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classical domains ℜI (m, k) and ℜII (n)
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Abstract. In this paper, an analogue of Bremermann’s theorem on finding the
Bergman kernel is obtained for the Cartesian product of classical domains. For this
purpose, the groups of automorphisms of the considered domains are used, i.e., the
Bergman kernels are constructed for the Cartesian product of classical domains, with-
out applying complete orthonormal systems.
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1 Introduction, preliminaries and problem statement

In domains of C
n and in matrix domains of C [m × m], finding the kernels

of integral representations of holomorphic functions is a rather difficult problem
(see [1–3]). In classical theory, such kind kernels are usually constructed in bounded
symmetric domains (see [4, 5]). Some of these domains are classical domains and
matrix balls associated with classical domains. A number of problems were set for
these domains (see [3]): finding the transitive group of automorphisms in these ma-
trix balls, calculating the Bergman and Cauchy-Szegő kernels for these domains,
finding the Carleman formula, restoring the values of holomorphic functions in clas-
sical domains and in matrix balls from the values of the function on some boundary
sets of uniqueness (see [6–9]).

In homogeneous domains, automorphism groups are used for finding integral
formulas ([2, 10]). Domains with rich automorphism groups are often implemented
as matrix domains ([3, 4]). They are useful in solving various problems in function
theory. Writing out explicitly the transitive group of automorphisms of classical
domains and matrix balls associated with classical domains, a direct calculation can
be used to find the Bergman and Cauchy-Szegő kernels for these domains. And
then (using the properties of the Poisson kernel) we can find the Carleman formula,
which restores the values of holomorphic function in this domain from its values on
some boundary sets of uniqueness (see [11]). In this case, the scheme for finding
the Bergman and Cauchy-Szegő kernels from [4, 12] is used. In [13] the volumes of
a matrix ball of the third type and a generalized Lie ball are calculated. The total
volumes of these domains are necessary for finding the kernels of integral formulas
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for these domains (the Bergman, Cauchy–Szegő, Poisson kernels, etc.) (see, for
example, [7,8,14]). In addition, it is used for the integral representation of functions
holomorphic in these domains, in the mean value theorem and in other important
concepts. In [15] definitions of holomorphic and pluriharmonic functions are given
for classical domains of the first type by E. Cartan, the Laplace and Hua Luogeng
operators are studied and a connection is found between these operators.

Definition 1. The domain D ⊂ C
n is called homogeneous if the group Aut (D) of

automorphisms of this domain is transitive, that is, for any pair of points z1, z2 ∈ D

there exists an automorphism ϕ ∈ Aut (D) such that ϕ (z1) = z2.

Definition 2. The homogeneous domain D ⊂ C
n is called symmetric if for any

point ζ ∈ D there exists such an automorphism ϕ ∈ Aut (D) that:
1) ϕ (ζ) = ζ but ϕ (z) 6= z if z ∈ D is different from ζ;
2) ϕ ◦ ϕ = e, where e ∈ Aut (D) is the identity mapping.

Definition 3. The domain D ⊂ C
n is called an irreducible domain if it is not a

direct product of bounded symmetric domains of lower dimension.

Definition 4. The bounded domain D ⊂ C
n is called classical if the complete group

of its holomorphic automorphisms is a classical Lie group1 and it is transitive on D.

According to E. Cartan’s classification, there are four types of irreducible classical
domains (see [4, 16]):

ℜI (m,k) =
{

Z ∈ C [m × k] : I(m) − ZZ∗ > 0
}

,

ℜII (n) =
{

Z ∈ C [n × n] : I(n) − ZZ > 0, ∀Z ′ = Z
}

,

ℜIII (n) =
{

Z ∈ C [n × n] : I(n) + ZZ > 0, ∀Z ′ = −Z
}

,

ℜIV (n) =
{

z ∈ C
n :

∣

∣zz′
∣

∣

2
− 2z̄z′ + 1 > 0,

∣

∣zz′
∣

∣ < 1
}

,

here I(m) is the identity matrix of order m, Z∗ is the complex conjugate matrix
of the transposed matrix Z ′2 (H > 0 for a Hermitian matrix H means, as usual,
that H is positive definite). All these domains are homogeneous symmetric convex
complete circular domains centered at O (O is zero matrix).

If we write the elements of a matrix Z ∈ C [m × k] as a point in the space C
mk:

z = {z11, ..., z1k, z21..., z2k, ..., zm1..., zmk} ∈ C
mk, (1)

then we can assume that Z is an element of the space C
mk, i.e., we arrive at the

isomorphism
C [m × k] ∼= C

mk.

