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On solutions of the kinetic McKean system

Sergey Dukhnovsky

Abstract. In this article, we apply the Painlevé expansion for the kinetic McKean
system. This system does not pass the Painlevé test. It leads to the singularity mani-
fold constraint. The singularity manifold conditions are satisfied by the n-dimensional
Bateman equation. This allows to get some new solutions.
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1 Introduction

Extensive literature is devoted to the study of discrete kinetic systems [1, 2, 4,
6, 9, 13, 16]. The basic equation for the dynamics of rarefied gas is the Boltzmann
equation. This equation is an integro-differential partial differential equation, which
makes it difficult to study this equation. To simplify the Boltzmann equation, several
nonlinear models have been proposed, among which are discrete velocity models,
where unknown functions are the density of particles of a given type at a given
point in space-time. These models have interesting conceptual and mathematical
features.

Exact solutions of discrete kinetic equations were found in [8–10]. Station-
ary solutions of the kinetic Carleman and Broadwell models were found by O.V.
Il’yin [11,12]. It was proved in [14,16–18] that stationary solutions of the Carleman,
Godunov-Sultangazin and Broadwell systems are asymptotically stable. In recent
works, a numerical analysis of the Carleman and Godunov-Sultangazin systems was
carried out for periodic initial data by O. A. Vasil’eva [19,20]. In paper [4], O. Lind-
blom and N. Euler construct solutions of two discrete velocity Boltzmann equations
in (1+1)- and (1+2)-dimensions using truncated Painlevé expansions. In this paper,
we obtain in a similar way exact solutions for the McKean system.

2 The Painlevé test and solutions

We consider the kinetic McKean system [6]:

∂tu + ∂xu =
1

ε
(w2 − uw), x ∈ R, t > 0, (1)

∂tw − ∂xw = −
1

ε
(w2 − uw), (2)
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where ε ∈ R is an analogue of the free path length.

The McKean system describes particles of two groups, namely, the first group
of particles moves at a unit speed along the axis Ox, and the second group moves
at a unit speed in the opposite direction. Particles of the first and second groups
colliding cause a reaction that transfers into two particles of the first group. In turn,
two particles of the first group transfers into particles of the first and second groups.

We perform the Painlevé test [3]. One seeks solution of (1), (2) in the form of
the Painlevé expansion

u(x, t) =
1

ϕp(x, t)

∞∑

j=0

uj(x, t)ϕj(x, t),

w(x, t) =
1

ϕβ(x, t)

∞∑

j=0

wj(x, t)ϕj(x, t).

For j = 0, we have

u(x, t) = u0(x, t)ϕ−p(x, t), (3)

w(x, t) = w0(x, t)ϕ−β(x, t). (4)

Substituting the Painlevé expansion (3)–(4) into our system (1)–(2), we obtain

u0,tϕ
−p − pϕ−p−1ϕtu0 + u0,xϕ−p − pϕ−p−1ϕxu0 =

1

ε
(w2

0ϕ
−2β − u0w0ϕ

−p−β),

w0,tϕ
−β − βϕ−β−1ϕtu0 − w0,xϕ−β + βϕ−β−1ϕxw0 = −

1

ε
(w2

0ϕ
−2β − u0w0ϕ

−p−β).

Since p = 1, β = 1. In this case

−ϕtu0 − ϕxu0 =
1

ε
(w2

0 − u0w0),

−ϕtw0 + ϕxw0 = −
1

ε
(w2

0 − u0w0).

