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Abstract. We introduce left (right) k-nilpotent n-tuple semigroups which are analogs
of left (right) nilpotent semigroups of rank p considered by Schein, and construct the
free left (right) k-nilpotent n-tuple semigroup of rank 1. We prove that the free left
(right) k-nilpotent n-tuple semigroup of rank m > 1 is a subdirect product of the
free left (right) k-nilpotent semigroup with m generators and the free left (right)
k-nilpotent n-tuple semigroup of rank 1. We also characterize the least left (right)
k-nilpotent congruence on the free n-tuple semigroup.
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1 Introduction

In [8], Koreshkov introduced n-tuple algebras of associative type, using n-tuple
semigroups. The n-tuple semigroups now play an important role in different areas
of algebra: they contain varieties of commutative dimonoids [10,16,17,25] and com-
mutative trioids [11,18,26], they occur in the theory of interassociative semigroups
[1–3,5], and in recent advances in doppelsemigroup theory [19,22,24,27,28,33], they
apply in the theory of n-tuple algebras of associative type [6–8]. In addition to
their widespread appearance, n-tuple semigroups are connected to duplexes [13],
g-dimonoids [12,34], and restrictive bisemigroups [15], while 1-tuple semigroups are
semigroups.

One of the central tools of universal algebra is the free object in a variety. The va-
riety of n-tuple semigroups behave well with respect to the typical subvarieties. Re-
cently, free systems in the varieties of n-tuple semigroups [20], commutative n-tuple
semigroups [29], k-nilpotent n-tuple semigroups [31], and rectangular n-tuple semi-
groups [23] were constructed. The free product of arbitrary n-tuple semigroups was
given in [29].

In this paper, we introduce the variety of left (right) k-nilpotent n-tuple semi-
groups. Such algebras are analogs of left (right) nilpotent semigroups of rank p
considered by Schein [14], left (right) k-dinilpotent dimonoids [32], left (right) k-di-
nilpotent doppelsemigroups [19], and left (right) k-trinilpotent trioids [30]. Free ob-
jects in the varieties of left (right) k-dinilpotent dimonoids, left (right) k-dinilpotent

c© A. V. Zhuchok, Yul. V. Zhuchok, O. O. Odintsova, 2020
∗The first author was supported by the National Research Foundation of Ukraine, project
“Investigation of the properties and structure of some types of semigroups, groups, non-associative
algebras, Loday structures and existence of one-parameter strongly-continuous contraction semi-
groups in weighted Banach spaces”.

29



30 A. V. ZHUCHOK, YUL. V. ZHUCHOK, O. O. ODINTSOVA

doppelsemigroups, and left (right) k-trinilpotent trioids were constructed in [19,32]
and [30], respectively. The focus of this paper is to construct the free object in the
variety of left (right) k-nilpotent n-tuple semigroups.

The paper is organized as follows. In Section 2, we present the relevant definitions
and notations, and give some background results from [20]. Section 3 contains new
results. We begin with constructing the free left k-nilpotent n-tuple semigroup of
rank 1 and the proof that the free left k-nilpotent n-tuple semigroup of rank m > 1
is a subdirect product of the free left k-nilpotent semigroup with m generators and
the free left k-nilpotent n-tuple semigroup of rank 1. Then we count the cardinality
of the free left k-nilpotent n-tuple semigroup for a finite case, establish that the
semigroups of the free left k-nilpotent n-tuple semigroup are isomorphic and its
automorphism group is isomorphic to the symmetric group. We also characterize
the least left k-nilpotent congruence on the free n-tuple semigroup. The description
of free right k-nilpotent n-tuple semigroups and characterization of the least right
k-nilpotent congruence on the free n-tuple semigroup are obtained in a dual way.

The results obtained in the present paper extend some results in [19].