1See https://en.wikipedia.org/wiki/Lie group
2
Z

′ is transposed matrix of the matrix Z
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Therefore, the dimensions of the classical four domains above are equal, respectively,
to

mk,
m (m + 1)

2
,
m (m − 1)

2
, n.

The Bergman space on bounded symmetric domains is a fundamental concept
in the analysis. It is equipped with a natural projection, i.e. the Bergman projection,
determined by the property of reproducing nucleus. On the other hand, the weighted
Bergman spaces are also important in harmonic analysis (see, for example [17]).

Definition 5. [1] Let {ϕν (z) , ν = 0, 1, 2, ...} be a complete orthonormal system of
functions in L2 (D). The Bergman kernel (or kernel function3) KD

(

z, ζ̄
)

is the sum
of the series

∞
∑

µ=1

ϕν (z)ϕν (ζ) = KD

(

z, ζ̄
)

, (2)

which is holomorphic in z and antiholomorphic in ζ.

Let us present the following Bremermann’s theorem on finding the Bergman
kernel for the Cartesian product of two domains.

Theorem 1. [18] If Ω1,Ω2 ⊂ C
n are bounded domains, then the Bergman kernel

KD for the domain D = Ω1 × Ω2 has the following form

KD

(

w, z, ω̄, ζ̄
)

= KΩ1 (w, ω̄) · KΩ2

(

z, ζ̄
)

,

where KΩ1 (w, ω̄) and KΩ2

(

z, ζ̄
)

are the Bergman kernel for domains Ω1 and Ω2,
respectively.

For example (see [19]), using the Bergman kernel formula KU1

(

z, ζ̄
)

= R2

π(R−zζ̄)
2

for the circle U
1 = {z ∈ C : |z| < R} and using Theorem 1 we can find the Bergman

kernel

KUn

(

z, ζ̄
)

=
R2

1 · R
2
2 · ... · R

2
n

πn
(

R1 − z1ζ̄1

)2(
R2 − z2ζ̄2

)2
...

(

Rn − znζ̄n

)2 , (3)

for polydisk U
n = {z ∈ C

n : |z1| < R1, |z2| < R2, ..., |zn| < Rn}.
The following statement is true, for a circular domain.

Theorem 2. [4] If ℜ is a bounded circular domain, then the Bergman kernel for
the domain ℜ has the following form

K (z, z̄) =
1

V (ℜ)
A (z, z̄) , (4)

where V (ℜ) is the volume of the domain ℜ, and A (z, z̄) is the density of the volume
ℜ, and it is equal to the real Jacobian of the automorphism domain ℜ, which transfers
the point a to initial point.

3In classical Russian literature, the Bergman kernel is usually called the domain kernel function
(see, for example, [1, 19]). At the present time, such a term would not be very apt, since we have
three kernels (Bergman, Cauchy-Szegő and Poisson) that could bear this name.
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In other words, the Bergman kernel for any transitive circular region is equal to
the ratio of the volume density to the Euclidean volume of the domain (we recall that
if the domain D ⊂ C

n admits the transformation group z = eiθw, then we call D a
circular domain, if, in addition, with a point z, the point rz (0 ≤ r ≤ 1) also lies in
D, then we call D a complete circular domain). In Hua Luogeng’s book [4] one can
find explicit expressions for the Bergman kernel, the automorphism groups of the
domains ℜI (m,k) ,ℜII (n) ,ℜIII (n) and ℜIV (n). As the main result in this paper,
we introduce an analogue of the Bremermann theorem for finding the Bergman kernel
for the Cartesian product of the classical domains ℜI (m,k) ,ℜII (n). For this, the
groups of automorphisms of the considered domains are used, i.e., the Bergman
kernels for the Cartesian product of classical domains are constructed, being guided
only by this consideration and not using complete orthonormal systems.

2 The Bergman kernel for the Cartesian product of the classical

domains ℜI (m, k) and ℜII (n)

It is known [4] that the mapping

Φ1 = Q (W − P1)
(

I(k) − P ∗
1 W

)−1
R−1 (5)

is an automorphism of the domain ℜI (m,k) that sends the point P1 to the initial
point, where W ∈ ℜI (m,k) , and the matrices Q ∈ C [m × m] and R ∈ C [k × k]
satisfy the following conditions

Q
(

I(m) − P1P
′
1

)

Q′ = I(m), R
(

I(k) − P ′
1P1

)

R′ = I(k). (6)

Also the mapping

Φ2 = G (Z − P2)
(

I(n) − P 2Z
)−1

G
−1

(7)

is an automorphism of the domain ℜII (n) which transfers the point P2 to the ini-
tial point, where Z ∈ ℜII (n) and the matrix G ∈ C [n × n] satisfies the following
condition:

G
(

I(n) − P2P
′
2

)

G′ = I(n). (8)

Let the domain ℜ be defined as the Cartesian product of the classical domains
ℜI (m,k) and ℜII (n):

ℜ = ℜI (m,k) ×ℜII (n) = {(W,Z) : W ∈ ℜI (m,k) , Z ∈ ℜII (n)} ,

here

ℜI (m,k) =
{

W ∈ C [m × k] : I(m) − WW ∗ > 0
}

,

and

ℜII (n) =
{

Z ∈ C [n × n] : I(n) − ZZ > 0, ∀Z ′ = Z
}

.
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The skeleton X of the domain ℜ is the Cartesian product of the skeletons XI and
XII of the domains ℜI (m,k) and ℜII (n), i.e.

XI =
{

W ∈ C [m × k] : WW ∗ = I(m)
}

,

XII =
{

Z ∈ C [n × n] : ZZ = I(n), ∀Z ′ = Z
}

,

X = XI × XII .

Then from (5) and (7) we obtain the following statement:

Proposition 1. The mapping Φ = (Φ1,Φ2) , where Φ1 is of the form (5) and Φ2

is of the form (7) with conditions (6) and (8), is an automorphism of the domain
ℜ = ℜI (m,k) ×ℜII (n) transferring point P = (P1, P2) ∈ ℜ to the beginning point.

So, the following analogue of Bremerman’s theorem [18] on finding the Bergman
kernel for the Cartesian product of the classical domains ℜI (m,k) and ℜII (n) is
true.

Theorem 3. Let ℜI (m,k) and ℜII (n) be classical domains in spaces of variables
W ∈ C [m × k] and Z ∈ C [n × n], respectively, and ℜ = ℜI (m,k) ×ℜII (n), then

Kℜ

(

W,Z,W ,Z
)

= KℜI(m,k)

(

W,W
)

KℜII (n)

(

Z,Z
)

. (9)

Proof. From Proposition 1 we have an automorphism Φ = (Φ1,Φ2) for the domain
ℜ. First, differentiating (5), we have

dΦ1 = Q

[

dW ·
(

I(k) − P ∗
1 W

)−1
+ (W − P1) d

(

I(k) − P ∗
1 W

)−1
]

R−1.

Put W = P1. Then from (6) we have

dΦ1 = Q · dZ ·
(

I(k) − P ∗
1 P1

)−1
R−1 = Q · dW · R∗. (10)

Now let’s put:

W =









w11 w12 ... w1k

w21 w22 ... w2k

... ... ... ...

wm1 wm2 ... wmk









, Q =









q11 q12 ... q1m

q21 q22 ... q2m

... ... ... ...

qm1 qm2 ... qmm









,

R =









r11 r12 ... r1k

r21 r22 ... r2k

... ... ... ...

rk1 rk2 ... rkk









, Φ1 =









f11 f12 ... f1k

f21 f22 ... f2k

... ... ... ...

fm1 fm2 ... fmk









.

Then the identities (10) are equivalent to

dfsj =

k
∑

l=1

m
∑

i=1

qsidwilr̄lj , s = 1, 2, ..,m; j = 1, 2, .., k.
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From these properties it follows that

df11 ∧ df12 ∧ ... ∧ dfmk =
∏

s,j

k
∑

l=1

m
∑

i=1

qsidwilr̄lj, s = 1, 2, ..,m; j = 1, 2, .., k,

for a holomorphic mapping Φ1 = (f11, ..., fmk). Then

df11 ∧ df12 ∧ ... ∧ dfmk =

=
∏

s,j

(detQ)s · dw11 ∧ dw12... ∧ dwmk · (det R∗)j , s = 1, 2, ..,m; j = 1, 2, .., k,

i.e.,

df11 ∧ df12 ∧ ... ∧ dfmk = (detQ)m · (detR∗)k · dw11 ∧ dw12 ∧ ... ∧ dwmk =

= JC (Φ1) · dw11 ∧ dw12 ∧ ... ∧ dwmk,

where JC (Φ1) is a complex Jacobian and it is equal to

JC (Φ1) = (det Q)m · (detR∗)k.