We find leading terms

u0(x, t) = −ε
(ϕt − ϕx)2

2ϕt
, w0(x, t) = ε

(ϕt − ϕx)(ϕt + ϕx)

2ϕt
. (5)

The resonance is at 1. Therefore, the truncated Painlevé series have the form

u(x, t) =
u0(x, t)

ϕ
+ u1(x, t), (6)

w(x, t) =
w0(x, t)

ϕ
+ w1(x, t). (7)
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Substituting (6)–(7) into (1)–(2) yields

u0,tϕ
−1 − ϕ−2ϕtu0 + u1,t + u0,xϕ−1 − ϕ−2ϕxu0 + u1,x =

1

ε
I(u0, w0, u1, w1),

w0,tϕ
−1 − ϕ−2ϕtw0 + w1,t − w0,xϕ−1 + ϕ−2ϕxw0 − w1,x = −

1

ε
I(u0, w0, u1, w1),

where

I(u0, w0, u1, w1) =
w2

0

ϕ2
−

u0w0

ϕ2
+ 2

w0

ϕ
w1 −

u0

ϕ
w1 −

u1

ϕ
w0 + w2

1 − u1w1.

Collecting terms at equal degrees of ϕ, we obtain the following equations

ϕ−1(u0,t + u0,x −
2

ε
w0w1 +

1

ε
u0w1 +

1

ε
u1w0)+

+ ϕ0(u1,t + u1,x −
1

ε
(w2

1 − u1w1))+

+ ϕ−2(−ϕtu0 − ϕxu0 −
1

ε
(w2

0 − u0w0)) = 0

and

ϕ−1(w0,t − w0,x +
2

ε
w0w1 −

1

ε
u0w1 −

1

ε
u1w0)+

+ ϕ0(w1,t − w1,x +
1

ε
(w2

1 − u1w1))+

+ ϕ−2(−ϕtw0 + ϕxw0 +
1

ε
(w2

0 − u0w0)) = 0.

Equating terms at equal degrees of ϕ, it leads to

−ϕtu0 − ϕxu0 −
1

ε
(w2

0 − u0w0) = 0,−ϕtw0 + ϕxw0 +
1

ε
(w2

0 − u0w0) = 0,

u0,t + u0,x −
1

ε
(2w0w1 − u0w1 − u1w0) = 0,

w0,t − w0,x +
1

ε
(2w0w1 − u0w1 − u1w0) = 0,

u1,t + u1,x −
1

ε
(w2

1 − u1w1) = 0, w1,t − w1,x +
1

ε
(w2

1 − u1w1) = 0.

The first equations give us the already known leading terms of the expansion, which
are determined by (5). The last equations of the system are satisfied because reso-
nance arises and u1, w1 are arbitrary functions.
Moreover, we have

u0,t + u0,x =
1

ε
(2w0w1 − u0w1 − u1w0),

w0,t − w0,x = −
1

ε
(2w0w1 − u0w1 − u1w0).
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Then

u0,t + u0,x =
2

ε
(2w0w1 − u0w1 − u1w0), (8)

u0,t + u0,x = −(w0,t − w0,x). (9)

These equations are not satisfied. Substituting the dominant terms (5) into (9), we
have

ϕttϕ
2
x − 2ϕxϕtϕxt + ϕ2

t ϕxt = 0. (10)

Equation (10) is known as the two-dimensional Bateman equation (see [4, 5, 7]).
The Painlevé test will be performed only if ϕ satisfies the equation (10). It’s the
constraint on the given function. Since u1, w1 are arbitrary functions, set u1 = w1 =
0. Then we obtain equation for finding the function ϕ:

ϕx(ϕtt + ϕxt) + ϕt(ϕtt − ϕxt − 2ϕxx) = 0. (11)

The general implicit solution of (10) is

f(ϕ) = x + g(ϕ)t, (12)

where f and g are arbitrary smooth functions.
We prove the following

Lemma. For the 2-velocity model (1)–(2) the truncated Painlevé expansion

u(x, t) =
u0(x, t)

ϕ
,w(x, t) =

w0(x, t)

ϕ
, (13)

where u0, w0 are given by (5), yields conditions on ϕ by (10) and by (11) with fol-

lowing solutions

ϕ(x, t) =
x + k0t − c2

c1
,

where k0 ∈ R \ {0,±1}, c1 ∈ R \ {0}, c2 ∈ R;

ϕ(x, t) = F (x ± t),

where F is an arbitrary invertible function;

ϕ(x, t) =
1

A

(1

4

(
−

2(c1 − t)

x − c2 − c1 + t
+ ln

(x − c2 − c1 + t

x − c2 + c1 − t

))
+ B

)
,

where {A, c1} ∈ R \ {0} and {c2, B} ∈ R.

