
nodes, covering the portion of the boundary to
which the anode and cathode are connected and
on which the Dirichlet conditions act, ΩN is the
network of nodes, covering the remaining part of
the boundary, on which the Neumann conditions
act.

Using the theory of finite differences, in
the equations (1.1) – (1.3) we discretized elec-
trostatic potential (ϕ), electron concentrations
(n), hole concentrations (p) in entire nodes:

(x
(i)
1 , x

(j)
2 ) with

x
(i)
1 = (i − 1)h1, x

(j)
2 = (j − 1)h2 and the

densities of electron and hole currents Jn, Jp in

the seminodes: (x
(i−1/2)
1 , x

(j)
2 ), (x

(i+1/2)
1 , x

(j)
2 ), (x

(i)
1 , x

(j−1/2)
2 ), (x

(i)
1 , x

(j+1/2)
2 ) with

x
(i−1/2)
1 = (i − 1/2)h1, x

(i+1/2)
2 ) = (i + 1/2)h1, x

(j−1/2)
2 = (j − 1/2)h2,

x
(j+1/2)
2 = (j + 1/2)h2,
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Applying the finite differences, the three algebraic systems are obtained, having
the order ((NN − 1) × (MM − 1)), from the differential equations (1.1) – (1.3):

(

2ǫ

h2
x1

+
2ǫ

h2
x2

)

ϕi,j −
ǫ

h2
x1

ϕi+1,j −
ǫ

h2
x1

ϕi−1,j −
ǫ

h2
x2

ϕi,j+1 −
ǫ

h2
x2

ϕi,j−1 =

= (pi,j − ni,j + Ni,j) (1.13)

−

(

Jn i+1/2,j − Jn i−1/2,j

hx1

+
Jn i,j+1/2 − Jn i,j−1/2

hx2

)

=

= −q

(

ni,jpi,j − n2
i

τp (ni,j + ni) + τn (pi,j + ni)
+
(

ni,jpi,j − n2
i

)

(Cnni,j + Cppi,j)

)

(1.14)

(

Jp i+1/2,j − Jp i−1/2,j

hx1

+
Jp i,j+1/2 − Jp i,j−1/2

hx2

)

=

= −q

(

ni,jpi,j − n2
i

τp (ni,j + ni) + τn (pi,j + ni)
+
(

ni,jpi,j − n2
i

)

(Cnni,j + Cppi,j)

)

. (1.15)

For systems (1.14), (1.15), applying the Scharfetter–Gummel scheme [6,7,9], the
following nonlinear algebraic system are obtained, the number of equations coincides
with the number of internal nodes ((NN − 1) ∗ (MM − 1)):

(

(

µnϕτB

(

ϕi,j − ϕi+1,j

ϕτ

)

+ µnϕτB

(

ϕi,j − ϕi−1,j

ϕτ

))

/

h2
x1,i+

+

(

µnϕτB

(

ϕi,j − ϕi,j+1

ϕτ

)

+ µnϕτB

(

ϕi,j − ϕi,j−1

ϕτ

))

/

h2
x2,j

)

∗ ni,j−

−

((

µnϕτB

(

ϕi,j − ϕi+1,j

ϕτ

))

/

h2
x1,i

)

∗ ni+1,j−

−

((

µnϕτB

(

ϕi,j − ϕi−1,j

ϕτ

))

/

h2
x1,i

)

∗

∗ni−1,j −

((

µnϕτB

(

ϕi,j − ϕi,j+1

ϕτ

))

/

h2
x2,j

)

∗ ni,j+1−

−

((

µnϕτB

(

ϕi,j − ϕi,j−1

ϕτ

))

/

h2
x2,j

)

∗ ni,j−1 =

= −q

(

(

ni,jpi,j − n2
i

τpni,j + ni

)

+ τn(pi,j + ni) +
(

ni,jpi,j − n2
i

)

(Cnni,j + Cppi,j)

)

(1.16)

(

(

µpϕτB

(

ϕi+1,j − ϕi,j

ϕτ

)

+ µpϕτB

(

ϕi−1,j − ϕi,j

ϕτ

))

/

h2
x1,i+
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+

(

µpϕτB

(

ϕi,j+1 − ϕi,j

ϕτ

)

