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Coincidence and common fixed points theorem with

an application in dynamic programming

Ahmed Chaouki Aouine, Abdelkrim Aliouche

Abstract. We prove coincidence and common fixed points theorem for two self-
mappings in complete metric spaces. Our theorem generalizes Theorem 1 of [19].
Suitable examples are provided to illustrate the validity of our results. We apply our
theorem to establish the existence of common solutions of a system of two functional
equations arising in dynamic programming.
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1 Introduction and Preliminaries

Suzuki [40] categorized the theorems which ensure the existence of a fixed point
of a mapping T into the following four types.

(T1) Leader-type [20]: T has a unique fixed point and {T nx} converges to the
fixed point for all x ∈ X. Such a mapping is called a Picard operator PO, see
Picard [30] and Rus [32,34].

(T2) Unnamed type: T has a unique fixed point and {T nx} does not necessarily
converge to the fixed point.

(T3) Subrahmanyam-type [39]: T may have more than one fixed point and {T nx}
converges to a fixed point for all x ∈ X. Such a mapping is called a weakly Picard
operator WPO, see Rus [33,35].

It is evident that any PO is a WPO, but the converse in not true in general, see
Berinde [6].

(T4) Caristi-type [8, 9]: T may have more than one fixed point and {T nx} does
not necessarily converge to a fixed point.

Most of the theorems such as Banach’s [3], Cirić’s [12] , Kannan’s [16], Kirk’s [17],
Meir and Keeler’s [27] and Suzuki’s [41] belong to (T1). Subrahmanyam’s theorem
[39], Cirić’s theorem [13], Theorem 1 of Berinde [6] and Theorems 2.1, 2.2 of Samet
et al.[36] appertai to (T3). Caristi’s theorems [8,9] appertain to (T4). Furthermore,
there are no theorems belonging to (T2), see Kirk’s survey [18].

First of all, we recall the following definitions.

Definition 1 ( [10]). Let (E,≤) be a partially ordered set and F a subset of E. F
is said to be well ordered if every two elements of F are comparable.
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Definition 2. Let A,S : X → X be two mappings. A point u ∈ X is said to be

i) a fixed point of A if Au = u,

ii) a coincidence point of A and S if Au = Su. The point z = Au = Su is called
a point of coincidence of A and S.

iii) a common fixed point of A and S if Au = Su = u.

iv) A and S are weakly compatible iff they commute at their coincidence points.

We denote by C(A,S) the set of coincidence points of A and S.

Proposition 1 ( [1]). Let A,S : X → X be two mappings. If A and S have a
unique point of coincidence z = Au = Su and A and S are weakly compatible, then
z is the unique common fixed point of A and S.

Definition 3 ([38]). Let X be a Banach space, Y a subset of X and A,S : Y → Y
such that A(Y ) ⊂ S(Y ). For x0 ∈ Y , consider the following iterative scheme:

Sxn+1 = Axn, n ∈ N.

For Y = X, this scheme is called Jungck iterative scheme. It was introduced
by Jungck [14] in 1976 and it reduces to the Picard iterative scheme when S = IX ,
where IX is the identity mapping in X.

Inspired by Rus and Chandok et al.[11], we state the following definitions. In
the sequel, (X, d) is a metric space and A,S : X → X are two mappings such that
A(X) ⊂ S(X).

Definition 4. A and S are called Picard-Jungck operators (brievely PJO) if:

i) A and S have a unique common fixed point z.

ii) The sequence {Sxn} converges to z for each x ∈ X.

If S = IX , where IX is the identity mapping in X, we obtain the definition of
PO.

Most of the operators such as Abbas and Khan’s [2], Berinde’s (Theorems 3.3,
3.4) [6], Jungck’s [14] and Sessa’s [37] are PJO.

Further, If the operators T and f in Theorem 2.1 of Chandok and Karapinar [10]
are weakly compatible and the set of common fixed points of T and f is well ordered,
therefore T and f are PJO, see Theorem 2.2 of Chandok and Karapinar [10].