Proof. Differentiating (12) and substituting into (11), respectively leads to

ε
(
(1 + g + 2g2) df

dϕ
dg
dϕ

− t(1 + g + 2g2)( dg
dϕ

)2 − g(g2 − 1)( d2f
dϕ2 − t d2g

dϕ2 )
)

g( ∂f
∂ϕ

− t ∂g
∂ϕ

)3
= 0.
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From here

(1 + g + 2g2)
df

dϕ

dg

dϕ
− g(g2 − 1)

d2f

dϕ2
= 0,

−(1 + g + 2g2)(
dg

dϕ
)2 + g(g2 − 1)

d2g

dϕ2
= 0.

Case 1. Consider g = ±1. Then

ϕt = ±ϕx.

From (12) we have ϕ(x, t) = F (x ± t), where F is an arbitrary invertible function.
The solution of the Carleman system for g = 1 has the form

u(x, t) = 0, w(x, t) = 0.

For g = −1, yields

u(x, t) =
2εF ′(x − t)

F (x − t)
, w(x, t) = 0.

Case 2. Let g = k0, k0 /∈ {0,±1}. Then we have equation

∂2f

∂ϕ2
= 0 ⇒ f(ϕ) = c1ϕ + c2.

c1ϕ + c2 = x + k0t ⇒ ϕ(x, t) =
x + k0t − c2

c1
.

We obtain the following solution of the system (1)–(2)

u(x, t) = −ε
(k0 − 1)2

2k0(x + k0t − c2)
, w(x, t) = ε

(k2
0 − 1)

2k0(x + k0t − c2)
.

Case 3. Consider g′(ϕ) 6= 0. Then system can be rewritten as

f ′′

f ′
=

g′′

g′
, (14)

−(1 + g + 2g2)(
∂g

∂ϕ
)2 + g(g2 − 1)

∂2g

∂ϕ2
= 0. (15)

Integrating (14), we have

f(ϕ) = c1g(ϕ) + c2, c1, c2 ∈ R, c1 6= 0.

Using the solution of the Bateman equation (12), we can express a function g :

g(x, t) =
x − c2

c1 − t
. (16)

Moreover, from equation (15) we obtain that

dg

dϕ
= A

(1 − g)2(1 + g)

g
,A ∈ R \ {0}. (17)
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The solution (17) taking into account (16) is written as

ϕ(x, t) =
1

A

(1

4

(
−

2(c1 − t)

x − c2 − c1 + t
+ ln

(x − c2 − c1 + t

x − c2 + c1 − t

))
+ B

)
, (18)

where B ∈ R is a constant of integration. Thus, the solution of the McKean system
(1)-(2) using (5), (13) and (18) has the form

u(x, t) =
2(x + t − c1 − c2)ε

(c1 − c2 − t + x)G(x, t)
, w(x, t) = −

2ε

G(x, t)
,

where

G(x, t) = 2
(
c1 + 2Bc1 − t− 2B(x + t− c2) + (c1 + c2 − t− x) ln

(x + t − c1 − c2

x − t + c1 − c2

))
.

Proposition. Solution of the 2-velocity model can be represented as

u(x, t) = u0H1(ϕ), w(x, t) = w0H2(ϕ),

where

H1(ϕ) = H2(ϕ) + b, b ∈ R

and H2 satisfies the equation

dH2

dϕ
= −H2

2 +
b

2
H2(

1

g
− 1). (19)

Here u0, w0 are defined by (5), ϕ satisfies equations (10) and (11).