2 Preliminaries

Following Schein [14], a semigroup T is called a left (right) nilpotent semigroup of
rank p if the product of any p elements from this semigroup gives a left (right) zero.
Right nilpotent semigroups appear in automata theory, namely, such semigroups
are semigroups of self-adaptive automata (see [4, 9]). The class of all left nilpotent
semigroups of rank p is characterized by the identity g1g2 . . . gpgp+1 = g1g2 . . . gp.
The least such p will be called the left nilpotency index of a semigroup T . As usual,
we denote the set of all positive integers by N. For k ∈ N a left nilpotent semigroup of
left nilpotency index ≤ k is said to be a left k-nilpotent semigroup. Right k-nilpotent
semigroups are defined dually. The class of all left (right) k-nilpotent semigroups
forms a subvariety of the variety of semigroups. A semigroup which is free in the
variety of left (right) k-nilpotent semigroups will be called a free left (right) k-nil-
potent semigroup. Recently, analogs of a left (right) nilpotent semigroup of rank
p were introduced in the varieties of dimonoids [32], doppelsemigroups [19], and
trioids [30].

For n ∈ N denote the set {1, 2, . . . , n} by n. Recall that an n-tuple semigroup [8]
is a nonempty set G equipped with n binary operations 1 , 2 , . . . , n satisfying
the axioms (x r y) s z = x r (y s z) for all x, y, z ∈ G and r, s ∈ n. For n-tuple
semigroups, it is natural to introduce an analog of a left (right) nilpotent semigroup
of rank p.

An n-tuple semigroup (G, 1 , 2 , . . . , n ) will be called left nilpotent if for some
m ∈ N, every x1, . . . , xm, xm+1 ∈ G, and all i ∈ n, the following identities hold:

(x1 ∗1 . . . ∗m−1 xm) i xm+1 = x1 ∗1 . . . ∗m−1 xm, (2.1)

where ∗1, . . . , ∗m−1 ∈ { 1 , 2 , . . . , n }. The least such m will be called the left nil-

potency index of (G, 1 , 2 , . . . , n ). For k ∈ N a left nilpotent n-tuple semigroup
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of left nilpotency index ≤ k is said to be a left k-nilpotent n-tuple semigroup. Right
k-nilpotent n-tuple semigroups are defined dually.

It is clear that operations of any left (right) 1-nilpotent n-tuple semigroup coin-
cide and it is a left (right) zero semigroup, and the class of all left (right) k-nilpotent
1-tuple semigroups coincides with the class of all left (right) k-nilpotent semigroups.
The class of all left (right) k-nilpotent n-tuple semigroups forms a subvariety of the
variety of n-tuple semigroups. An n-tuple semigroup which is free in the variety of
left (right) k-nilpotent n-tuple semigroups will be called a free left (right) k-nilpotent
n-tuple semigroup. If ρ is a congruence on an n-tuple semigroup M such that M/ρ is
a left (right) k-nilpotent n-tuple semigroup, we say that ρ is a left (right) k-nilpotent
congruence.

The free n-tuple semigroup was first given in [20]. Recall this construction.
Let X be an arbitrary nonempty set, and let w be an arbitrary word over X.

The length of w is denoted by lw. Fix n ∈ N and let Y = {y1, y2, . . . , yn} be an
arbitrary set consisting of n elements. Let further F [X] be the free semigroup on
X, let F θ[Y ] be the free monoid on Y , and let θ ∈ F θ[Y ] be the empty word. By
definition, the length lθ of θ is equal to 0. Define n binary operations 1 , 2 , . . . , n
on

XYn = {(w, u) ∈ F [X] × F θ[Y ] | lw − lu = 1}

by

(w1, u1) i (w2, u2) = (w1w2, u1yiu2)

for all (w1, u1), (w2, u2) ∈ XYn and i ∈ n. The algebra (XYn, 1 , 2 , . . . , n ) is
denoted by FnTS(X). By Theorem 2 of [20], FnTS(X) is the free n-tuple semigroup.

The following lemma is needed for the sequel.

Lemma 2.1. ([20], Lemma 1) In an n-tuple semigroup (G, 1 , 2 , . . . , n ), for every

m > 1, m ∈ N, every xi ∈ G, 1 ≤ i ≤ m + 1, and every ∗j ∈ { 1 , 2 , . . . , n },
1 ≤ j ≤ m, any parenthesizing in

x1 ∗1 x2 ∗2 . . . ∗m xm+1

gives the same element of G.