Definition 5. A and S are said to be weakly Picard-Jungck operators (brievely
WPJO) if:

i) A and S have at least one common fixed point.

ii) The sequence {Sxn} converges to a common fixed point for any x ∈ X.

If S = IX , where IX is the identity mapping in X, we get the definition of WPO.

In addition, if the operators T and f in Theorem 2.1 of Chandok and Karapinar
[10] are weakly compatible, so T and f are WPJO.
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Definition 6. A and S are called Quasi Picard-Jungck operators (brievely QPJO)
if:

i) A and S have a unique point of coincidence z or a coincidence point.
ii) The sequence {Sxn} converges to z for each x ∈ X.

If S = IX , where IX is the identity mapping in X, we get the definition of PO.

Remark 1. i) If A and S commute at z, by Proposition 1, A and S have a unique
common fixed point z and so A and S become PJO.

ii) If we remove, the condition of weak compatibility of A and S, in theorems of
Abbas and Khan [2], Berinde [6], Jungck [14] and Sessa [37], then A and S become
QPJO.

Definition 7. A and S are said to be Quasi weakly Picard-Jungck operators
(brievely QWPJO) if:

i) A and S have at least one point of coincidence or a coincidence point.
ii) The sequence {Sxn} converges to a point of coincidence for any x ∈ X.

If S = IX , where IX is the identity mapping in X, we obtain the definition of
WPO.

The operators in Theorem 3.1 of Berinde [7], Theorems 2.4, 2.6 of Nashine and
Samet [28] and Theorem 2.1 of Chandok and Karapinar [10] are QWPJO.

In 2014, Khojasteh et al.[19] established the following theorem which appertains
to (T3).

The following theorem was proved by Khojasteh et al.[19].

Theorem 1. Let (X, d) be a complete metric space and T a mapping from X into
itself satisfying the following condition

d(Tx, Ty) ≤
d(y, Tx) + d(x, Ty)

d(x, Tx) + d(y, Ty) + 1
d(x, y)

for all x, y ∈ X. Then
(i) T has at least one fixed point z ∈ X.
(ii) {T nx} converges to a fixed point for all x ∈ X.

(iii) If z and w are distinct fixed points of T , therefore d(z,w) ≥
1

2
.

Rhoades [31] extended the above theorem for two self-mappings by proving the
subsequent theorem.

Theorem 2. Let (X, d) be a complete metric space and S, T self-mappings of X
satisfying

d(Sx, Ty) ≤ N(x, y)m(x, y)

for all x, y ∈ X, where

N(x, y) =
max {d(x, y), d(x, Sx) + d(y, Ty), d(x, Ty) + d(y, Sx)}

d(x, Sx) + d(y, Ty) + 1
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and

m(x, y) = max

{

d(x, y), d(x, Sx), d(y, Ty),
d(x, Ty) + d(y, Sx)

2

}

.

Then
(a) S and T have at least one common fixed point p ∈ X.
(b) For n even,

{

(ST )n/2x
}

and
{

T (ST )n/2x
}

converge to a common fixed point
for each x ∈ X.

(c) If p and q are distinct common fixed points of S and T , then d(p, q) ≥ 1/2.

It is our purpose in this paper to demonstrate coincidence and common fixed
points theorem for two self-mappings in complete metric spaces. Our theorem gen-
eralizes Theorem 1 of [19]. Examples are furnished to illustrate the validity of our
results. We apply our theorem to realize the existence of common solutions of a
system of two functional equations arising in dynamic programming.

2 Main Results

The next lemma plays a crucial role in the proof of our main theorem.

Lemma 1. Let (X, d) be a metric space and {xn} a sequence in X such that

d(xn, xn+1) ≤ βnd(xn−1, xn) (1)

for all n ∈ N
∗, where

βn =
d(xn−1, xn) + d(xn, xn+1)

d(xn−1, xn) + d(xn, xn+1) + 1
.