Proof. We look for solution in the following form

u(x, t) =
u0

ϕ
f1(ϕ), w(x, t) =

w0

ϕ
f2(ϕ). (20)

After the substitution (20) into (1)–(2), we obtain conditions for finding functions
f1, f2:

ϕt(2ϕf ′

1 − 2f1 + f2
2 + f1f2) + ϕx(f2

2 − f1f2) = 0,

ϕt(2ϕf ′

2 − 2f2 + f2
2 + f1f2) + ϕx(f2

2 − f1f2) = 0.

By the substitution fi(ϕ) = Hi(ϕ)ϕ, i = 1, 2, we have

ϕt(2H
′

1 + H2
2 + H1H2) + ϕx(H2

2 − H1H2) = 0,

ϕt(2H
′

2 + H2
2 + H1H2) + ϕx(H2

2 − H1H2) = 0.

Subtracting one from the other equation, we get

2ϕt(H
′

1 − H ′

2) = 0, (21)
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ϕt(2H
′

2 + H2
2 + H1H2) + ϕx(H2

2 − H1H2) = 0. (22)

From (21) it follows that

H1 = H2 + b, b ∈ R. (23)

We also take into account that
ϕt

ϕx
= g(ϕ).

Substituting (23) into (22), one obtains

dH2

dϕ
= −H2

2 +
b

2
H2(

1

g
− 1). (24)

Let’s consider examples where the above equation (24) gives various solutions
for the McKean system.

Example 1. Let g = 3, b = 1, ϕ = x + 3t, c1 = 1, c2 = 0. In this case the equation
(24) has the form

dH2

dϕ
= −H2

2 −
1

3
H2.

Then

H2(ϕ) =
1

3(C1e
1
3
(x+3t) − 1)

.

where C1 is a constant of integration. Finally, we have

u(x, t) = u0(H2(ϕ) + 1) = −
2ε

3

( 1

3(Ce
1
3
(x+3t) − 1)

+ 1
)
,

w(x, t) = w0H2(ϕ) =
4ε

9(Ce
1
3
(x+3t) − 1)

.

Example 2. For g = 1, b = 1, the equation (19) takes the form

dH2

dϕ
= −H2

2 .

Hence

H2(ϕ) =
1

F (x + t) + C2
, C2 ∈ R.

The solution of the system (1)-(2) has the form

u(x, t) = 0, w(x, t) = 0.

For g(ϕ) = −1, b = 1, we have

H2(ϕ) = −
1

C3e−F (x−t) − 1
, C3 ∈ R,

u(x, t) = 2εF ′(x − t)
(
H2(ϕ) + 1

)
, w(x, t) = 0.
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Example 3. Consider for g′(ϕ) 6= 0. Make a substitution H2(ϕ) = Ĥ2(g), using
(18). We also use the fact that

dH2

dϕ
=

dĤ2

dg

dg

dϕ
.

Then the equation (19) can be rewritten in the form

A
dĤ2

dg
= −

g

(1 − g)2(g + 1)
Ĥ2

2 +
b

2(1 − g)(g + 1)
Ĥ2.

Let b = 0. In this case

Ĥ2(g) = −
4A(g − 1)

2 − 4AC2 + 4AgC2 + (g − 1) ln(g+1
g−1)

, C2 ∈ R.

For A = 1, b = 4

Ĥ2(g) = −
2(g2 − 1)

−1 + g(2 − 4C3) + 2C3 + 2g2C3
, C3 ∈ R,

the solution of system (1)-(2) takes the form

u(x, t) = −
ε

2A(c1 − c2 − t + x)
(Ĥ2(g) + b),

w(x, t) = −
ε

2A(c1 + c2 − t − x)
Ĥ2(g).

3 Conclusion

We have investigated the Painlevé analysis for the McKean system and shown
that this system does not pass the Painlevé test in order to be integrable. We used
the solution of the Bateman equation to solve this problem. The calculations were
made using Wolfram Mathematica programme.
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