If f : G1 → G2 is a homomorphism of n-tuple semigroups, the kernel of f will be
denoted by ∆f . Denote the symmetric group on X by ℑ[X] and the automorphism
group of an n-tuple semigroup M by AutM .

3 Main results

In this section, we construct the free left k-nilpotent n-tuple semigroup of rank 1
and prove that the free left k-nilpotent n-tuple semigroup of rank m > 1 is a sub-
direct product of the free left k-nilpotent semigroup with m generators and the free
left k-nilpotent n-tuple semigroup of rank 1. We also count the cardinality of the
free left k-nilpotent n-tuple semigroup for a finite case, establish that the semigroups
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of the free left k-nilpotent n-tuple semigroup are isomorphic and its automorphism
group is isomorphic to the symmetric group. Besides, we characterize the least left
k-nilpotent congruence on the free n-tuple semigroup.

Let w ∈ F [X]. Fix k, n ∈ N. Following [30], if lw ≥ k, let
k
−→w denote the initial

subword with the length k of w, and if lw < k, let
k
−→w= w. It is clear that

k
−−−−−→

k
−−−→w1w2 w3=

k
−−−−−→w1w2w3=

k
−−−−−→

w1

k
−−−→w2w3 (3.1)

for all w1, w2, w3 ∈ F [X]. We will also regard that
0
−→u =

k
−→
θ = θ for all u ∈ F θ[Y ].

Assume that Y (k) = {u ∈ F θ[Y ] | lu + 1 ≤ k} and define n binary operations
1 , 2 , . . . , n on Y (k) by

u1 i u2 =
k−1

−−−−→u1yiu2

for all u1, u2 ∈ Y (k) and i ∈ n. The algebra obtained in this way will be denoted by

Y
(k)
n .

Theorem 3.1. Y
(k)
n is the free left k-nilpotent n-tuple semigroup of rank 1.

Proof. For u1, u2, u3 ∈ Y
(k)
n and i, j ∈ n, we have

(u1 i u2) j u3 =
k−1

−−−−→u1yiu2 j u3 =

k−1
−−−−−−−→

k−1
−−−−→u1yiu2 yju3 =

k−1
−−−−−−−→u1yiu2yju3

=

k−1
−−−−−−−→

u1yi

k−1
−−−−→u2yju3 = u1 i

k−1
−−−−→u2yju3 = u1 i (u2 j u3)

and so, Y
(k)
n satisfies all axioms of an n-tuple semigroup.

Show that Y
(k)
n is left k-nilpotent. Obviously, Y

(1)
n is left 1-nilpotent. Let

k > 1 and let u1 ∗1 . . . ∗k−1 uk = u for arbitrary elements u1, . . . , uk ∈ Y
(k)
n , where

∗1, . . . , ∗k−1 ∈ { 1 , 2 , . . . , n }. Since lu = k − 1,

u i g =
k−1
−−→uyig = u

for any g ∈ Y
(k)
n and i ∈ n. Thus, by definition, Y

(k)
n is a left nilpotent n-tuple

semigroup. Further, if k = 2 and i ∈ n, then

θ i θ =
1
−→yi = yi 6= θ,

and we conclude that Y
(2)
n has left nilpotency index 2. Withal, for k > 2 and any

i ∈ n, we get

(θ ∗1 . . . ∗k−2 θ) i θ = yk−2
i i θ =

k−1
−−→
yk−1

i = yk−1
i 6= θ ∗1 . . . ∗k−2 θ.
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Therefore Y
(k)
n has left nilpotency index k.

Finally, prove that Y
(k)
n is the singly generated free object in the variety of left

k-nilpotent n-tuple semigroups.

Obviously, Y
(k)
n is generated by θ. Let (S, 1

′

, 2
′

, . . . , n
′

) be an arbitrary left
k-nilpotent n-tuple semigroup, and let π : {θ} → S be an arbitrary map. Suppose
that θπ = ε ∈ S. Define a map

ψ : Y (k)
n → (S, 1

′

, 2
′

, . . . , n
′

) : ω 7→ ωψ

by the rule

ωψ =





ε1ỹi1ε2ỹi2 . . . ỹis−1εs if ω = yi1yi2 . . . yis−1, yip ∈ Y,

1 ≤ p ≤ s− 1, s > 1,

ε if ω = θ,

where εr = ε for 1 ≤ r ≤ s and

ỹip = b
′

for some b ∈ n ⇔ yip = yb (1 ≤ p ≤ s− 1, s > 1). (3.2)

According to Lemma 2.1, the map ψ is well-defined. Similar to the proof of
Lemma 3.7 in [19] we can prove that ψ is a homomorphism. For this, we use
Lemma 2.1 and (2.1).