Then {xn} is a Cauchy sequence.

Proof. As in the proof of Lemma 2.3 of Rhoades [31], assume that xn−1 6= xn for
each n ≥ 1 and set tn = d(xn−1, xn). Therefore

βn =
tn + tn+1

tn + tn+1 + 1
. (2)

Since 0 < βn < 1, we deduce from (1) that

tn+1 ≤ βntn < tn for any n ∈ N. (3)

We will prove that for all n ≥ 1, βn < βn−1. Using (2), we obtain that βn < βn−1 is
equivalent to

tn + tn+1

tn + tn+1 + 1
<

tn−1 + tn
tn−1 + tn + 1

.

The above inequality yields tn+1 < tn−1 which is fulfilled by (3) Consequently

tn+1 < β1tn for every n ∈ N.

Thus, {xn} is a Cauchy sequence in X.
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Now, we state and prove our main result.

Theorem 3. Let A and S be two mappings of a complete metric space (X, d) into
itself verifying

A(X) ⊂ S(X), (4)

d(Ax,Ay) ≤ N(x, y)M(x, y) (5)

for all x, y ∈ X, where

N(x, y) =
max{d(Sx, Sy), d(Sx,Ax) + d(Sy,Ay), d(Sx,Ay) + d(Sy,Ax)}

d(Sx,Ax) + d(Sy,Ay) + 1
, (6)

M(x, y) = max{d(Sx, Sy), d(Sx,Ax), d(Sy,Ay),
d(Sx,Ay) + d(Sy,Ax)

2
}. (7)

Suppose that S(X) is a closed subspace of X. So
i) A and S have at least one coincidence point u ∈ X and the Jungck sequence

{yn} = {Sxn} converges to z = Au for each x ∈ X. In this case, A and S are
QWPJO.

ii) If there exists u ∈ C (A,S) such that ASu = SAu, then z = Au is another
coincidence point of A and S. In this case, A and S are QWPJO.

iii) If v is a distinct coincidence point of A and S, therefore d(Au,Av) ≥
1

2
.

iv) If Au = A2u for some u ∈ C (A,S) and ASu = SAu, then A and S possess
at least one common fixed point z = Au and the Jungck sequence {yn} = {Sxn}
converges to z for any x ∈ X. In this case, A and S are WPJO.

(v) If z and w are distinct common fixed points of A and S, so d(z,w) ≥
1

2
.

Proof. Let x0 be an arbitrary point in X. From (4), we can define inductively a
sequence {yn} in X such that

yn = Axn = Sxn+1, n ∈ N (8)

Let us show that {yn} is a Cauchy sequence in X. If yn = yn+1 for some n ∈ N, so
Axn = Sxn+1 = Axn+1 = Sxn+2. Thus, A and S a coincidence point. Therefore,
assume that yn 6= yn+1 for each n ∈ N. Using (5), (6) and (8), we have

d(yn, yn+1) = d(Axn, Axn+1) (9)

≤ N(xn, xn+1)M(xn, xn+1),

where

N(xn, xn+1) =
max{d(Sxn, Sxn+1), d(Sxn, Axn) + d(Sxn+1, Axn+1), d(Sxn, Axn+1)}

d(Sxn, Axn) + d(Sxn+1, Axn+1) + 1

=
max{d(yn−1, yn), d(yn−1, yn) + d(yn, yn+1), d(yn−1, yn+1)}

d(yn−1, yn) + d(yn, yn+1) + 1

≤
d(yn−1, yn) + d(yn, yn+1)

d(yn−1, yn) + d(yn, yn+1) + 1
.
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Set tn = d(yn−1, yn), n ≥ 1. So

N(xn, xn+1) ≤
tn + tn+1

tn + tn+1 + 1
= βn. (10)

By (7) we obtain

M(xn, xn+1) = max{d(yn−1, yn), d(yn−1, yn), (11)

d(yn, yn+1),
d(yn−1, yn+1)

2
}

= max{d(yn−1, yn), d(yn, yn+1)}.