+ µpϕτB

(

ϕi,j−1 − ϕi,j

ϕτ

))

/

h2
x2,j

)

∗ pi,j−

−

(

(

µpϕτB

(

ϕi+1,j − ϕi,j

ϕτ

))

/

h2
x1,i

)

∗ pi+1,j−

−

(

µpϕτB

(

ϕi−1,j − ϕi,j

ϕτ

))

/

h2
x1,i

)

∗

∗pi−1,j −

(

(

µpϕτB

(

ϕi,j+1 − ϕi,j

ϕτ

))

/

h2
x2,j

)

∗ pi,j+1−

−

(

(

µpϕτB

(

ϕi,j−1 − ϕi,j

ϕτ

))

/

h2
x2,j

)

∗ pi,j−1 =

= −q

(

(

ni,jpi,j − n2
i

τpni,j + ni

)

+ τn(pi,j + ni) + (ni,jpi,j − n2
i )(Cnni,j + Cppi,j)

)

(1.17)

where B(x) =
x

ex − 1
is the function of Bernoulli.

3 Linearization of differential equations using the Newton’s method

Denote by ϕ(ex)(x1, x2) the exact solution of the system (1.13), with ϕ(old)(x1, x2)–
the system solution, calculated at the previous iteration, ϕ(new)(x1, x2)–the solution
calculated at the current iteration and δϕ(x1, x2)–the error;
with n(ex)(x1, x2)–the exact solution of the system (1.16), n(old)(x1, x2)–the system
solution calculated at the previous iteration, n(new)(x1, x2)–the system solution cal-
culated at the current iteration, and δn(x1, x2)–the error;
with p(ex)(x1, x2)–the exact solution of the system (1.17), p(old)(x1, x2)–the system
solution calculated at the previous iteration, p(new)(x1, x2)–the system solution cal-
culated at the current iteration and δp(x1, x2)–the error. Then we have the following
expressions:

ϕ(new)(x1, x2) = ϕ(old)(x1, x2) + δϕ(x1, x2) (1.18)
n(new)(x1, x2) = n(old)(x1, x2) + δn(x1, x2) (1.19)
p(new)(x1, x2) = p(old)(x1, x2) + δp(x1, x2) (1.20)

Substituting (1.18) – (1.20) in the systems (1.13), (1.16), (1.17), respectively and
using Gummel technique [5], the three linear algebraic systems are obtained, having
the order ((NN − 1)× (MM − 1)), from differential equation (1.1) – (1.3), separate
from the other two, in the unknowns δϕ(x1, x2), δn(x1, x2), δp(x1, x2), respectively:

(

2ǫ

h2
x1

+
2ǫ

h2
x2

)

δϕ,i,j −
ǫ

h2
x1

δϕ,i+1,j −
ǫ

h2
x1

δϕ,i−1,j −
ǫ

h2
x2

δϕ,i,j+1 −
ǫ

h2
x2

δϕ,i,j−1 =

= −

(

2ǫ

h2
x1

+
2ǫ

h2
x2

)

ϕ
(old)
i,j +

ǫ

h2
x1

ϕ
(old)
i+1,j +

ǫ

h2
x1

ϕ
(old)
i−1,j +

ǫ

h2
x2

ϕ
(old)
i,j+1 +

ǫ

h2
x2

ϕ
(old)
i,j−1+

+q ∗ (p
(old)
i,j − n

(old)
i,j + Ni,j) (1.21)
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((

µnϕτB

(

ϕ
(old)
i,j − ϕ

(old)
i+1,j

ϕτ

)

+ µnϕτB

(

ϕ
(old)
i,j − ϕ

(old)
i−1,j

ϕτ

))

/

h2
x1,i+

+

(

µnϕτB

(

ϕ
(old)
i,j − ϕ

(old)
i,j+1

ϕτ

)

+ µnϕτB

(

ϕ
(old)
i,j − ϕ

(old)
i,j−1

ϕτ

))

/

h2
x2,j

)

∗ δn i,j−

−

((

µnϕτB

(

ϕ
(old)
i,j − ϕ

(old)
i+1,j

ϕτ

))

/

h2
x1,i

)