Therefore, from condition (6) we have

Φ̇1 = |JC (Φ1)|
2Ẇ =

∣

∣

∣
(detQ)m · (detR∗)k

∣

∣

∣

2
Ẇ =

Ẇ

detm+n (I − WW ∗)
,

where Ẇ and Φ̇1 are volume elements.
Now differentiating (7), we have

dΦ2 = G

[

dZ ·
(

I(n) − P 2Z
)−1

+ (Z − P2) d
(

I(n) − P 2Z
)−1

]

G
−1

,

Setting Z = P2, from (8) we have

dΦ2 = G · dZ ·
(

I(n) − P 2P2

)−1
· G

−1
= G · dZ · G′. (11)

Now put:

Z =









z11 z12 ... z1n

z21 z22 ... z2n

... ... ... ...

zn1 zn2 ... znn









, G =









g11 g12 ... g1n

g21 g22 ... g2n

... ... ... ...

gn1 gn2 ... gnn









,

Φ2 =









h11 h12 ... h1n

h21 h22 ... h2n

... ... ... ...

hn1 hn2 ... hnn









.
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Then the identity (11) is equivalent to the following

dhsj =
n

∑

l=1

n
∑

i=1

gsidzilglj , s = 1, 2, .., n; j = 1, 2, .., n.

From these properties it follows that

dh11 ∧ dh12 ∧ ... ∧ dhnn =
∏

s,j

n
∑

l=1

n
∑

i=1

gsidzilglj , s = 1, 2, .., n; j = 1, 2, .., n,

for a holomorphic mapping Φ2 = (h11, ..., hnn). Then by virtue of dzil = dzli, the
equality

dh11 ∧ dh12 ∧ ... ∧ dhnn =

=
∏

s,j

(det G)s · dz11 ∧ dz12... ∧ dznn ·
(

detG′
)j

, s = 1, 2, .., n; j = 1, 2, .., n,

is equivalent to the equality

dh11 ∧ dh12 ∧ ... ∧ dhnn = (det G)
n+1

2 ·
(

det G′
)

n+1
2 · dz11 ∧ dz12... ∧ dznn =

= JC (Φ2) · dz11 ∧ dz12... ∧ dznn,

where JC (Φ2) is a complex Jacobian and it is equal to

JC (Φ2) = (det G)
(n+1)

2 ·
(

det G′
)

(n+1)
2 =

(

det G′
)(n+1)

.

Therefore, by condition (8) we have

Φ̇2 = |JC (Φ2)|
2Ż =

∣

∣

∣(det G)n+1
∣

∣

∣

2
Ż =

Ż

detn+1
(

I − ZZ
) .

It follows that for the mapping Φ = (f11, ..., fmk, h11, ..., hnn) the next equality is
true

df11 ∧ df12 ∧ ... ∧ dfmk ∧ h11 ∧ dh12 ∧ ... ∧ dhnn =

= JC (Φ1) dw11 ∧ dw12 ∧ ... ∧ dwmkJC (Φ2) ∧ dz11 ∧ dz12... ∧ dznn.

And therefore,

JR (Φ) =
1

detm+k (I − WW ∗) detn+1
(

I − ZZ
) .

It is known [4] that the Bergman kernel for the domains ℜI (m,k) and ℜII (n) have
the forms

KℜI (m,k) (z, z̄) =
1

V (ℜI (m,k))

1

detm+k
(

I(m) − ZZ̄ ′
) ,
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KℜII(n) (z, z̄) =
1

V (ℜII (n))

1

detm+1
(

I(n) − ZZ̄
) ,

where V (ℜI (m,k)) and V (ℜII (n)) are volumes of domains ℜI (m,k) and ℜII (n),
respectively. Hence, by Theorem 2 we have the following relation

Kℜ

(

W,Z,W ,Z
)

=

1
detm+k(I−WW ∗)detn+1(I−ZZ)

V (ℜ)
=

=
1

V (ℜI (m,k)) detm+k (I − WW ∗)
·

1

V (ℜII (n)) detn+1
(

I − ZZ
) =

= KℜI(m,k)

(

W,W
)

· KℜII (n)

(

Z,Z
)

.

Theorem 3 implies immediately the following

Corollary 1. Let ℜI (m,k) and ℜII (n) be the classical domains in spaces of vari-
ables W ∈ C [m × k] and Z ∈ C [n × n], respectively, and ℜ = ℜI (m,k) × ℜII (n),
then

Kℜ

(

W,Z, Θ̄, Ῡ
)

= KℜI (m,k)

(

W, Θ̄
)

KℜII (n)

(

Z, Ῡ
)

, (12)

where W,Θ ∈ ℜI (m,k) , Z,Υ ∈ ℜII (n).

Note that for m = k = n = 1, (12) is the formula for computing the Bergman
kernel for the polydisk

U
2 =

{

z ∈ C
2 : |z1| < 1, |z2| < 1

}

.
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