Substituting (10) and (11) into (9), we find

tn+1 ≤ βntn for all n ∈ N.

According to Lemma 1, we conclude that {yn} is a Cauchy sequence in X. Since
(X, d) is complete, {yn} converges to z ∈ X. Suppose that S(X) is closed subspace
of X. Therefore, z = Su for some u ∈ X. We claim that Au = z. If Au 6= z, applying
(5) we get

d(Au,Axn+1) ≤ N(u, xn+1)M(u, xn+1), (12)

where

N(u, xn+1) =

max

{

d(Su, Sxn+1), d(Su,Au) + d(Sxn+1, Axn+1),
d(Su,Axn+1) + d(Sxn+1, Au)

}

d(Su,Au) + d(Sxn+1, Axn+1) + 1
,

M(u, xn+1) = max







d(Su, Sxn+1), d(Su,Au), d(Sxn+1, Axn+1),
d(Su,Axn+1) + d(Sxn+1, Au)

2







.

Letting n → ∞ in (12) we obtain

d(Au, z) ≤
d(Au, z)

d(Au, z) + 1
d(Au, z)

< d(Au, z).

Hence, Au = Su = z. Thus u is a coincidence point of A and S and the Jungck
sequence {yn} = {Sxn} converges to z = Au for each x ∈ X.

ii) If there exists u ∈ C (A,S) such that ASu = SAu, then Az = Sz, i.e, z is a
coincidence point of A and S.

iii) If Au 6= Av, applying (5) we find

d(Au,Av) ≤ N(u, v)M(u, v),

where

N(u, v) =

max

{

d(Su, Sv), d(Su,Au) + d(Sv,Av),
d(Su,Av) + d(Sv,Au)

}

d(Su,Au) + d(Sv,Av) + 1
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= 2d(Au,Av),

M(u, v) = max







d(Su, Sv), d(Su,Au), d(Sv,Av),
d(Su,Av) + d(Sv,Au)

2







= d(Au,Av).

So, d(Au,Av) ≤ 2d2(Au,Av), that is d(Au,Av) ≥
1

2
.

iv) If Au = A2u for each u ∈ C (A,S) and ASu = SAu, therefore z = Az = Sz,
i.e., A and S possess at least one common fixed point z ∈ X and the Jungck sequence
{yn} = {Sxn} converges to z = Au for any x ∈ X.

(v) If z and w are distinct common fixed points of A and S, employing (5) we
have

d(z,w) = d(Az,Aw) ≤ N(z,w)M(z,w),

where N(z,w) = 2d(z,w) and M(z,w) = d(z,w). Thus, d(z,w) ≥
1

2
.

The following examples support our Theorem 3.

Example 1. Let X = {0, 1, 2, 3} be endowed with the usual metric. Define A,S :
X → X by:

A(0) = 1, A(1) = 2, A(2) = 1, A(3) = 2,

S(0) = 1, S(1) = 3, S(2) = 3, S(3) = 2.

We have A(X) = {1, 2} ⊂ S(X) = {1, 2, 3}. C(A,S) = {0, 3}. It is easy to see that
A2(0) = 2 6= 0, A2(3) = 1 6= 3 and A and S do not commute at their coincidence
points.

The cases x = y and (x, y) ∈ {(0, 2) , (0, 3) , (1, 3)} are clear.
1) For the case (x, y) = (0, 1) we get

d(A(0), A(1)) = d(1, 2) = 1

< N(0, 1)M(0, 1) = 3,

where

N(0, 1) =

max

{

d(S(0), S(1)), d(A(0), S(0)) + d(A(1), S(1)),
d(A(0), S(1)) + d(S(0), A(1))