∗ δn i+1,j−

−

((

µnϕτB

(

ϕ
(old)
i,j − ϕ

(old)
i−1,j

ϕτ

))

/

h2
x1,i

)

∗ δn i−1,j−

−

((

µnϕτB

(

ϕ
(old)
i,j − ϕ

(old)
i,j+1

ϕτ

))

/

h2
x2,j

)

∗ δn i,j+1−

−

((

µnϕτB

(

ϕ
(old)
i,j − ϕ

(old)
i,j−1

ϕτ

))

/

h2
x2,j

)

∗ δn i,j−1 =

= −

((

µnϕτB

(

ϕ
(old)
i,j − ϕ

(old)
i+1,j

ϕτ

)

+ µnϕτB

(

ϕ
(old)
i,j − ϕ

(old)
i−1,j

ϕτ

))

/

h2
x1,i+

+

(

µnϕτB

(

ϕ
(old)
i,j − ϕ

(old)
i,j+1

ϕτ

)

+ µnϕτB

(

ϕ
(old)
i,j − ϕ

(old)
i,j−1

ϕτ

))

/

h2
x2,j

)

∗ n
(old)
i,j −

−

((

µnϕτB

(

ϕ
(old)
i,j − ϕ

(old)
i+1,j

ϕτ

))

/

h2
x1,i

)

∗ n
(old)
i+1,j+

+

((

µnϕτB

(

ϕ
(old)
i,j + ϕ

(old)
i−1,j

ϕτ

))

/

h2
x1,i

)

∗ n
(old)
i−1,j−

−

((

µnϕτB

(

ϕ
(old)
i,j + ϕ

(old)
i,j+1

ϕτ

))

/

h2
x2,j

)

∗ n
(old)
i,j+1−

−

((

µnϕτB

(

ϕ
(old)
i,j + ϕ

(old)
i,j−1

ϕτ

))

/

h2
x2,j

)

∗ n
(old)
i,j−1 − q

(

n
(old)
i,j p

(old)
i,j − n2

i

τpn
(old)
i,j + ni

+

+τn

(

p
(old)
i,j + ni

)

+
(

n
(old)
i,j p

(old)
i,j − n2

i

)(

Cnn
(old)
i,j + Cpp

(old)
i,j

)

(1.22)

((

µpϕτB

(

ϕ
(old)
i+1,j − ϕ

(old)
i,j

ϕτ

)

+ µpϕτB

(

ϕ
(old)
i−1,j − ϕ

(old)
i,j

ϕτ

))

/

h2
x1,i+

+

(

µpϕτB

(

ϕ
(old)
i,j+1 − ϕ

(old)
i,j

ϕτ

)

+ µpϕτB

(

ϕ
(old)
i,j−1 − ϕ

(old)
i,j

ϕτ

))

/

h2
x2,j

)

∗ δp i,j−
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−

(

(

µpϕτB

(

ϕi+1,j − ϕi,j

ϕτ

))

/

h2
x1,i

)

∗ δp i+1,j −

(

(

µpϕτB

(

ϕi−1,j − ϕi,j

ϕτ

))

/

h2
x1,i

)

∗

∗δp i−1,j −

(

(

µpϕτB

(

ϕi,j+1 − ϕi,j

ϕτ

))

/

h2
x2,j

)

∗ δp i,j+1−

−

(

(

µpϕτB

(

ϕi,j−1 − ϕi,j

ϕτ

))

/

h2
x2,j

)

∗ δp i,j−1 =

= −

((

µpϕτB

(

ϕ
(old)
i+1,j − ϕ

(old)
i,j

ϕτ

)

+ µpϕτB

(

ϕ
(old)
i−1,j − ϕ

(old)
i,j

ϕτ

))

/

h2
x1,i+

+

(

µpϕτB

(

ϕ
(old)
i,j+1 − ϕ

(old)
i,j

ϕτ

)

+ µpϕτB

(

ϕ
(old)
i,j−1 − ϕ

(old)
i,j

ϕτ

))

/

h2
x2,j

)

∗ p
(old)
i,j +

+

(

(

µpϕτB

(

ϕi+1,j − ϕi,j

ϕτ

))

/

h2
x1,i

)

∗ p
(old)
i+1,j +

(

(

µpϕτB

(

ϕi−1,j − ϕi,j

ϕτ

))