Clearly, θψ = θπ. Since θ generates Y
(k)
n , the uniqueness of ψ is obvious. Thus,

Y
(k)
n is the free left k-nilpotent n-tuple semigroup of rank 1.

Now we present the free left k-nilpotent semigroup.
Let Uk = {w ∈ F [X] | lw ≤ k}. A binary operation · is defined on Uk by the rule

w1 · w2 =
k

−−−→w1w2

for all w1, w2 ∈ Uk. With respect to this operation Uk is a semigroup generated by
X. It will be denoted by FLNSk(X).

Lemma 3.2. FLNSk(X) is the free left k-nilpotent semigroup.

Proof. By (3.1), FLNSk(X) is a semigroup. It is immediate to check that
FLNSk(X) is left k-nilpotent. Let us show that FLNSk(X) is free left k-nilpotent.

Let T be an arbitrary left k-nilpotent semigroup, and let γ : X → T be an
arbitrary map. Define the map

φ : FLNSk(X) → T : x1 . . . xh 7→ (x1 . . . xh)φ = x1γ . . . xhγ, x1, . . . , xh ∈ X.

One can show that φ is a homomorphism.
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We are ready to construct the free left k-nilpotent n-tuple semigroup of an arbit-
rary rank.

Define n binary operations 1 , 2 , . . . , n on

Wk =
{

(w, u) ∈ FLNSk(X) × Y (k)
n | lw − lu = 1

}

by

(w1, u1) i (w2, u2) = (
k

−−−→w1w2,
k−1

−−−−→u1yiu2)

for all (w1, u1), (w2, u2) ∈ Wk and i ∈ n. These operations are well-defined, since

l k
−−−→w1w2

−l k−1
−−−−→u1yiu2

= 1 for all i ∈ n. The obtained algebra will be denoted by F k,n

(l) NS(X).

Theorem 3.3. F k,n

(l) NS(X) is the free left k-nilpotent n-tuple semigroup.

Proof. It follows from Theorem 3.1 and Lemma 3.2 that F k,n

(l) NS(X) is a left

k-nilpotent n-tuple semigroup generated by X × {θ}. We state that this n-tuple
semigroup is free left k-nilpotent.

Let (S, 1
′

, 2
′

, . . . , n
′

) be an arbitrary left k-nilpotent n-tuple semigroup, and
let β : X → S be an arbitrary map. Define a map

α : F k,n

(l) NS(X) → (S, 1
′

, 2
′

, . . . , n
′

) : v 7→ vα

by the rule

vα =





x1βỹi1x2βỹi2 . . . ỹis−1xsβ if v = (x1x2 . . . xs, yi1yi2 . . . yis−1),

xj ∈ X, 1 ≤ j ≤ s, yip ∈ Y,

1 ≤ p ≤ s− 1, s > 1,

x1β if v = (x1, θ), x1 ∈ X,

where every ỹip , 1 ≤ p ≤ s− 1, s > 1, is defined by (3.2). According to Lemma 2.1,
α is well-defined.

Applying Lemma 2.1 and (2.1), similar to the proof of Lemma 3.7 in [19] one

can show that α is a unique homomorphism extending β. Thus, F k,n

(l) NS(X) is the
free left k-nilpotent n-tuple semigroup.

Corollary 3.4. The free left k-nilpotent n-tuple semigroup F k,n

(l) NS(X) generated

by a finite set X × {θ} is finite. Specifically, |F k,n

(l) NS(X)| =
∑k

i=1 n
i−1 · |X|i.

Corollary 3.5. Every free left k-nilpotent n-tuple semigroup of rank m > 1 is a
subdirect product of the free left k-nilpotent semigroup with m generators and the
free left k-nilpotent n-tuple semigroup of rank 1.