}

d(A(0), S(0)) + d(A(1), S(1)) + 1

=
max {d(1, 3), d(2, 3), d(1, 3) + d(1, 2)}

d(2, 3) + 1

=
3

2
,

M(0, 1) = 2.
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2) For the case (x, y) = (1, 2) we obtain

d(A(1), A(2)) = d(2, 1) = 1

< N(1, 2)M(1, 2) =
3

2
,

where

N(1, 2) =

max

{

d(S(1), S(2)), d(A(1), S(1)) + d(A(2), S(2)),
d(A(1), S(2)) + d(S(1), A(2))

}

d(A(1), S(1)) + d(A(2), S(2)) + 1

=
max {d(3, 3), d(2, 3) + d(1, 3), d(2, 3) + d(3, 1)}

d(2, 3) + d(1, 3) + 1

=
3

4
,

M(0, 1) = 2.

3) For the case (x, y) = (2, 3) we find

d(A(2), A(3)) = d(1, 2) = 1

< N(2, 3)M(2, 3) =
4

3
,

where

N(2, 3) =

max

{

d(S(2), S(3)), d(A(2), S(2)) + d(A(3), S(3)),
d(A(2), S(3)) + d(S(2), A(3))

}

d(A(2), S(2)) + d(A(3), S(3)) + 1

=
max {d(3, 2), d(1, 3), d(1, 2) + d(3, 2)}

d(1, 3) + 1

=
2

3
,

M(2, 3) = 2.

Hence, all the hypotheses of Theorem 3 hold. Accordingly, A and S have two

coincidence points 0 and 3. Moreover, d(A(0), A(3)) = d(1, 2) >
1

2
.

Example 2. Let X = {0, 1, 2, 3} be equipped with the usual metric. Define A,S :
X → X by:

A(0) = 1, A(1) = 2, A(2) = 1, A(3) = 0,

S(0) = 1, S(1) = 2, S(2) = 3, S(3) = 0.

We have A(X) = {0, 1, 2} ⊂ S(X) = {0, 1, 2, 3} . C(A,S) = {0, 1, 3}. It is obvious
that A2(0) = 2 6= 0, A2(3) = 1 6= 3 and A and S commute at their coincidence
points 0 and 3.
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The cases x = y and (x, y) ∈ {(0, 1) , (0, 2) , (0, 3) , (1, 3)} are plain.
1) For the case (x, y) = (1, 2) we get

d(A(1), A(2)) = d(2, 1) = 1

< N(1, 2)M(1, 2) =
4

3
,

where

N(1, 2) =

max

{

d(S(1), S(2)), d(A(1), S(1)) + d(A(2), S(2)),
d(A(1), S(2)) + d(S(1), A(2))

}

d(A(1), S(1)) + d(A(2), S(2)) + 1

=
max {d(2, 3), d(1, 3), d(2, 3) + d(2, 1)}

d(1, 3) + 1

=
2

3
,

M(1, 2) = 2.

2) For the case (x, y) = (2, 3) we find

d(A(2), A(3)) = d(1, 0) = 1

< N(2, 3)M(2, 3) = 4,

where

N(2, 3) =

max

{

d(S(2), S(3)), d(A(2), S(2)) + d(A(3), S(3)),
d(A(2), S(3)) + d(S(2), A(3))

}

d(A(2), S(2)) + d(A(3), S(3)) + 1

=
max {d(3, 0), d(1, 3), d(1, 0) + d(3, 0)}

d(1, 3) + 1

=
4

3
,

M(2, 3) = 3.

Hence, all the conditions of Theorem 3 hold. Consequently, A and S have three
coincidence points 0, 1 and 3. Furthermore,

d(A(0), A(1)) = d(1, 2) >
1

2
, d(A(0), A(3)) = d(1, 0) >

1

2
,

d(A(1), A(3)) = d(2, 0) >
1

2
.