/

h2
x1,i

)

∗

∗p
(old)
i−1,j +

(

(

µpϕτB

(

ϕi,j+1 − ϕi,j

ϕτ

))

/

h2
x2,j

)

∗ p
(old)
i,j+1+

+

(

(

µpϕτB

(

ϕi,j−1 − ϕi,j

ϕτ

))

/

h2
x2,j

)

∗ p
(old)
i,j−1 − q ∗ (1.23)

∗

(

ni,jp
(old)
i,j − n2

i

τp

(

n
(old)
i,j + ni

)

+ τn

(

p
(old)
i,j + ni

) +
(

n
(old)
i,j p

(old)
i,j − n2

i

)(

Cnn
(old)
i,j + Cpp

(old)
i,j

)

)

where B(x) =
x

ex − 1
is the function of Bernoulli.

When we solve the systems (1.21)–(1.23) we can use the numerical methods, applicable
to systems with asymmetric matrices (Simple Iteration Method, Bi-Conjugate Gradient
Method) [4, 8] or to systems with predominant diagonal matrices (Gauss-Seidel Method,
Super Relaxation Method) [4].

Based on the solutions of the systems (1.21)–(1.23), the new values of the unknown
functions are recalculated, according to the relations (1.18)–(1.20).

In the nodes on the boundary, the values of the electrostatic potential, at the current
iteration ϕ(k+1), are approximated according to the boundary conditions (1.11), (1.12),
based on the system:











ϕ
(new)
1,j = ϕ

(new)
2,j , i=1, j=1..MM+1

ϕ
(new)
NN+1,j = ϕ

(new)
NN,j , i=NN+1, j=1..MM+1

ϕ
(new)
i,1 = ϕ

(new)
i,2 , i=1..NN+1, j=1, x

(i)
1 > la

Similarey, to the electrostatic potential, we calculat the boundary values of the concen-
trations of electron and hole n(new), p(new), at the current iteration.

The values of the unknown functions are recalculated, under the conditions of the ther-
modynamic equilibrium, with Va 6= 0, increased iteratively. Then the internal cycles are
resumed, to solve the three algebraic systems.

The iterative process lasts as long as the calculations remain stable, with the gradual
increase in voltage, applied to the anode.
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4 Numerical results with graphic representation

Solving the system (1.1)–(1.3), with the boundary conditions (1.11)–(1.12) was done by
writing a program in the Matlab. The obtained results were represented in Figure 4 – Figure
6. The initial numerical solutions, for the systems (1.13)–(1.15), are represented in Figure 4.
The recalculated values of the unknown functions, under the conditions of thermodynamic
equilibrium Va 6= 0, are represented in Figure 5. The graph in Figure 6 illustrates the
distribution of the functions ϕ, n and p, when applying, from outside to anode, the voltage
Va = 2.0 V and with a concentration of impurities N ≈ 1019 m−3.

Figure 4. Distribution of the potential ϕ, the concentrations of electrons n and holes

p, when applying to anode voltage Va = 0 and the concentration of impurities NDn =
1017 m−3, NDnmax

= 1019 m−3, NApmax
= 1019 m−3
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Figure 5. Distribution of the potential ϕ, the concentrations of electrons n and holes

p, under the conditions of thermodynamic equilibrium, when applying to anode volt-

age Va 6= 0 and the concentration of impurities NDn = 1017 m−3, NDnmax
=

1019 m−3, NApmax
= 1019 m−3



NUMERICAL SIMULATION OF NONLINEAR PROCESSES ... 107

Figure 6. Distribution of the potential ϕ, the concentrations of electrons n and holes

p, when applying to anode voltage Va = 2.0 V and the concentrations of impurities

NDn = 1017 m−3, NDnmax
= 1019 m−3, NApmax

= 1019 m−3



108 GALINA SPRINCEAN

References

[1] W. H. A. Schilders, E. J. W. ter Maten, Numerical Methods in Electromagnetics. Special

Volume of Handbook of Numerical Analysis., vol. XIII, ELSEVIER, Amsterdam. Guest (2005),
317–443.

[2] A. S. Grove, Physics and Technology of Semiconductor Devices. Bucharest: Editura Tehnică,
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