Proof. The rank of F k,n

(l) NS(X) is |X|. Let |X| = m > 1. Then, by the above con-

struction, F k,n

(l) NS(X) is a subdirect product of the free left k-nilpotent semigroup

FLNSk(X) with m generators and the free left k-nilpotent n-tuple semigroup Y
(k)
n

of rank 1.
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Corollary 3.6. F k,1
(l) NS(X) is the free left k-nilpotent semigroup.

Theorems 3.1 and 3.3 imply the following statement.

Corollary 3.7. If |X| = 1, then Y
(k)
n

∼= F k,n

(l) NS(X).

Note that, for n = 2, Theorem 3.3 yields Theorem 3.1 in [19].
Corollary 3.9 in [19] implies the following statement establishing a relationship

between the semigroups of the free left k-nilpotent n-tuple semigroup.

Proposition 3.8. For any i, j ∈ n, the semigroups (Wk, i ) and (Wk, j ) of

F k,n

(l) NS(X) are isomorphic.

Since the set X × {θ} is generating for F k,n

(l) NS(X), we have the following iso-

morphism: AutF k,n

(l) NS(X) ∼= ℑ[X].
Congruences play an important role when investigating different universal algeb-

ras (see, e.g., [21]). At the end of the paper, we characterize the least left k-nilpotent
congruence on the free n-tuple semigroup.

For k ∈ N define a binary relation γk on the free n-tuple semigroup FnTS(X)
by

(w1, u1)γk(w2, u2) if and only if (
k
−→w1,

k−1
−→u1 ) = (

k
−→w2,

k−1
−→u2 ).

Theorem 3.9. The relation γk on the free n-tuple semigroup FnTS(X) is the least
left k-nilpotent congruence.

Proof. Define a map πk : FnTS(X) → F k,n

(l) NS(X) by

(w, u) 7→ (w, u)πk = (
k
−→w ,

k−1
−→u ), (w, u) ∈ FnTS(X).

Let (w1, u1), (w2, u2) ∈ FnTS(X) and i ∈ n. It is not difficult to check that

k
−−−→w1w2 =

k
−−−→
k
−→w1

k
−→w2,

k−1
−−−−→u1yiu2 =

k−1
−−−−−−→
k−1
−→u1 yi

k−1
−→u2 .

Using it, we have

((w1, u1) i (w2, u2))πk = (w1w2, u1yiu2)πk = (
k

−−−→w1w2,
k−1

−−−−→u1yiu2)

= (

k
−−−→
k
−→w1

k
−→w2,

k−1
−−−−−−→
k−1
−→u1 yi

k−1
−→u2 ) = (

k
−→w1,

k−1
−→u1 ) i (

k
−→w2,

k−1
−→u2 ) = (w1, u1)πk i (w2, u2)πk.

Thus, πk is a homomorphism. Evidently, πk is a surjection. Since by Theorem 3.3
F k,n

(l) NS(X) is the free left k-nilpotent n-tuple semigroup, ∆πk
is the least left k-nil-

potent congruence on FnTS(X). From the definition of πk it follows that ∆πk
= γk.

So, γk is the least left k-nilpotent congruence on FnTS(X).
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For n = 2, Theorem 3.9 implies Theorem 4.1 in [19].
For k ∈ N define a binary relation µk on the free semigroup F [X] by

w1µkw2 if and only if
k
−→w1 =

k
−→w2 .

Corollary 3.10. The relation µk on the free semigroup F [X] is the least left k-nil-
potent congruence.

Remark 3.11. In [19], the first author of this paper constructed the free left k-nil-

potent doppelsemigroup, using the definition of
k
−→w for the case lw ≥ k. In this paper,

we extend the definition of
k
−→w for the case lw < k as in [30]. This gives us the

opportunity to simplify the definition of operations of free left k-nilpotent n-tuple
semigroups in comparison with the definition of operations of free left k-nilpotent
doppelsemigroups. These changes imply a significant simplification of proofs for
theorems in the present paper.

Remark 3.12. In order to construct free right k-nilpotent n-tuple semigroups and
characterize the least right k-nilpotent congruence on the free n-tuple semigroup we
use the duality principle.
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