Example 3. Let X = {0, 1, 2, 3} be endowed with the usual metric. Define A,S :
X → X by:

A(0) = 0, A(1) = 1, A(2) = 1, A(3) = 2,

S(0) = 0, S(1) = 1, S(2) = 3, S(3) = 2.
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We have A(X) = {0, 1, 2} ⊂ S(X) = {0, 1, 2, 3} . C(A,S) = {0, 1, 3}. It is evident
that A2(0) = A(0) = 0, A2(1) = A(1) = 1, A2(3) = A(2) = 1 6= 3, A and S commute
at their coincidence points 0 and 1 and do not commute at their coincidence point
3.

The cases x = y and (x, y) ∈ {(0, 1) , (0, 3) , (1, 2) , (1, 3)} are obvious.
1) For the case (x, y) = (0, 2) we get

d(A(0), A(2)) = d(0, 1) = 1

< N(0, 2)M(0, 2) = 4,

where

N(0, 2) =

max

{

d(S(0), S(2)), d(A(0), S(0)) + d(A(2), S(2)),
d(A(0), S(2)) + d(S(0), A(2))

}

d(A(0), S(0)) + d(A(2), S(2)) + 1

=
max {d(0, 3), d(1, 3), d(0, 3) + d(0, 1)}

d(1, 3) + 1

=
4

3
,

M(0, 2) = 3.

2) For the case (x, y) = (2, 3) we obtain

d(A(2), A(3)) = d(1, 2) = 1

< N(2, 3)M(2, 3) =
4

3
,

where

N(2, 3) =

max

{

d(S(2), S(3)), d(A(2), S(2)) + d(A(3), S(3)),
d(A(2), S(3)) + d(S(2), A(3))

}

d(A(2), S(2)) + d(A(3), S(3)) + 1

=
max {d(3, 2), d(1, 3), d(1, 2) + d(3, 2)}

d(1, 3) + 1

=
2

3
,

M(0, 1) = 2.

Hence, all the assumptions of Theorem 3 hold. Thus, A and S have two common
points 0 and 1 and a coincidence point 3. Besides,

d(A(0), A(1)) = d(0, 1) >
1

2
, d(A(0), A(3)) = d(0, 2) >

1

2
,

d(A(1), A(3)) = d(1, 2) >
1

2
.

If S = IX in Theorem 3, where IX is the identity mapping in X, we have the
following corollary.
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Corollary 1. Let A be a mapping of a complete metric space (X, d) into itself
satisfying

d(Ax,Ay) ≤ N(x, y)M(x, y)

for all x, y ∈ X, where

N(x, y) =
max{d(x, y), d(x,Ax) + d(y,Ay), d(x,Ay) + d(y,Ax)}

d(x,Ax) + d(y,Ay) + 1

and

M(x, y) = max{d(x, y), d(x,Ax), d(y,Ay),
d(x,Ay) + d(y,Ax)

2
}.

Then
i) A is a WPO.

ii) If z and w are distinct fixed points of A, therefore d(z,w) ≥
1

2
.

Example 4. Let X = {0, 1, 2, 3} be equipped with the usual metric. Define A :
X → X by:

A(0) = 0, A(1) = 1, A(2) = 1, A(3) = 0.

The cases x = y and (x, y) ∈ {(0, 1) , (0, 3) , (1, 2)} are clear.
1) For the case (x, y) = (0, 2) we get

d(A(0), A(2)) = d(0, 1) = 1

< N(0, 2)M(0, 2) = 3,

where

N(0, 2) =

max

{

d(0, 2), d(0, A(0)) + d(2, A(2)),
d(0, A(2)) + d(2, A(0))

}

d(0, A(0)) + d(2, A(2)) + 1

=
max {d(0, 2), d(2, 1), d(0, 1) + d(2, 0)}

d(2, 1) + 1

=
3

2
,

M(0, 2) = 2.

2) For the case (x, y) = (1, 3) we obtain

d(A(1), A(3)) = d(1, 0) = 1

< N(1, 3)M(1, 3) =
9

4
,

where

N(1, 3) =

max

{

d(1, 3), d(1, A(1)) + d(3, A(3)),
d(1, A(3)) + d(3, A(1))

}

d(1, A(1)) + d(3, A(3)) + 1
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=
max {d(1, 3), d(3, 0), d(1, 0) + d(3, 1)}

d(3, 0) + 1

=
3

4
,

M(1, 3) = 3.

3) For the case (x, y) = (2, 3) we find

d(A(2), A(3)) = d(1, 0) = 1

< N(2, 3)M(2, 3) =
12

5
,

where

N(2, 3) =

max

{

d(2, 3), d(2, A(2)) + d(3, A(3)),
d(2, A(3)) + d(3, A(2))

}

d(2, A(2)) + d(3, A(3)) + 1

=
max {d(2, 3), d(2, 1) + d(3, 0), d(2, 0) + d(3, 1)}

d(2, 1) + d(3, 0) + 1

=
4

5
,

M(2, 3) = 3.

Hence, A satisfies all the assumptions of Corollary 1 and A has two distinct fixed

points 0 and 1. Besides, d(0, 1) = 1 >
1

2
. Since d(A(2), A (3)) = 1 and

d(2, A(3)) + d(3, A(2))

d(2, A(2)) + d(3, A(3)) + 1
d(2, 3) =

4

5
,

we get 1 >
4

5
. Therefore, Theorem 1 of [19] cannot be applicable.

Remark 2. It is worth mentioning that Corollary 1 cannot be applicable for the
mappings A and S in Example 3, but our Theorem 3 is applicable because for the
case (x, y) = (2, 3) we get

d(A(2), A(3)) = d(1, 2) = 1

> N(2, 3)M(2, 3) =
2

3
,

where

N(2, 3) =

max

{

d(2, 3), d(2, A(2)) + d(3, A(3)),
d(2, A(3)) + d(3, A(2))

}

d(2, A(2)) + d(3, A(3)) + 1

=
max {d(2, 3), d(2, 1) + d(3, 2), d(2, 2) + d(3, 1)}

d(2, 1) + d(3, 2) + 1
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=
2

3
,

M(2, 3) = 1.

d(S(2), S(3)) = d(3, 2) = 1

> N(2, 3)M(2, 3) =
2

3
,

where

N(2, 3) =

max

{

d(2, 3), d(2, S(2)) + d(3, S(3)),
d(2, S(3)) + d(3, S(2))

}

d(2, S(2)) + d(3, S(3)) + 1

=
max {d(2, 3), d(2, 3) + d(3, 2), d(2, 2) + d(3, 3)}

d(2, 3) + d(3, 2) + 1

=
2

3
,

M(2, 3) = 1.

Also, Theorem 1 of [19] cannot be applicable for the mappings A and S. This
shows that our Theorem 3 is a genuine generalization of Corollary 1 and Theorem
1 of [19].

3 Application in dynamic programming

Let X and Y be Banach spaces, S ⊂ X be the state space, D ⊂ Y be the decision
space and IX be the identity mapping on X. B(S) denotes the set of all bounded
real-valued functions on S and

d(f, g) = sup
x∈S

|f(x) − g(x)|.

It is clear that (B(S), d) is a complete metric space.
As proposed in Bellman and Lee [5], the basic form of the functional equation

in dynamic programming is

f(x) = opty∈D
H(x, y, f(T (x, y))), x ∈ S,

where x and y denote the state and decision vectors, respectively. T denotes the
transformation of the process, f(x) denotes the optimal return function with the
initial state x and opt represents sup or inf.

Many authors proved the existence and the uniqueness of solutions or common
solutions for several classes of functional equations or systems of functional equations
arising in dynamic programming by employing various fixed and common fixed point
theorems, see Bhakta and Mitra [4], Kalinde et al.[15], Li et al.[21], Liu [22], Liu et
al.[23–26] and Pathak et al.[29].



COINCIDENCE AND COMMON FIXED POINTS THEOREM . . . 25

In this section, applying Theorem 3, we establish the existence of common so-
lutions of the following system of two functional equations arising in dynamic pro-
gramming.

fi(x) = opty∈D
{u(x, y) + Hi(x, y, fi(T (x, y)))}, x ∈ S, i = 1, 2, (13)

where u : S × D → S, T : S × D → S and Hi : S × D × R → R, i = 1, 2.

Theorem 4. Suppose that the following conditions are verified
(c1) u and Hi are bounded for i = 1, 2,
(c2) For all (x, y) ∈ S × D, g, h ∈ B(S) and t ∈ S

|H1(x, y, g(t)) − H1(x, y, h(t))| ≤ N(g(t), h(t))M(g(t), h(t)), (14)

where

N(g(t), h(t)) =

max

{

|A2g(t) − A2h(t)| , |A2g(t) − A1g(t)| + |A2h(t) − A1h(t)| ,
|A2g(t) − A1h(t)| + |A2h(t) − A1g(t)|

}

d(A2g,A1g) + d(A2h,A1h) + 1
,

M(g(t), h(t)) = max







|A2g(t) − A2h(t)| , |A2g(t) − A1g(t)| , |A2h(t) − A1h(t)| ,
|A2g(t) − A1h(t)| + |A2h(t) − A1g(t)|

2







and
Aigi(x) = opty∈D{u(x, y) + Hi(x, y, gi(T (x, y)))}, x ∈ S, i = 1, 2.

(c3) : A1(B(S)) ⊂ A2(B(S)),
(c4) : A1u = A2

1u for some u ∈ C (A1, A2) and A1A2u = A2A1u, u ∈ B(S).
Then, the system of functional equations (13) possesses at least one common

solution in B(S). In addition, if z and w are two distinct solutions of (13) therefore

d(z,w) ≥
1

2
.

Proof. It follows from (c1) and (c2) that A1 and A2 are self-mappings in B(S).
Assume that opty∈D = supy∈D. For each g, h ∈ B(S), x ∈ S and ǫ > 0, there exist
y, z ∈ D such that

A1g(x) < u(x, y) + H1(x, y, g(T (x, y))) + ǫ, (15)

A1h(x) < u(x, z) + H1(x, z, h(T (x, z))) + ǫ. (16)

It is easy to see that

A1g(x) ≥ u(x, z) + H1(x, z, g(T (x, z))), (17)

A1h(x) ≥ u(x, y) + H1(x, y, h(T (x, y))). (18)

By virtue of (15) and (18), we infer that

A1g(x) − A1h(x) < H1(x, y, g(T (x, y))) − H1(x, y, h(T (x, y))) + ǫ (19)
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≤ |H1(x, y, g(T (x, y))) − H1(x, y, h(T (x, y)))| + ǫ

≤ N(g(t), h(t))M(g(t), h(t)) + ǫ.

From (16) and (17) we conclude that

A1g(x) − A1h(x) > H1(x, z, g(T (x, z))) − H1(x, z, h(T (x, z))) − ǫ (20)

≥ − |H1(x, z, g(T (x, z))) − H1(x, z, h(T (x, z)))| − ǫ

≥ −N(g(t), h(t))M(g(t), h(t)) − ǫ.

It follows from (19) and (20) that

|A1g(x) − A1h(x)| ≤ N(g(t), h(t))M(g(t), h(t)) + ǫ.

Using (14) and the above inequality we obtain

|A1g(x) − A2h(x)| ≤ N(g, h)M(g, h) + ǫ.

Hence

d(A1g,A1h) ≤ N(g, h)M(g, h) + ǫ. (21)

Similarly, the inequality (21) also holds for opty∈D = infy∈D . Letting ǫ → 0 in (21)
we deduce that

d(A1g,A1h) ≤ N(g, h)M(g, h).

Due to Theorem 3, A1 and A2 have at least one common fixed point z ∈ B(S), i.e.,
z is a common solution of the system of functional equations (13). In addition, if z

and w are two distinct solutions of (13), therefore d(z,w) ≥
1

2
.
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comments and suggestions.
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